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ABSTRACT
Human-robot interaction (HRI) is a research area of growing inter-
est with a multitude of applications for both children and adult user
groups, as, for example, in edutainment and social robotics. Crucial,
however, to its wider adoption remains the robust perception of HRI
scenes in natural, untethered, and multi-party interaction scenarios,
across user groups. Towards this goal, we investigate three focal HRI
perception modules operating on data from multiple audio-visual
sensors that observe the HRI scene from the far-field, thus bypassing
limitations and platform-dependency of contemporary robotic sens-
ing. In particular, the developed modules fuse intra- and/or inter-
modality data streams to perform: (i) audio-visual speaker local-
ization; (ii) distant speech recognition; and (iii) visual recognition
of hand-gestures. Emphasis is also placed on ensuring high speech
and gesture recognition rates for both children and adults. Devel-
opment and objective evaluation of the three modules is conducted
on a corpus of both user groups, collected by our far-field multi-
sensory setup, for an interaction scenario of a question-answering
“guess-the-object” collaborative HRI game with a “Furhat” robot.
In addition, evaluation of the game incorporating the three devel-
oped modules is reported. Our results demonstrate robust far-field
audio-visual perception of the multi-party HRI scene.

Index Terms— Human-robot interaction, speaker localization,
distant speech recognition, gesture recognition, adaptation, fusion

1. INTRODUCTION

HRI systems have been gaining increasing popularity, following ad-
vances in interaction technologies and robotic platforms [2], with
a wide range of applications developed for edutainment [3–5] and
assisted living [6, 7], among others. In such systems, it is highly de-
sirable that the interaction mimics typical human-to-human commu-
nication involving the exchange of audio-visual information, most
critically via speech and hand gestures [7, 8]. For this purpose, on
the perception side of HRI systems, three crucial components can
be readily identified: automatic speech recognition, recognition of
hand gestures, and speaker localization. The latter is necessary to
scene diarization in multi-party interaction scenarios, allowing for
example to guide robotic attention towards the active speaker [9,10].

The aforementioned perception components should be capable
of supporting natural HRI scenarios, involving interaction with mul-
tiple users, without restricting their movement or requiring them

This work was supported by EU Horizon 2020 project BabyRobot [1],
under grant agreement no. 687831.

tethered to the robot. Further, performance should remain robust
to audio-visual noise due to the environment and the interaction sce-
nario complexity, which can, for example, imply acoustic reverber-
ation to speech, or visual occlusion and pose variation of user ges-
tures. Albeit recent progress [11–13], successfully achieving such
goals by robot-based sensing alone remains challenging.

A suitable alternative for indoors HRI is to employ robot-
external sensing instead, based on multiple audio-visual sensors
located in the far-field, thus providing a “smart space” where the
interaction is unobtrusively observed. Such approach allows the
fusion of multiple data streams within the same modality (audio or
visual) and/or across modalities (audio-visual), improving robust-
ness to audio-visual noise, while bypassing limitations of current
robotic sensing and providing perception solutions to HRI in a
robot-independent fashion. Not surprisingly, the external sensing
paradigm has been considered in recent HRI works [14–16], with
limited however exploration of multi-sensory and multi-modal fu-
sion, thus failing to fully exploit relevant research on perception
technologies inside smart spaces, for example [17, 18].

In this work, robot-external sensing is adopted based on Kinect
sensors [19] that have become popular in HRI systems [15, 16, 20,
21]. Specifically, four Kinects are employed providing a multitude
of data streams (see Fig. 1), leading to the design of novel percep-
tion components for: (i) multi-sensory audio-visual speaker local-
ization, (ii) multi-microphone distant speech recognition, and (iii)
multi-view gesture recognition, as discussed in detail in this paper.

Further to the above, a major HRI challenge involves robustness
to variations in user group characteristics [22]. Of particular interest
is the case of different age groups, i.e., children vs. adults, especially
since child-robot interaction has been the focus of intense research
efforts [1–5, 14–16], while, with few exceptions, perception compo-
nent development in the literature has primarily focused on adults.
The two age groups differ both in interaction behavior, as well as

Kinect #1 (K1) Kinect #2 (K2) Kinect #3 (K3) Kinect #4 (K4)

Fig. 1: Examples of the data streams recorded by the four Kinects
of the proposed multi-sensory setup. Three of the Kinects provide
RGB video and beamformed audio, while the fourth user skeletons.
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Fig. 2: Schematic of the three multi-sensory perception modules.

in “articulatory” characteristics (vocal tract, arm lengths), deeming
robust component performance across them challenging. Motivated
by the above, a second contribution of this paper constitutes the in-
vestigation of the developed recognition modules for both children
and adults, with suitable adaptation and training schemes proposed
within the adopted multi-sensory far-field approach.

Additional contributions involve the integration and evaluation
of the developed modules. In particular, the perception components
are integrated under an architecture that controls dialog flow and
robot actions, providing “intelligent” HRI that exploits the audio-
visual scene perception results. For this purpose, an interaction sce-
nario of a question-answering “guess-the-object” collaborative HRI
game with a “Furhat” robot [20] is presented. The latter choice is
primarily driven by the 3D photorealistic appearance of the Furhat
robotic head, its abilities to speak and turn towards a desired di-
rection “engaging” the user, and accompanying software integration
environment within the IrisTK dialog framework [23]. For the devel-
opment and evaluation of the three perception components, a corpus
of both children and adults has been collected supporting this inter-
action scenario. In addition, evaluation of the HRI game incorporat-
ing the three developed modules is reported. The results demonstrate
robust far-field audio-visual perception of the multi-party HRI scene.

2. THE AUDIO-VISUAL PERCEPTION SYSTEM

The developed audio-visual perception system is depicted in Fig. 2.
Details of its three components are provided next.

2.1. Audio-Visual Speaker Localization Module

Localization may prove useful in cases where the auditory scene
consists of multiple speakers and there is need for speaker track-
ing and diarization, being for example essential to audio denoising
and robot’s attention-guiding in natural HRI. Although visual-only
localization may be more accurate than audio-based, it does not suf-
fice when a speaker has to be tracked in multi-party scenarios.

There exist various techniques for audio speaker localization and
diarization [24], some of them adapted specifically to HRI setups for
microphones mounted on robots [11, 13]. In our case, microphones
are static, and we seek a real-time algorithm. For this purpose, we
have developed a real-time 3D audio localization system that is ro-
bust to noise and errors, based on the steered response power – phase
transform (SRP-PHAT) algorithm [25, 26]. Regarding audio-visual
speaker localization, several methods exist [27–30], most of them
employing Bayesian filtering techniques or fusion between audio
and video features, primarily developed for conventional RGB cam-
eras. In our setup where Kinects are used, visual tracking is accom-

plished exploiting the skeleton data stream provided by the sensor
(see also Fig. 1).

In more detail, for audio-visual speaker localization the skele-
tons of all persons present in the scene are first retrieved, as returned
by one of the Kinects (K4) of the adopted sensory setup. In paral-
lel, SRP-PHAT based audio speaker localization is performed sep-
arately for the microphone array of each of the three other Kinects
(K1, K2, K3), based on a “global” pre-defined 3D grid. The three
computed SRP-PHAT energies are subsequently added, and maxi-
mization over the entire 3D grid yields the possible sound source
location. The single-modality results are then fused by simply com-
puting distances between the audio- and visual-only locations, and
selecting the visual location with the smallest distance from the au-
dio one. The speaker position is then used for turning the robot’s
head towards the active speaker.

2.2. Distant Speech Recognition Module
Several factors mentioned earlier, such as noise, reverberation, and
speaker-robot distance [31], render speech recognition a challenging
task. We employ distant speech recognition (DSR) [32–34], based
on three Kinect microphone arrays distributed in space (K1, K2,
K3). Extending our earlier work [34], the DSR module is always-
listening, being able to detect and recognize user utterances at any
time, among other speech and non-speech events, possibly degraded
by environmental noise and reverberation. Further, it is grammar-
based, so the speaker communicates with the robot via a set of utter-
ances suitable for the HRI use-case of interest. The system can rec-
ognize both English and Greek. For the use-case and the evaluation
that will be described later, we have employed the Greek language.

Regarding acoustic modeling, we employed GMM-HMMs and
trained 3-state, cross-word triphones (about 8k) with 16 Gaussians
per state on standard MFCC-plus-derivatives features. To detect one
of the target utterances, we use a 2.5 sec sliding window with a
0.6 sec shift. To improve recognition in noisy and reverberant envi-
ronments, we employ delay-and-sum beamforming using the avail-
able 4 microphones from each Kinect. To reduce mismatch with
the acoustic conditions in the target environments we have trained
models on artificially distorted data. Data contamination has been
performed on the available clean training data of the Logotypografia
database [35]. The distortion process involves convolution of all ut-
terances with room impulse responses (RIRs) and addition of white
Gaussian noise [36]. The employed RIRs were measured in real
environments using the exponential sine sweep technique [37, 38].
However, mismatch between training and test conditions necessi-
tates model adaptation, thus maximum likelihood linear regression
(MLLR) has been employed. Each microphone array outputs an in-
dividual DSR result, and we subsequently fuse them via an appro-
priate majority voting scheme.

2.3. Gesture Recognition Module
Our multi-sensor gesture front-end is an extension of our previ-
ous work on single-view gesture recognition [39] and employs
state-of-the-art dense trajectory features [40] along with the bag-of-
visual-words (BoVW) framework. First, we sample feature points
from each RGB frame and track them over time based on optical
flow. Following the trajectory extraction, different descriptors can
be computed within space-time volumes along each trajectory. More
specifically, motion boundary histogram features [41], describing
the motion along each trajectory, are computed on the gradient of
the horizontal /vertical optical flow components.

The extracted features are encoded using visual codebooks, con-
structed by clustering a subset of selected training features. The cen-
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Fig. 3: (a) Spatial arrangement of sensors (four Kinects) relative to the table hosting the “Furhat” robot, the touch-screen, and the overall
human interaction area in the HRI system; (b) Dialog flow in the multi-party HRI system; (c) A snapshot of the HRI game as shown to the
system users on the touch-screen (the farm with animals in their correct position is depicted).

troid of each cluster can be considered as a visual word, and each
trajectory is assigned to its closest visual word using the Euclidean
distance. We use BoVW encoding that yields a sparse video repre-
sentation, which is essentially the histogram of visual word occur-
rence frequencies over the space-time volume. Videos are classified
based on their BoVW representation, using non-linear support vector
machines (SVMs) with the χ2 kernel [41]. Since we face multi-class
classification problems, we follow the one-against-all approach and
select the class with the highest score. For a given Kinect (K1, K2,
K3), we have trained a different SVM for all gesture classes and
obtain the probabilities as described in [42]. We apply a soft-max
normalization to each sensor’s probabilities, and then take their av-
erage. Finally, we select the class with the highest fused probability.

3. MULTI-PARTY HRI EXPERIMENTAL SETUP

3.1. Use-Case Scenario

A multi-party game for multiple humans and a robot has been de-
signed, aiming to entertain, educate, but also establish a natural inter-
action between all parties. The game, mostly designed for children
but also enjoyed by adults, is called “Form a Farm”, and is a guess-
the-object game involving two roles, the picker and the guesser.
These can be equally played and interchanged between the humans
and the robot. The picker chooses an animal and utters characteris-
tics of this animal. The guesser has to guess the picked animal.

More specifically, humans play the “Show me the gesture” game
(State #1 in Fig. 3b), so as to decide who plays first. If the robot
recognizes the gesture correctly, it becomes the picker, otherwise it
becomes the guesser. In the first case, the human players take turns
guessing the chosen animal (State #2). After every wrong guess, the
robot reveals another characteristic of the animal. After the identi-
fication of the animal, the robot asks the humans to properly place
the animal in a farm with some distinct segmented areas that appear
in a touch-screen in front of them (State #3). This has also an ed-
ucational purpose for children, because they are prompted to learn
animal characteristics. In the second case the roles are reversed:
Humans consult and choose an animal, revealing one characteristic.
Then the robot tries to guess the picked animal. Subsequently, the
humans take turns revealing more animal characteristics, until the
robot guesses correctly. The number of animals is 19, and their char-
acteristics belong in 5 different classes: color, size, species, number
of legs, and a distinctive property. A snapshot of the farm with ani-
mals correctly placed is depicted in Fig. 3c.

3.2. System Interconnections and Dialog Management

Our multi-party HRI system adopts a modular architecture and fol-
lows the IrisTK dialog framework [23]. Communication between the

modules is event-driven, with events being divided in three differ-
ent types: action events signaling what the system should do, sense
events that report what the system perceives from its surroundings,
and monitor events that report feedback about actions executed by
the system. The dialog is managed by a module that translates the
information provided by the perception components to actions ac-
cording to the dialog state. The dialog follows a variation of the
Harel statechart [23, 43].

An example of the dialog flow and the system interconnections
can be seen in Fig. 3b. In the first state (#1), a “listen” action event
(depicted with an orange arrow) is sent to the gesture recognition
module. The recognized gesture is then sent back to the dialog
through a “recognized” sense event (depicted with a green arrow),
and the appropriate utterance is sent to the robot text-to-speech syn-
thesis (TTS) system along with a “speak” action event (depicted with
a blue arrow). The dialog then moves to the second state (#2), where
speech input is required by the humans, so “listen” events are sent
to the audio-visual speaker localization and DSR components. Ac-
cording to the result that is fed back (with the “recognized” events),
the appropriate utterance is sent to the robot TTS system, and the po-
sition recognized by the audio-visual localization component is sent
to the robot to attend (with an “attend” action event depicted with a
purple arrow). In the final third (#3) state, the dialog awaits input on
the touch-screen, and sends again the appropriate speak event.

As already discussed, our setup involves the use of multiple
Kinect sensors distributed in space at about 2.5 m average distance
from the users. The Furhat robot head [20], created by Furhat
Robotics, which is an animated face back-projected on a 3D mask,
has been employed as the robotic agent. Among other things, Furhat
is capable of speech and head movement with 2 degrees of freedom.
We have also employed a Greek TTS engine [44] to enable speech
in Greek. The spatial arrangement of the four Kinect sensors along
with the Furhat robot can be seen in Fig. 3a.

4. EVALUATION

We employ two evaluation strategies: We perform an objective eval-
uation of the core perception technologies (speaker localization, ges-
ture and speech recognition) for both adults and children, as well
as a higher-level evaluation of the multi-party HRI system for the
“Form a Farm” game. Regarding objective evaluation of the percep-
tion system, we have collected audio-visual data from 20 adults and

greeting ‘‘come closer’’ pointing greeting ‘‘come closer’’ pointing

Fig. 4: Examples of 3 gesture types by a child (left) and adult (right).
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Fig. 5: An example of the audio-visual speaker localization. Left:
Audio-only (the SRP output is shown with high values in red); Mid-
dle: Visual-only; Right: Audio-visual. Positions of the table and the
four Kinects are also shown (see also Fig. 3a).

28 children for model adaptation, training, and testing. Each sub-
ject has uttered about 130 utterances out of 300 that constitute the
speech recognition grammar from several pre-defined positions (and
among other non-speaking people present), and performed 7 ges-
tures related to various HRI scenarios: “agreement”, “come closer”,
“circle”, “point”, “stop”, “sit down”, and “greeting” (see also Fig. 4).
Background data with random movements have also been collected.
Regarding evaluation of the high-level performance of the HRI on-
line system, we invited 12 pairs of adults and 14 pairs of children to
interact with Furhat in the “Form a Farm” scenario.

4.1. Objective Evaluation of Core Technologies
An example of audio-visual speaker localization can be seen in
Fig. 5. For audio-only speaker localization, the employed metrics
are PCOR (percentage correct), which is the percentage of correct
estimations (deviation from ground truth less than 0.5 m) over all
estimations, and RMSE (root mean square error) between the esti-
mation and the ground truth. For audio-visual speaker localization,
since person locations are computed by the Kinect skeleton, the
problem is essentially transformed into a speaker diarization task.
Thus, evaluation is performed in terms of correct speaker estimation,
where PCOR is used. Audio-only localization does not perform suf-
ficiently well, yielding a PCOR of 45%, but the average RMSE is
60 cm, meaning that the average source localization error is 60 cm,
which is not very large. If both audio and visual information are
used, then speaker localization performance is boosted to a PCOR
of 86%.

For distant speech and gesture recognition evaluation, we have
experimented with training /adapting adult, children, and mixed
models, and testing them with both sets of data. Results for DSR
are presented in Table 1 in terms of sentence accuracy, denoted by
SCOR, for the two different age groups as test set and with two
different decision strategies: “Average” refers to the average result
over all three Kinect arrays, while “Fusion” is the result of the three
Kinect arrays decision fusion. We present results for unadapted
models (“no-adapt”) and MLLR-adaptated models on adult data,
children data, and both (denoted by “mixed”). Adaptation and test-
ing has been 4-fold cross-validated. Speech recognition achieves
satisfactory performance for adults, even without adaptation. Adap-
tation improves performance in all cases, even when it is performed
on a different age group than testing. Table 1 indicates that the best
results are obtained when adapting and testing on the same group,
which was expected. Decision fusion further boosts performance
in all cases, except for children testing using the unadapted and
adult-adapted models, where SCORs for independent decisions are
relatively low. The best achieved results are 99.82% for adults and
98.97% for children.

In a similar fashion, to evaluate the gesture recognition system,
we have trained a separate model for each Kinect sensor using as
training sets: a) the children gesture data, b) the adults gesture data,

DSR-Adaptation scheme Gesture Rec.-Training scheme
No-adapt Adults Children Mixed Adults Children Mixed

Test SCOR SCOR SCOR SCOR Acc. Acc. Acc.

A
du

lts

K1 91.76 98.95 94.52 98.69 84.79 60.21 87.81
K2 90.60 98.70 90.99 97.85 89.27 53.13 92.19
K3 91.39 98.95 94.11 98.75 85.42 55.63 82.08
Avg 91.25 98.87 93.20 98.43 86.49 56.32 87.36
Fuse 92.41 99.82 94.42 99.77 92.19 62.08 95.10

C
hi

ld
re

n

K1 70.53 72.31 95.95 82.95 60.42 76.85 77.31
K2 72.48 73.85 95.95 82.52 46.99 67.82 68.75
K3 66.83 67.63 94.60 80.70 42.36 68.29 70.83
Avg 69.95 71.20 95.50 82.06 49.92 70.99 72.30
Fuse 64.17 66.02 98.97 95.51 56.25 83.80 80.09

Table 1: Evaluation of the DSR and gesture recognition modules.
Online Evaluation Statistics

#Trials
Human 3.13

# Corr. guesses(%)
Human 96.70

Furhat 2.7 Furhat 86.35
Subjective Evaluation Results

Dis. Mostly Neutral Mostly Agree MOS
Dis. Agr.

It was easy to play with the robot 0 3.57 0 28.57 67.86 4.61
The robot behaves like humans 0 7.14 25.00 42.86 25.00 3.86

Table 2: High-level statistics and subjective evaluation for the online
HRI system. “MOS” is the mean opinion score (in a 1−5 scale).

and c) both. Testing was carried out for both children and adult data
separately, using leave-one-out cross-validation. Table 1 presents
the average accuracy (Acc.) results (%) for the 7 gesture classes
and the background model. Results indicate that fusion of the three
Kinect sensors improves performance significantly compared to the
best single sensor result. Also, when training and test data come
from the same age group, the recognition accuracy is high. We can
see that accuracy on adult data is enhanced when the model is trained
on mixed group age data, since the diversity with which children per-
form their gestures accommodates the generalization of the model.
On the other hand, using the mixed training set deteriorates perfor-
mance slightly on children gesture recognition, since the range of
adult gestures is significantly larger than children’s.

4.2. High-level Evaluation of the HRI System
Table 2 presents two high-level measures relevant to the interaction
success: the average number of trials required by each party in or-
der to recognize an animal, as well as the percentage of successfully
guessed animals. Results demonstrate that the interaction is effec-
tive: almost all rounds ended with correct identification, with each
party needing approximately 3 tries. A subjective evaluation of the
system was also carried out by asking the children to grade two state-
ments regarding their interaction, using a 5-point ordinal scale from
disagree to agree. Table 2 presents these results: The significant ma-
jority finds it easy to play with the robot, while a large number of
children sees a strong resemblance of the robot behavior to humans,
a result that is consistent with the fact that children tend to anthro-
pomorphize robotic agents. These evaluation results confirm the ef-
fectiveness of the whole system regarding both its core perception
technologies and their integration into a unified HRI system.

5. CONCLUSIONS

In this work, we have proposed and developed an audio-visual per-
ception system, including audio-visual speaker localization, distant
speech and gesture recognition, for natural multi-party HRI using
multiple distributed sensors. We have also integrated all the compo-
nents with a social robot and designed a game for multi-party inter-
action. After the evaluation of the core technologies with both adult
and children data, we conducted an evaluation of the online system
by humans according to the proposed scenario. The obtained results
confirmed the success of the proposed system, highlighting the need
for adapting and training perception systems especially for children.
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[12] H.W. Löllmann, H. Barfuss, A. Deleforge, S. Meier, and
W. Kellermann, “Challenges in acoustic signal enhancement
for human-robot communication,” in Proc. SPECOM, 2014.

[13] C. Evers, Y. Dorfan, S. Gannot, and P.A. Naylor, “Source
tracking using moving microphone arrays for robot audition,”
in Proc. ICASSP, 2017.

[14] A. Baird et al., “Automatic classification of autistic child vocal-
isations: A novel database and results,” in Proc. Interspeech,
2017, pp. 849–853.
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