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Abstract—For a context-aware robotic assistant platform that
follows patients with moderate mobility impairment and adapts
its motion to the patient’s needs, the development of an efficient
leg tracker and the recognition of pathological gait are very
important. In this work, we present the basic concept for the
robot control architecture and analyse three essential parts of the
Adaptive Context-Aware Robot Control scheme; the detection
and tracking of the subject’s legs, the gait modelling and
classification and the computation of gait parameters for the
impairment level assessment. We initially process raw laser data
and estimate the legs’ position and velocity with a Kalman Filter
and then use this information as input for a Hidden Markov
Model-based framework that detects specific gait patterns and
classifies human gait into normal or pathological. We then
compute gait parameters commonly used for medical diagnosis.
The recognised gait patterns along with the gait parameters will
be used for the impairment level assessment, which will activate
certain control assistive actions regarding the pathological state
of the patient.

I. INTRODUCTION
The care of the constantly growing ageing population is a

considerable problem for modern societies [1], [2]. One of
the major issues we have to face is the mobility difficulties
of the elderly, which can be caused either by age, or by
certain pathologies. Walking problems affect not only the daily
lives of the elderly but also their self-esteem, after they lose
their ability to look after themselves. The lack of nursing
staff, [3], in relation to the increased demands of the elderly
for care, led scientists to turn to robotic assistants, since
robotics can incorporate features such as posture support and
stability, walking assistance, navigation in indoor and outdoor
environments, health monitoring, etc.
Our motivation is to use intelligent robotic platforms (Fig.1),

which can monitor and understand the patient’s walking state
and will autonomously reason on performing assistive actions
regarding the patient’s mobility and ambulation [4]. We are
working on the development of an Adaptive Context-Aware
Robot Control architecture, when the robotic assistant is in
front of the user and detects the patient’s mobility state by
using real-time laser data. We recognise specific gait patterns
and also compute gait parameters that are indicative of par-
ticular pathologies. The recognised parameters of the user are
then used for the patient’s mobility impairment assessment,
and this indication will trigger certain control assistive actions
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Fig. 1: A robotic platform equipped with a Hokuyo Laser Sensor
aiming to record the gait cycle data of the user (below knee level).

and behaviours from the robotic assistant that follows the user.
Such actions would be velocity adjustment of the platform,
approach of the patient because of recognised changes in
gait patterns due to fatigue, walking instability or due to the
patient’s will to perform another task (like approaching a chair
to perform a stand-to-sit action).
In this paper we present our approach for the development

of two procedures that are important for human gait modelling
and their performance is necessary for the Adaptive Context-
Aware Robot Control architecture. Firstly, we analyse the
detection and tracking of the patient’s legs, based on a Kalman
Filter (KF), for estimating the legs’ kinematic parameters. This
process has the potential to track the user while perform-
ing straight walking, but also can overcome leg occlusions
and false detections. Also, this is an essential part of the
preprocessing of the raw laser data and it actually provides
the input signal for our control architecture. Secondly we
describe the development of a non-invasive framework for
pathological walking recognition, based on a Hidden Markov
Model (HMM), used for gait modelling and classification.
This framework is designed to actively incorporate many
different gait patterns as a subsystem within a larger cognitive
behaviour-based context-aware robot control framework (that
embodies several walking morphologies, including turning and
maneuvering motions). Furthermore, this framework has the
potential to be used for the classification of various walking
pathologies and related impairments, and for actively and
cognitively being augmented with new patients with mobility



Fig. 2: Snapshot of the detected leg’s from range data in the
saggital plane. Blue stars correspond to the raw laser data; black
’X’ correspond to the detected leg centers; green ’X’ correspond to
the estimated positions. The rectangle is the search window.

difficulties.

II. RELATED WORK

As mobile robots are becoming more and more autonomous,
the robot-following-human concept is getting popular in as-
sistive robotics, and they are actually using various sensing
technologies for monitoring human activity [5], [6]. The
automatic classification and modeling of specific physical
activities of human beings is very useful for the development
of smart walking support devices, aiming to assist motor-
impaired persons and elderly in standing, walking and other
mobility activities, as well as to detect abnormalities and to
assess rehabilitation procedures [7]–[11]. For the extraction
of gait motions, different types of sensors have been used,
from gyroscopes and accelometers to cameras, etc., [12]–[16].
Other approaches refer to human detection and tracking, or
recognition of human activity utilizing laser sensors, and in
some cases complementary with cameras, or force sensors,
[17].
For the robot-following-human problem, there is a dis-

crimination in positioning between human and mobile robot;
robot following human from behind, or by the side of the
human, or in front of the human. Towards this direction, the
estimation of the legs’ kinematic parameters with respect to
the mobility aid is essential. Thus, the detection and tracking
of humans is a common problem. Most research work focuses
on detecting and tracking human legs from static sensors, as
in pedestrian tracking, [18], or from laser scanners mounted
on mobile robotic platforms for person following [19], where
several tracking and control methods have been applied, [20],
[21]. The need for a substantial interaction between human
and accompanying robotic platform led to the development of
sophisticated control schemes for a high level understanding
of the human behavior, presenting early research results in

[22]–[25]. Most gait tracking methods use standard Kalman
Filters, for which normal gait is modeled as an interchange of
accelerative and decelerative motions of the two legs [26], with
predefined filter inputs for the motion models. However, those
models are had to be applied to pathological gait. Mobility
impairment of different origin result in different gait patterns.
In this work, we present a gait detection and tracking method
that is easy to implement, that uses a standard Kalman filter,
using acceleration as the system’s noise, and also uses the
predicted state vector as feedback of the tracking process for
the detection of the user’s legs for the next time frame.
A key issue for the development of a context-aware robotic

assistant platform that monitors elderly people with mobility
inabilities, is gait modelling, i.e. the extraction of specific gait
patterns that correspond to specific pathologies, and will be
necessary for the assessment of the mobility impairment level
of the subject, that will trigger certain assistive actions from
the robotic assistant. The dynamic properties of walking led
to the usage of Hidden Markov Models (HMMs). Time series
data can be modelled by HMMs, since they are not only easy
to build and manipulate, but also to train and score them
with optimal algorithms (e.g. maximum likelihood, Viterbi
decoding). In HMMs only the output of the model is visible
to the observer and the states of the model (corresponding to a
physical event) are not observable, in other words are hidden,
[27]. The versatility of HMMs makes them useful in extracting
human patterns. Apart from their prominent application in
speech recognition, [28], HMMs are also used in a number
of pattern recognition applications, gesture recognition, [29],
human activity analysis, [30] and biometric gait recognition,
[31]. The first attempts to model the normal walking motion
by using HMMs with respect to laser data features, were
presented in [32], [33]. In this work we extend this approach
to model and characterize the pathological walking motion, in
order to integrate it into a Context-Aware Robot Control.

III. SYSTEM OVERVIEW

An Adaptive Context-Aware Robot Control architecture is
being developed for the intelligent robotic assistant platform,
that will adapt and act according to the patient’s needs. The
system is driven by the sensory data of a 2D laser range
scanner that detects the walking motion (Fig.1). An important
step for performing behavior-based context aware control is
the preprocessing of the system’s input signal. This process
incorporates the detection and tracking of the user’s legs. This
framework takes as input the noisy laser data, detects the
patient’s legs and estimates their actual position and velocity
with respect to the robotic assistant. The estimated kinematic
state of the subject’s legs feed the cognitive context-aware
control system as the environmental input signal, that is used
to infer the context (i.e. state of the patient) and to perform
specific actions in the detected context.
The control scheme consists of the typical three-layer ar-

chitecture. The high level of this control scheme contains the
Gait Modelling and Classification module. This is an HMM-
based approach that can recognize sequences of gait patterns



and also it can classify them into normal pathological ones,
or non-walking activity. Given the spatiotemporal properties
of those sequences, we compute particular gait parameters
(such as step length, cadence), that are commonly used for
medical diagnosis, [34], since differentiations in their values
are indicative of specific pathological states. In that way,
an impairment level assessment is performed, for completely
knowing the context of the patient’s walking motion (i.e.
recognition of the patient’s intention to walk, gait modelling,
estimation of the subject’s pathological status).
This context-awareness is used as input to the medium

level control module. Medium level control contains specific
behaviours and assistive actions, that are activated according
to the subject’s detected context. The robotic assistant should
adaptively track and follow the subject during its walking
motion. Also the platform should smoothly stop in front of the
subject in cases when the subject freezes and stops abruptly.
Furthermore, the platform should smoothly approach the user
to provide possible support when instability in gaiting is
detected.
All this information is used as input to the typical low level

controller of the platform, in order to inherently translate the
decision of performing a specific assistive action into motor
commands.

IV. PREPROCESSING OF CONTROL INPUT: LEG
DETECTION AND TRACKING

For the detection and tracking of the patient’s legs we use
a combination of K-means clustering to detect the subject’s
legs and a Kalman Filter for tracking the user, and therefore
estimate of the kinematic parameters of walking, i.e. the legs’
positions and velocities. Our approach is a recursive system
with a substantial forward-backward interaction between the
detection and tracking of the user.

A. Data Processing and extraction of candidate legs
The raw laser data are processed at each time frame. Data

processing consists of defining an observation window (a
rectangle area) in the scanning plane of the laser scanner. The
window’s initial dimension is computed by the area in front
of the rollator, where we expect the subject to be standing
before performing the walking task. This initial search window
is predetermined and wide enough, while in the subsequent
frames it is adjusted. For the data inside the window we use
a simple background extraction method based on thresholding
criteria. The laser points that lie outside the observation
window are discarded, while the remaining are separated into
groups, corresponding to detected objects according to the
Euclidean distance between consecutive laser points. In cases
of discontinuities of laser points, due to fluctuations of the
device, or due to the objects deformable surface (common in
creasing pants), instead of having one laser group describing
an object, we end up with more. In such cases the adjacent
laser groups are merged according to an euclidian threshold.
Finally, any laser group that contains less than a specific
number of points is deleted. The remaining laser groups

formulate the candidate legs. The candidate legs extraction is
successful when we end up with two candidates, corresponding
to the legs. The treatment in cases of less or more laser groups
is described bellow.

B. Legs’ Detection
The candidate legs feed the Legs’ Detection subsystem, by

using a K-means++ clustering algorithm [35], that classifies
the left and right leg. Instead of using the highly noisy
centroid-mean of each cluster given by K-means, we take as
consensus that the human limbs can be represented as cylin-
ders, and therefore can be seen as circles in the scanning plane.
We use nonlinear least squares circle fitting with a constant
pre-computed radius, in order to approach the actual planar
leg centers. In that way we have a compact representation
of the legs, which is not influenced so much by the shape
deformations of the laser groups. The detected legs’ centers
compose the observation vector zk for the tracking process.

C. Kalman Filter Tracking
The tracking of the user’s legs is performed by a discrete

Kalman filter (KF) algorithm [36], using as observation
vector zk the detected leg centers at each time frame. For
the description of the legs’ motion we used a second order
kinematic model, i.e. it incorporates the position and velocity
of the legs, and subsequently the used state vector has eight
parameters:

xk = [ xL yL xR yR vL
x vL

y vR
x vR

y ] (1)

where (xL,yL) ,(xR,yR) are the positions and (vL
x ,vL

y ), (vR
x ,vR

y )
the velocities of the left and right leg along the axes. The
Kalman Filter process equation has the form:

xk+1 = Ak · xk +Bk ·wk (2)

where Ak is the transition matrix and it has the following form:

Ak =

[
I4 A1
/04 I4

]
(3)

where A1 = Δt · I4, and I4 is the 4x4 identity matrix. The gain
matrix Bk is multiplied with the process noise wk and is given
by:

Bk =

[
B1
B2

]
(4)

where B1 = (Δt2/2) · I4, B2 = Δt · I4, I4 is the 4x4 identity ma-
trix. The uncorrelated process noise wk is white and gaussian,
and is given by the distribution wk ∼ N(0,Qk), where Qk is
the process noise covariance matrix. Since we have no known
control inputs, we assume that acceleration is the effect of an
unknown input and we treat the acceleration as the process
noise. Therefore, it represents the influence of acceleration’s
variability at the state parameters at each time instant k. The
process noise covariance matrix Qk, which is an 8x8 square
matrix, is computed by:

Qk = Bk ·Ca ·BT
k (5)



where Ca is the covariance matrix of the acceleration
a, with a ∼ N(0,Ca) and Ca is a 4x4 diagonal matrix
with diagonal elements: std2Lax ,std

2
Lay ,std

2
Rax,std

2
Ray where

stdLax ,stdLay ,stdRax ,stdRay are the standard deviations of the
accelerations along the axes for both legs, that were exper-
imentally defined and describe the acceleration uncertainty
throughout the gait.
The observation vector zk of the true state is updated

according to the equation:

zk = Hk · xk + vk (6)

where Hk is the observation matrix which maps the true state
space into the observed space:

Hk =
[

I4 /04
]

(7)

with /04 is the 4x4 zero matrix, and vk is the observation noise,
with normal probability distribution p(vk) ∼ N(0,Rk), where
Rk is the measurement noise covariance matrix, a 4x4 diagonal
matrix with the following form:

Rk =

⎡
⎢⎢⎣

vxk
2 0 0 0

0 vyk
2 0 0

0 0 vxk
2 0

0 0 0 vyk
2

⎤
⎥⎥⎦ (8)

where vxk and vyk for both legs are the standard deviations of
the measurement noise vk along the axes. KF is a recursive
Bayesian estimator that consists of two phases,(i) the predic-
tion and (ii) the update phase. During prediction phase the
KF projects the state vector and the state covariance matrix
forward in time according to the physical model of the process
described by the input matrix Ak, and provides the a priori
state estimate:

x̂k|k−1 = Ak · x̂k−1|k−1 (9)

and the a priori estimate covariance:

Pk|k−1 = Ak ·Pk−1|k−1 ·Ak
T +Qk (10)

In the update phase, the observation vector serves as a feed-
back that corrects the a priori estimates. Thus, the observation
innovation is computed by:

ỹk = zk −Hk · x̂k|k−1 (11)

and its innovation covariance:

Sk = Hk ·Pk|k−1 ·Hk
T +Rk (12)

Innovation is crucial for obtaining the Kalman gain. The
Kalman gain is the solution to the minimum mean square error
in the posterior state estimation, and is given by:

Kk = Pk|k−1 ·Hk
T ·Sk

−1 (13)

Kalman gain technically calculates the quota of the predicted
state estimate and the measurement into the final a posteriori
state estimation. In that way we get the a posteriori state
estimate:

x̂k|k = x̂k|k−1+Kk · ỹk (14)

and the a posteriori estimate covariance:

Pk|k = (I −Kk ·Hk) ·Pk|k−1 (15)

At each time instant, the detection process provides the
observations for the KF tracking, and the KF feeds the system
back with the predicted state vector x̂k|k−1. Especially the
legs’ predicted positions are used as seed for the K-means++
algorithm, as an inference to where it should assign the leg
clusters in the next frame. Around the predicted positions
of the legs, leg-windows are set having initial constant di-
mensions proportional to the leg-circle’s dimensions. The leg-
windows dimensions are also adaptively adjusted, by enlarging
or shortening them according to the variability of the predicted
positions, provided by the a priori estimate covariance Pk|k−1
derived by the KF. From the two leg-windows, a wider search
window is defined in the plane and the detected raw data inside
it are ready to be processed. Thus, the described process results
in an iterative interaction between detection and tracking
processes. Finally, the estimated state vector x̂k|k enters the
HMM Gait Phases Recognition System as an observation at
each time frame.

D. False Detection Treatment
False detections are the cases in which either one leg is oc-

cluded by the other or there is interference of another person’s
legs inside the search window that have not been successfully
discarded. Those cases can interrupt or contaminate the dete-
ction and can result in losing track of the legs. To address such
false detections, certain hypotheses are checked. If the detected
leg centers violate a Euclidean distance constraint that we have
set, relevant to an experimentally defined anatomical threshold,
or when there are detected less or more than two laser groups,
the corresponding detection is regarded false. In order to
continue to the tracking phase, an only-prediction Kalman
filter is applied. In that particular case, we perform only the
prediction step and we use the prediction state vector x̂k|k−1
and the a priori estimate covariance Pk|k−1 as feedback for the
detection of the next frame, without taking into consideration
any observations for that particular time frame. This choice
has been made, as it was noticed that between two consecutive
frames the leg positions are not so prone to sharp or sudden
shifts.

V. HMM GAIT MODELLING

Hidden Markov Models are well suitable for gait recognition
because of their statistical properties and their ability to
reflect the temporal state-transition nature of gait. An HMM
is defined as a doubly embedded stochastic process with an
underlying process that is not observable (it is hidden), but can
only be observed through another set of stochastic processes
that produce the sequence of observations, [27]. This reveals
that the states underlying the data generation process are
hidden, and they could be inferred through observations.
This HMM based model is performed in the high level

of the Adaptive Context-Aware Robot Control, which utilizes
as observables several quantities that represent the motion of



the subjects’ legs (relative position w.r.t. the laser, velocities,
etc.), which are estimated sequentially by the detection and
tracking module, while the robotic assistant platform follows
the subject’s motion.
In this paper we have used the gait phases that characterize

the gait cycle. The gait cycle describes the period of time
during which one leg leaves the ground for the first time to
perform a forward motion till when the same leg contacts the
ground again, [37]. Each gait cycle has two phases: stance
and swing. In stance the foot is in contact with the ground. In
swing the foot is in the air performing a ballistic motion. The
gait cycle is divided into eight events:
1) IC - Initial Contact: 0% of gc1

Heel strike initiates the gait cycle and represents the
point at which the body’s centre of gravity is at its lowest
position.

2) LR - Loading Response: 0-10% of gc
Foot-flat is the time when the plantar surface of the foot
touches the ground.

3) MS - Midstance: 10-30% of gc
Midstance occurs when the swinging (contralateral) foot
passes the stance foot and the body’s centre of gravity
is at its highest position.

4) TS - Terminal Stance: 30-50% of gc
Heel-off occurs as the heel loses contact with the ground
and pushoff is initiated via the triceps surae muscles,
which plantar flex the ankle.

5) PW - Preswing: 50-60% of gc
Toe-off terminates the stance phase as the foot leaves
the ground.

6) IW - Initial Swing: 60-70% of gc
Acceleration begins as soon as the foot leaves the
ground and the subject activates the hip flexor muscles
to accelerate the leg forward.

7) MW - Midswing: 70-85% of gc
Midswing occurs when the foot passes directly beneath
the body, coincidental with midstance for the other foot.

8) TW - Terminal Swing: 85-100% of gc
Deceleration describes the action of the muscles as they
slow the leg and stabilize the foot in preparation for the
next heel strike.

Since the TW phase is characterized by heel strike that is an
equivalent trigger to the IC phase, and therefore those phases
are treated as identical. These seven states can define the
hidden states of the HMM (Fig. 3). The state and observations
at time t are denoted as st and Ot , respectively. The seven
states at time t = 1,2, ...,T , where T is the total time, are
expressed by the value of the (hidden) variable st = i ∈ S, for
i = 1, . . . ,7, where 1≡ IC/TW (since we treat IC and TW as
identical), 2 ≡ LR, 3 ≡ MS, 4 ≡ TS, 5 ≡ PW , 6 ≡ IW , and
7 ≡ MW . Regarding observations at time t, we define nine
signals denoted as xm, ym, υm

x , υm
y , for m = {R,L}, which are

the coordinates and the velocities along the axis for right and
left leg, respectively, and Dlegs which is the distance between

1gc: abbreviation for gait cycle

legs, that are represented by the vector Ot = [o1t . . .ok
t ]

T ∈ O,
for k = 1, . . . ,9, where o1t ≡ xR, o2t ≡ yR, o3t ≡ xL, o4t ≡ yL,
o5t ≡ υR

x , o6t ≡ υR
y , o7t ≡ υL

x , o8t ≡ υL
y , and o9t ≡ Dlegs. The

observation data (derived from the raw laser sensor data) are
modeled using a mixture of Gaussian distributions. This is
a natural way of representing these data, as the data vector
takes values from a bounded set (recall that we use the relative
position of the legs from a robot that follows the subject with
his/her mean velocity) and is inherently repetitive (due to the
cyclic nature of the human gait). Thus, by collecting many data
for a normal gait, we can obtain the mean and the variance of
the Gaussian distributions of the mixture. Since nine signals
are measured and constitute the extracted features at each time
instant, the distribution is a multivariate Gaussian distribution:

g(x|μm,Σm) =
1

(2π)
n
2 |Σm|

1
2
exp

{
−
1
2
(x− μm)

T Σ−1
m (x− μm)

}

where x ∈R
n is the feature vector, μm ∈R

n denotes the mean
vector and Σm denotes the (n× n) covariance matrix of the
mth Gaussian probability density, where in our case n= 9, and
m = 1, . . . ,M. The Gaussian Mixture Model (GMM) is then a
weighted sum of these M component Gaussian densities, as
given by the equation:

P(x) =
M

∑
m=1

wm ·g(x|μm,Σm)

where wm are the mixture weights, for which it holds:
M

∑
m=1

wm = 1, wm ≥ 0.

In normal gait cycle the gait phases follow each other
sequentially, while in pathological gait the sequence of gait
phases may be different or some of them may disappear. Thus,
this HMM is a left-to-right model.

VI. GAIT PARAMETERS COMPUTATION FOR MEDICAL
DIAGNOSIS

The analysis of gait patterns for medical diagnosis is pre-
sented in [34], by using different types of wearable and non-
wearable sensors and by extracting and employing various gait
parameters, [38].
The recognized sequence of gait phases is indicative of

the subject’s underlying pathology, since it differs from the
normal gait phase sequences. We can, also, take advantage of
the segmentation in time that the recognition system provides,
regarding the duration of each gait phase, in order to compute
specific gait parameters from the range data, that are necessary
to specialists to perform medical diagnosis of the subject, [38].
The recognised gait patterns along with the gait parameters
will be used by the robotic platform for the assessment of
the patient’s impairment level, which will trigger specific
behaviours and assistive actions by the robotic assistant plat-
form, in the medium level of the Adaptive Context-Aware
Robot Control. For the impairment level assessment, we are
computing the following gait parameters, [38]:



Fig. 3: Internal states of normal gait cycle (Left Leg: blue dashed
line, Right Leg: red solid line).

1) Step length (linear distance between two successive
positions of the same leg)

2) Stride length (linear distance between the positions of
both feet)

3) Cadence (number of steps per time unit)
4) Step width (lateral distance between the two legs)
5) Stance time (time from IC to TS)
6) Swing time (time from IW to TW).

VII. EXPERIMENTAL RESULTS

A. Experiment Description and Dataset
The experimental data used in this work were collected in

Agaplesion Bethanien Hospital/ Geriatric Center with patients
that presented moderate to mild impairment according to
clinical evaluation of the medical associates. We have used
a Hokuyo rapid laser sensor (UBG-04LX-F01 with mean
sampling period of about 28msec) mounted on the robotic
platform.
For the evaluation of our algorithmic approach, we have

used the recorded data of seven patients with moderate mobil-
ity impairment (aged over 65 years old), performing a scenario
during which the subject walked unassisted, i.e. without any
physical support of the carer or the robotic platform, the sub-
ject walked straight in a walkway, while the robotic platform
moved in a near distance in front of the subject (following
mode).

B. Detection and Tracking results
For the experimental evaluation of the Detection and Track-

ing system, we had experimentally defined the thresholds used
in the preprocessing of the laser data. A crucial feature for the
performance of the KF tracking is the fine tuning of the filter
to achieve its convergence to the true state. Since we did not
have any ground truth data, KF tuning was difficult to achieve.
As far as it concerns the measurement noise, given that only
three points are sufficient to define a circle, we conducted
Markov Chain Monte Carlo sampling for the three point in
the circle’s contour, using the information about the nominal
noise of the laser scanner (considered to be white and gaussian
with standard deviation σlaser = 0.0025m. With those random

samplings we have simulated how the random disturbances
of the three points on the circle’s contour introduced by the
laser’s error can deviate the estimated circle center through
nonlinear circle fitting (given a known radius). On the other
hand, the process noise statistics were trained by raw data.
However, the described experimentation led to an over-

estimation of the process noise parameters and an under-
estimation of the measurement noise statistics that resulted
in overfitting problems. This seems quite reasonable, since
human leg’s locomotion cannot be accurately described by a
linear motion model, and also measurement noise influenced
by other parameters that cannot be simulated, e.g. the laser
clusters deformable shapes due to the patient’s clothing. In
order to achieve the filter’s convergence, we have followed the
presented methodology of [39]. The resulted noise parameters
are as follows:

• For the computation of the process noise covariance
matrix in (5), we need the acceleration’s covariance
matrix, where: stdLax = 4.62, stdLay = 9.1, stdRax = 2.63,
stdRay = 8.38 (in m/sec2).

• For the measurement noise covariance matrix in (8), we
resulted to the following standard deviations: vxk = 0.05
and vyk = 0.01 (in m).

In Fig. 2 a snapshot of the detected user’s legs from laser
range data is presented. The raw laser data are represented by
blue stars, the detected leg centers with black x’s and their
estimated positions with green x’s. Each subfigure depicts the
rectangle observation window that isolates the raw laser data
(blue stars) that are likely to correspond to legs. The raw
laser data incorporate both the user’s legs and outliers. On the
detected leg clusters, fitted circles are drawn and the circles’
centers (black x’s) are the observations used in the KF tracking
phase that estimate the leg’s positions (green x’s).
In Fig. 4 and Fig. 5 the detected (magenta and green

stars) and the estimated (solid blue and red lines) for the
lateral and forward displacement of the left and right leg
accordingly, are shown. Also, in Fig. 6 the estimated and
computed velocities are depicted (computed by differentiating
over time the detected legs’ positions). For the evaluation of
the KF performance, we have computed the root mean square
errors (RMSE) between the estimated and detected positions
of the legs. In the absence of ground truth data, we regard the
computed RMSE a measure of how much the KF improves the
noisy observations. The average RMSE computed over the re-
sults of the detection and tracking process of the 7 patients that
performed the same task, were 0.0078m for the x coordinate
(lateral motion) and 0.0018m for the y coordinate (forward
motion). In the lateral plane there is greater uncertainty (about
4 times bigger), due to the leg clusters shape deformability
and length variability. In the absence of ground truth data, we
are not able to accurately evaluate the results of the computed
RMSE. However, we observed that the deformability of the leg
clusters caused greater variability in the lateral plane, which
is generally not wanted (gaiting is mainly taking place in
the forward direction towards the rollator, thus sudden lateral



Fig. 4: Detected and estimated legs’ lateral displacement.

Fig. 5: Detected and estimated legs’ forward displacement.

motions are artifacts), we can say that our method smooths
out the noise in the lateral motion, rather than in forward
motion, where we desire a smoother but closer tracking of the
observations in that direction. In order to evaluate the results
of our tracking method, we are currently working on extracting
motion capture data to use as ground truth.

C. Gait Phases Recognition Results

HMM training procedure comprises only a part of subjects’
data, excluding the recorded data of one subject. The test-
ing procedure aims to test the performance of the proposed
approach, validating its generalisation capacity over unseen
data obtained by new subjects. The evaluation is based on an
assessment of the estimated states provided by the constructed
HMM, which represents the human gait cycle.
For testing and evaluation purposes of the constructed

Fig. 6: Detected and estimated legs’ velocities along the axes.

HMM, we have demonstrated an example of the real ex-
perimental data set which is depicted in Fig. 7. The goal
of this evaluation phase is to unveil the hidden parts of the
constructed models, i.e. to estimate the correct sequence of
phase transitions that occur in the test data. This test dataset
reflects the gait session of one elderly subject, and comprises
about seven walking sections (about seven strides2). In this
figure the displacement of each leg in the sagittal plane with
respect to time is depicted on the top graph, while the bottom
graph shows the evolution of the distance between legs within
the same time frame. This figure is very useful to understand
the exact subject’s motion. The walking session is starting with
the left leg, and it is obvious from the increasing of the distance
between the legs that the early gait phases are occurred, Fig.
7. While this distance is going to zero (crossing point) the
right leg is moving forward until the next crossing point. It
can be observed that the first complete stride is recognized
to begin just after the 6sec. This is observable to the results
of the constructed HMM in Fig. 8, since at the time instant
just after the 6sec, a gait cycle is started by the recognized IC
phase.
The estimated sequence of gait phases obtained using the

trained model is depicted in Fig. 8. This figure shows the time
instant at which each gait phase (hidden state of HMM) is
activated. A first remark that can be made by observing these
experimental results is that the evolution of the gait phases
provided by the models matches the general evolution of the
human gait model that is to be represented by the HMMs; i.e.
the gait phases appear sequentially with the correct order, and
the time frame of each phase is within the general bounds as
have been mentioned previously in Section V. It is obvious that
some of the gait phases are omitted, since these experimental
data corresponds to a subject with walking difficulties related

2Stride is the equivalent of gait cycle, i.e. two sequential steps define one
stride, [40].



Fig. 7: Real experimental data from one subject’s walking
motion that have been used in the testing and evaluation phase
of the constructed HMM. Top: Left (blue data) and Right (red
data) legs displacement. Bottom: legs distance in the sagittal
plane.

Fig. 8: Estimated sequence of gait phases based on the con-
structed model with respect to time by testing the data depicted
in Fig. 7, which represent an unknown walking section.

to an underlying pathology.
There is an assumption, without loss of generality, that at the

beginning of each gait cycle the initial contact refers to the left
leg, while a complete stride is concluded when the right leg is
again in front of the left leg, ready for a new initial contact and
therefore for the next stride. By observing the results depicted
in Fig. 8, it can be seen that the model manages to successfully
recognize that (for the recorded experimental data of Fig. 7,
used in this case study for model testing) the subject starts the
motion with the right leg. Thus, the first estimated gait phase
in Fig. 8 is the Terminal Stance (TS).
Another remark concerns the abnormal walking motion. At

some point of the recorded test data of Fig. 7 (after 16sec),
it can be seen that the motion is characterized by abnormal
behaviour, and therefore the gait phase evaluation procedure
has typical abnormal exports. Although the walking motion
starts a new stride with the left leg, due to the abnormal nature
of the data, the model could not recognize a complete stride.
The results show that the constructed model recognizes the
pathological gait.

D. Gait Parameters Computation Results
In order to perform the assessment of the impairment level

of each patient, it is necessary to compute the appropriate
gait parameters from which we can infer the pathological
state. We have used the recognized sequence of gait phases
and therefore the timestamps of each gait phase along with
the estimated positions of the legs from the laser data to
compute these parameters. The data are presented as the mean
quantity plus/minus its standard deviation and refer to the
patient’s motion depicted and analysed in Fig. 7, 8. The
presented gait patterns refer to a female patient, aged 77
years old with height 159cm, weight 60kg and knee height
45.5cm. Medical partners performed cognitive and mobility
evaluation, in which this patient was categorised in cognitive
level 1, i.e. no cognitive impairment and in mobility level
2, i.e. mild/moderate impairment - gait speed< 0.6m/sec for
unassisted walking.
The respective gait parameters for this patient are pre-

sented in Table I. The gait parameters will be useful for

Parameters
Right Step Length (m) 0.0565±0.0147
Left Step Length (m) 0.1298±0.0245
Stride Length (m) 0.1863±0.0376
Step Width (m) 0.1688±0.058
Cadence (step/min) 53.38
Stance time % of gait cycle 57.5
Swing time % of gait cycle 42.5

TABLE I: Gait Parameters computed using the range data and
the segmentation in time of the recognised gait phases

the formulation of a pathology recognition system based on
the recognised gait patterns. We are currently working along
with clinicians for the evaluation of those parameters and
their categorization according to certain pathologies that result
in mobility inabilities. The information about the patient’s
pathological state will then be used in the Context-Aware
Robot Control for the assessment of the impairment level of
the patient, and thus the inference of the patient’s pathological
status will trigger certain control assistive behaviors to be
executed by the robotic assistant platform.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the basic concept of
an Adaptive Context-Aware Robot Control architecture for
a robotic assistant platform, that is moving in front of the
the user, and will adapt to the user’s needs in order to act
assistively whenever in case. We have analysed the parts



of the proposed control scheme. Firstly, we have described
the processing of the raw data from a laser range scanner
mounted on the robotic platform. We have analysed the usage
of a Kalman Filter for the tracking of the subject’s legs and
therefore the estimation of the legs’ position and velocity,
which are the input signal of the control scheme. Then, a
Hidden Markov Model based framework have been repre-
sented in order to analyse the pathological walking motion, by
detecting sequences of gait phases, constituting a completely
non-invasive approach, since we have used a non-wearable
device. The resulted sequence of the gait phases and the time
segmentation are appropriate in order to compute specific gait
parameters, necessary for clinical diagnosis.
For further research, we are working on a new detection and

tracking system based on particle filtering, fusing also other
sensorial data like RGB data, for a whole body tracking ap-
proach. Particle filters will perform better in more complicate
motion scenarios including also turnings, that are not easy to
track with Kalman Filter, which is a linear estimator. More-
over, particle filters can be better used for hierarchical tracking
of the human body parts. Furthermore, we are working on
the classification approach of normal/pathological gait or non-
walking activity. Moreover, in assistance with clinicians, we
are elaborating on the computed gait parameters from various
patients, in order to organize and classify them according
to certain pathologies. In that way, a complete automatic
pathology recognition system will be developed in order to
assess the impairment level of the patient, and particular levels
of mobility impairment will indicate the need for specific
control assistive actions for the robotic platform in order to
adapt to the user’s needs.
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