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Abstract— Tracking human gait accurately and robustly
constitutes a key factor for a smart robotic walker, aiming
to provide assistance to patients with different mobility impair-
ment. A context-aware assistive robot needs constant knowledge
of the user’s kinematic state to assess the gait status and adjust
its movement properly to provide optimal assistance. In this
work, we experimentally validate the performance of two gait
tracking algorithms using data from elderly patients; the first
algorithm employs a Kalman Filter (KF), while the second
one tracks the user legs separately using two probabilistically
associated Particle Filters (PFs). The algorithms are compared
according to their accuracy and robustness, using data captured
from real experiments, where elderly subjects performed spe-
cific walking scenarios with physical assistance from a prototype
Robotic Rollator. Sensorial data were provided by a laser
rangefinder mounted on the robotic platform recording the
movement of the user’s legs. The accuracy of the proposed
algorithms is analysed and validated with respect to ground
truth data provided by a Motion Capture system tracking a
set of visual markers worn by the patients. The robustness of
the two tracking algorithms is also analysed comparatively in a
complex maneuvering scenario. Current experimental findings
demonstrate the superior performance of the PFs in difficult
cases of occlusions and clutter, where KF tracking often fails.

I. INTRODUCTION
Older adults face various mobility problems, as they have

to cope with instability and lower gait speed. Changes in
stride length and walking phases are connected to certain
pathologies, [1]. Elder care constitutes a major issue for
modern societies. Robotics seems to fit naturally to the
role of assistance, as it can incorporate features such as
posture support and stability, walking assistance and medical
monitoring.

Our aim is to use intelligent robotic platforms (Fig. 1),
which can monitor and understand the patient’s walking state
and reason autonomously on performing assistive actions
regarding the patient’s mobility and ambulation, [2]. We are
working on the development of an Adaptive Context-Aware
Robot Control Architecture (ACARCA), when the robotic
assistant is in front of the user, either on supporting or fol-
lowing mode, and detects the patient’s mobility state by using
real-time data from sensors mounted on the robotic platform.
We can estimate gait parameters and also recognize specific
gait patterns, indicating particular pathologies in a non-
invasive way, [3]. The user’s gait parameters are necessary to
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Fig. 1: Left: MOBOT robotic platform equipped with a Hokuyo
LRF for recording the user’s gait data (below knee level). Right:
Snapshot of a subject walking with physical support of MOBOT.

Fig. 2: Example of the legs’ planar representation w.r.t. the LRF.
Left: a CAD presentation of a subject walking with the rollator;
Right: black stars are the laser points, green and magenta lines
are the the right and left leg circular apperarances respectively; the
orange lines are the regions for the particles’ observation likelihood.

the ACARCA, since it will trigger control assistive actions
and behaviors (velocity adjustment, approach of the patient
due to changes in gait status) from the robotic assistant. Thus,
it is crucial to have a robust tracking system, that accurately
estimates the kinematic state of the user, [4].

In this paper, we present a validation study of two human
gait tracking systems for elderly subjects. The continuous
legs tracking is an important module of the robotic assistant
platform (Fig. 1), that utilizes data from the laser sensor
mounted on the robotic rollator, which neither interferes
with human motion nor it demands the subjects to wear
special clothing, shoes or wearable sensors. The first ap-
proach is based on K-means clustering and KF. The second
approach is based on two probabilistically associated PFs
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for tracking each leg separately. The results of both methods
are experimentally validated using ground truth data from
motion markers, that were used during experiments with the
Robotic Rollator, Fig. 1. The comparison regards the tracking
of the robotic platform’s users while walking in complex
environments with obstacles and clutter that require difficult
maneuvers. Our goal is to employ this setup as a subsystem
within a larger behavior-based robot control framework, that
will constantly and accurately track the user, estimate the
subject’s kinematic state and assess its pathological status.

Smart walking support devices, [5], aiming to assist the
elderly in standing, walking, as well as detecting abnor-
malities and assessing rehabilitation procedures is a modern
research problem. Different sensors have been employed for
extracting gait motions, such as foot pressure distributions
(Smart Shoes), [6], accelerometers, [7], visual information,
[8], etc. Other approaches refer to human detection and
tracking, or recognition of human activity utilizing Laser
Rangefinder sensors (LRF), either complementary with cam-
eras, or force sensors, [9].

Most research work on human detection and tracking ex-
ploits data either from static LRFs, as in pedestrian tracking,
[10], or from mounted LRFs on mobile robotic platforms
for person following, [11], [12] and group detection and
tracking, [13]. In [14] legs are detected using a supervised
learning method of leg clusters shapes and tracked them
using a multiple-hypothesis tracking framework, but the
robustness of the method is yet to be proved. In [15] the
authors presented a leg tracking scheme for a telepresence
mobile robot following people. The legs are detected using
geometrical features but no stochastic filter is applied on
the detected positions. Approaches of normal gait detection
for mobile robots without using stochastic methods can be
found in [16], while [17] refers to parkinsonian gait detection
using geometrical features. Human-centered tracking with PF
using LRFs mounted on mobile robots can be found in [18],
[19], while in [20] the researchers performed leg tracking
by using two LRFs and PF-based prediction of the legs’
state. [21] presented a human-centered tracking framework
utilizing laser data for a mobile robot, where laser points
where grouped and classified as human or not. The detected
person’s position is tracked using a KF and scan-to-scan
data association; the algorithm is not tested with mobility
impaired subjects. Human motion modeling and accurate
body tracking has been tested using Motion Capture data,
[22]. To our best knowledge, there is no current literature on
the topic of legs’ tracking validation using motion capture
data.

This paper presents a comparative study of two human
gait tracking frameworks for a robotic assistant platform for
elderly people; the first is based on KF and the second uses
two probabilistically associated PFs with a novel observation
model, for the estimation of the legs’ positions and velocities
of a subject using a robotic assistant platform (Fig. 1).
The accurate and continuous gait tracking is crucial for the
robotic assistant platform, as it is an input to the low level
controller, [23], but it will also contribute to the context-

awareness of the robotic platform. In our previous work, we
have shown how the user’s estimated kinematic parameters
are fed to an HMM-based pathological gait recognition
system, for detecting specific gait phases. Given that seg-
mentation we extract spatiotemporal gait parameters, which
will be used for the impairment level assessment of the
user in an ACARCA, [3]. Instead of using complex models
and motion tracking approaches that require expensive or
bulky sensors and recording devices that interrupt human
motion, the measured data used in this work are provided by
a standard LRF mounted on a robotic rollator platform. In
this work, we aim to experimentally validate the performance
of the two gait tracking methods by comparing: (i) their
accuracy in estimating the kinematic state of the user’s legs
w.r.t. ground truth data from visual markers and, (ii) their
tracking robustness in complex and cluttered environments
that require difficult maneuvers leading to occlusions, where
the KF methodology fails to track the user and requires re-
initializations, while the PFs perform an efficient estimation
of the users’ legs state without needing any algorithmic
manipulation.

II. HUMAN LEGS’ TRACKING: KF

The first approach is a recursive system using a KF, [24].
The state vector comprises the Cartesian coordinates of the
centroid legs’ positions and their velocities w.r.t the LRF
along the axes. We use the standard KF state equations, [25],
where the respective matrices are defined in [24]. We model
the legs’ motion as dynamic points, with the acceleration
being the control input, since it is “user” generated and we
do not have any measurements, i.e. we treat the acceleration
as process noise having the same statistics throughout the
gait.

At each time frame, the raw laser data, are converted
from polar to Cartesian coordinates. In preprocessing, we
define an observation window, i.e. a rectangle area in the
LRF’s scanning plane, where the user is expected to be w.r.t.
the rollator. At time frame k=1, the observation window is
initialized with predefined dimensions; in the consecutive
frames it is adjusted according to the uncertainty of the
predicted legs’ positions. The laser points lying outside the
window are discarded, while the remaining are separated
into groups according to thresholding criteria; laser points
outside of the window are discarded, while the remaining are
separated into groups. If any laser group contains less than
a specific number of points, it is deleted. We wish to end up
with two groups, which are labeled as left/right leg by the
K-means clustering algorithm. Legs’ centers are computed
via circle fitting, and form the observation vector for the KF.
Cases in which either one leg is occluded by the other or
there is environmental clutter, can interrupt or contaminate
the detection. To address such cases of detection loss while
continuing the leg tracking, an only-prediction KF is applied;
i.e. we perform only the prediction step. If detection loss
occurs for a pre-specified number of consecutive frames, we
re-initialize the algorithm.



III. HUMAN LEGS’ TRACKING: PFS

The PF is commonly used for nonlinear filtering prob-
lems, [26]. Our implementation incorporates two filters for
estimating the position and velocity of each leg separately
and associates them probabilistically. The particles represent
samples of the posterior density distribution of the legs’
states xle f t

k and xright
k at each time instant k for the left and

right leg, respectively. We follow the common algorithmic
approach for PFs:

A. Initialization: At time instant k=1, we initialize a set
of N particles for each leg. Let the position of the ith

particle, for i = 1, ..,N, be noted as: p f ,i
k = [ x y ] and its

velocity as: υ
f ,i

k = [ υx υy ], where f : {left,right} is the
label of each leg. The particles’ states are denoted as: x f ,i

k =

[ p f ,i
k υ

f ,i
k ]T = [ x y υx υy ]T . Only for initialization,

we implement the detection phase described previously in
Section II, to detect the legs’ positions w.r.t. the LRF and
label them as left/right leg. The particles’ positions are
initialized to be equal to the detected positions. We also draw
N samples for the legs’ velocity from a zero-mean Gaussian
Mixture Model (GMM) distribution (we consider that both
legs are still in front of the rollator for initialization). The
particles’ weights ω

f ,i
k of each leg are initialized equal to:

1/N, with i = 1, ..,N. The initial posterior estimate of each
leg is approximated by the Minimum Mean Square Error:

x f
k =

N
∑

i=1
ω

f ,i
k ·x

f ,i
k = [ p f

k υ
f

k ]T .

B. Particles’ Propagation: In the next frames k=2,..,T ( T
is the total tracking time), the particles’ states are propagated
in time using the following motion model. We draw N new
velocity samples for the particles of each leg from a GMM
of two mixtures. We have trained two GMMs that describe
the velocity of the two legs along the axes. Let υ

f ,i
k be the

ith velocity sample drawn from the respective GMM at time
instant k. Then, the position of the ith particle is propagated in
time according to the equation: p f ,i

k = p f
k−1 +υ

f ,i
k ·∆t, where

p f
k−1, is the estimated position vector of each leg for the k−1

time frame.
C. Particles’ Weights Update: The weights are updated

according to the observations of each time instant k. The
observations are the Cartesian positions of the laser points
in the sagittal plane. In this implementation, we use an
observation window for each leg, which is an experimentally
defined rectangular area, centered around each particle, so
that every sample x f ,i

k is associated with a different cluster
of laser points, y f ,i

k . Because the prior is equal to the
proposal distribution, the weights are equal to the observation
likelihood, [26]: ω

f ,i
k = p(y f ,i

k |x
f ,i
k ). We treat each particle

as a possible leg center and we expect the observations to
be on the circular circumference of this center. Thus, the
observation likelihood is computed based on three factors:

1. The distribution of the laser points in the circular
contour given the center (i.e. the respective particle): In Fig.
2 an example of the legs’ circular representation from the
laser points w.r.t. the laser scanner is presented. On the right
of Fig. 2, we present the detected laser points with black

stars, while the green and magenta circles are the circular
representations of the right and left leg, respectively. The
labels R0, R1, R2, R3, R4 denote the segmentation of the
circle into regions (the regions’ boundaries are depicted with
orange lines) based on which we compute the observation
likelihood for the PF tracking system. We have divided
horizontally the circle into two semicircles. Laser points in
the upper semicircle R0 do not contribute to the observation
likelihood. The lower semicircle is split into four regions
(R1,..,R4) of equal angle range. We have calculated the
normal distribution of the Euclidean distances of the laser
points of each region w.r.t. the corresponding center. Let
dRm be the vector of distances of the laser points w.r.t.
the corresponding circle center for the Rm region, with
m = 1, ...,4. The points of each Rm are associated with a
normal distribution of the distances N (dRm |µRm ,ΣRm), with
µRm the mean distance and ΣRm is the covariance matrix.

2. The number of laser points inside each observation
window: Through experimentation we have defined a normal
kernel distribution λi for every particle with i = 1, ..,N,
describing the likelihood of the number of laser points that
are detected on the leg’s circular contour.

3. An association probability that accounts the Euclidean
distance between the two legs. The human legs are two
interacting moving targets, and thus we introduce an associ-
ation probability βi, modeled by a Gamma distribution. This
probability regulates the observation likelihood of the one leg
w.r.t. the other, by evaluating a likelihood of the Euclidean
distance of the two legs.

We consider the ith particle to be a possible leg center and
we compute the observation likelihood using the following

function: p(y f ,i
k |x

f ,i
k ) = βi ·

[
λi ·

4
∑

m=1
πRm ·N (dRm |µRm ,ΣRm)

]
.

We assume as πRm the importance weights of the four
regions, which were set experimentally so that the extreme
regions R1 and R4, often containing many outliers, have less
importance than the inner regions R2 and R3. All parameters
have been experimentally defined. The ith weight is equal
to: ω

f ,i
k = p(y f ,i

k |x
f ,i
k ). All weights are normalized for all

particles j = 1, ...,N according to: ω̂
f ,i

k = ω
f ,i

k /
N
∑
j=1

ω
f , j

k .

D. Resampling: It commonly occurs many particles to
have infinitely small weights and only a few of them will
have a significant weight, called weight degeneracy. The
solution to this problem is the use of a Sequential Importance
Resampling method [26], for eliminating small weighted
particles and replace them with higher weighted ones. How-
ever, this resampling method illustrates the impoverishment
problem, where there are many replicates of the higher-
likelihood particles, causing a diversity loss. Thus, at each
time frame we check whether the effective sampling size

Ne f f = 1/
N
∑

i=1
ω̂

f ,i
k is less than the threshold Nthr = N/2.

If so, we apply a random walk on the current particles’
state providing new samples ∗x f ,i

k ; we evaluate the new
weights, according to the Particles’ Weights Update method:
∗ω̂ f ,i

k . Having the old pairs of particles and their weights



(x f ,i
k , ω̂ f ,i

k ) along with the new ones (∗x f ,i
k ,∗ω̂ f ,i

k ), we apply
the Metropolis-Hastings algorithm, [27], to decide whether
or not we have to replace the ith pair (x f ,i

k , ω̂ f ,i
k ) with the

new samples (∗x f ,i
k ,∗ω̂ f ,i

k ).
E. Posterior Estimation: For the posterior state estimate

p(x f
k |y

f
k ), we find the particle with the highest weight and

then collect the “best” particles, i.e. those having a weight
greater or equal than 80% of the maximum weight: S =
argmax

i
[ω̂ f ,i

k > 0,8 ·max(ω̂ f ,i
k )], where S ⊆ {1, ...,N} is the

set of the “best” particles. In that way, we have a dynamic
system that provides smoother estimates, by leaving out
particles that may track outliers and could contaminate the
posterior estimation. The posterior state estimate is then
approximated by the weighted mean of the “best” particles,
with s∈ S being the index of the “best” particles: p(x f

k |y
f
k ) =(

∑
s

x f ,s
k ·ω̂

f ,s
k

)
/
(

∑
s

ω̂
f ,s

k

)
.

IV. EXPERIMENTAL ANALYSIS & VALIDATION

A. Experimental setup and data description

The experimental data used in this work were collected
in Agaplesion Bethanien Hospital - Geriatric Center with
the participation of real patients, under ethical approval by
the ethics committee of the Medical Department of the
University of Heidelberg. All subjects had signed written
consent for participating in the experiments. The participants
presented moderate to mild mobility impairment, according
to clinical evaluation. The patients were wearing their normal
clothes. A set of motion markers from a VICON Motion
Capture system was placed on certain areas of the subjects’
body. A Hokuyo UBG-04LX-F01 rapid LRF was mounted
on the robotic platform of Fig. 1 for the detection of the
patients’ legs. The LRF is placed at a height of about 40 cm
from the ground in order to capture tibia motion.

In this work, we present results for four patients aged
over 65 years old. The subjects participated in two walking
scenarios, performing each of them twice; Scenario 1: the
subjects walked with physical support of the rollator on a
straight direction of about 3 m, performed a 180o turn and
returned to initial position. Scenario 2: the subjects, walking
with physical support of the rollator, performed a richer scen-
ario, where they had to make turning maneuvers at the middle
of the walkway to avoid obstacles. All patients performed the
experimental scenarios under appropriate carer’s supervision.
The subjects were instructed to walk as normally as possible.
A snapshot of the experimentation scene with a subject
walking supported by the robotic rollator while wearing a
set of visual markers is shown on the left of Fig. 3; on
the right, a representation of the markers from the MOKKA
visualization system is provided. Marked with green are the
Tibia markers and with red the Rollator markers, which are
used in this work, for the validation study.

B. Validation Strategy

Our validation strategy comprises the comparison of the
two gait tracking algorithms regarding their accuracy and
robustness. For the accuracy testing, we validate the results

TABLE I: Tracking Accuracy

Scenario 1
Subject Parameter Unit RMSE MAD

KF PF KF PF

1

x cm 9.73 2.65 5.63 1.72
y cm 16.36 4.32 10.87 2.48

υx cm/s 10.44 6.91 6.81 4.69
υy cm/s 31.98 15.93 21.59 11.23

2

x cm 2.62 2.35 1.17 0.86
y cm 4.58 3.82 3.07 1.22

υx cm/s 5.28 4.54 3.88 3.46
υy cm/s 16.09 12.57 12.25 9.39

3

x cm 9.36 4.57 6.15 2.84
y cm 8.73 6.20 5.13 3.59

υx cm/s 4.53 4.20 3.37 2.93
υy cm/s 10.89 7.06 7.95 5.07

4

x cm 6.19 4.40 4.85 2.91
y cm 9.52 6.78 8.41 4.34

υx cm/s 11.34 9.86 8.03 7.66
υy cm/s 28.41 20.22 20.83 15.32

Scenario 2
Subject Parameter Unit RMSE MAD

KF PF KF PF

1

x cm 8.14 2.83 7.35 1.54
y cm 10.29 4.16 7.53 1.94

υx cm/s 10.21 7.00 7.65 4.67
υy cm/s 16.05 13.30 23.09 9.69

2

x cm 3.88 3.59 2.46 1.91
y cm 6.55 5.21 4.13 3.24

υx cm/s 6.94 6.52 4.93 4.81
υy cm/s 18.09 11.23 13.33 8.47

3

x cm 2.55 2.50 2.17 1.23
y cm 4.48 4.96 3.76 1.78

υx cm/s 6.61 6.47 5.11 4.90
υy cm/s 14.33 13.14 10.97 10.15

4

x cm 3.89 3.58 2.72 1.72
y cm 7.72 5.58 5.08 1.93

υx cm/s 10.85 9.06 7.70 6.81
υy cm/s 20.77 15.64 13.73 11.20

Statistical comparison of the two filters using the average RMSE
and the MAD error.

TABLE II: Tracking Robustness

Scenario 1

Subject Total Tracking Total errors Total errors # Re-initia-
time (s) (# frames) (% of total frames) lization

1 KF 45.79 384 18.5 313
PF 56.16 0 0 -

2 KF 113.56 384 10.5 288
PF 124.04 107 2.3 -

3 KF 65.93 1049 30.1 1473
PF 94.26 0 0 -

4 KF 44.12 272 14.3 95
PF 51.46 0 0 -

Scenario 2

1 KF 86.21 2095 39.6 1930
PF 142.78 0 0 -

2 KF 88.34 445 11.8 72
PF 101.44 0 0 -

3 KF 69.49 0 0 0
PF 69.49 0 0 -

4 KF 84.81 41 1.3 27
PF 85.91 0 0 -

Total tracking time and tracking errors for all subjects for evaluating
the tracking robustness of the two filters.

of the filters with the ground truth data by comparing their
average Root Mean Square Errors (RMSE) and average
Mean Absolute Deviation (MAD) of the errors over the
total tracking time. As ground truth data, we have isolated
the raw data from the markers placed on the Tibia and
the Robotic rollator, Fig. 3. We applied interpolation and
smoothing on the markers trajectories and performed cylin-



der fitting on the tibia markers for representing the user’s
tibia at each time frame. We subtracted the cylinder’s points
that corresponded to the field of view of the LRF. Using
the rollator markers’ data, we have applied a Euclidean
transformation on the data to project them to the LRF’s
reference frame. The legs’ velocities resulted from simple
differentiation. The robustness of the filters refers to the
successful tracking time, tracking errors, re-initialization
times, etc., as well as graphical depiction of tracking results
in difficult cases (occlusion/clutter). The noise parameters
of the KF are: regarding the process noise affected by the
acceleration variability: σaL

x
= 1.63(m/s2),σaL

y
= 5.24(m/s2),

σaR
x
= 1.63(m/s2),σaR

y
= 5.24(m/s2); and the measurement

noise variance, accounting the LRF’s nominal noise and the
variability in the circle fitting: vxk = 0.059(m) and vyk =
0.02(m), [24]. The PF implementation was tested with 500
particles per leg.

C. Validation Results and Discussion

1) Accuracy: Table I contains the statistics for the average
RMSE and MAD of the tracking algorithms estimations w.r.t.
ground truth data. The parameters x,y refer to the mean
position and υx,υy to the mean velocity of both legs. We
can see that the PF tracking algorithm has better performance
than the KF implementation both in Scenario 1 and in the
more complex Scenario 2 (with bold font are noted the lower
RMSE and MAD values). The average precision increase
by using the PF algorithm instead of KF, corresponds to
approximately 30% RMSE and 43% MAD error reduction.
The relatively higher errors in velocity estimation can be
partially explained by the way the ground truth velocity is
computed (simple differentiation of markers’ positions) that
induces random noise. Also, the cylinder fitting supposes
that the legs have an even surface, while the laser clusters
are highly deformable due to users’ clothing. An example
of the tracking algorithms for the estimation of the left and
right lateral (Fig. 4a, 4b) and forward positions (Fig. 4c,
4d) of subject #1 in Scenario 2 is presented in Fig. 4. The
black lines represent the KF estimates, the blue lines the PF
estimates and the red lines the ground truth. The KF fails to
track the position of the user, thus explaining the high errors
of subject #1 in Scenario 2, Table I, while the PF tracks the
user quite accurately (Table I lower RMSE and MAD).

2) Robustness: The evaluation of the filters’ tracking
robustness is based on Fig. 5. The black stars represent the
raw laser data. On the left, the red “x” is the left KF estimated
and the green “x” the left detected leg position, while the
blue “x” is the right KF estimated and the magenta “x” the
right detected leg position. On the right, the green circles
are the left leg particles and the red “x” is its PF position
estimate, while the magenta circles are the right leg particles
and the blue “x” is its PF estimation. In Fig. 5a, Fig. 5b
a comparison of a typical case of cluttered environment is
shown, for which the KF wrongly estimates the position of
the two legs by detecting a “leg” on the noisy background,
while the PF performs well in detecting the position of
the two legs regardless of the clutter. In Fig. 5c, Fig. 5d

Fig. 3: Left:Snapshot from the experimentation scene. A patient
wears a set of visual markers while walking with the robotic
assistant rollator. Right: a representation of the visual markers
from MOKKA visualization system. We are interested in the Tibia
markers (green) and the rollator markers (red).
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(a) Left leg’s lateral position.
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(c) Left leg’s forward position.
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(d) Right leg’s forward position.

Fig. 4: Example of the estimated positions and the ground truth
data. Black line: KF estimate, blue line: PF estimate, red line:
ground truth (forward and lateral directions are shown in Fig. 2).
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(a) Handling of clutter from KF.
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(b) Handling of clutter from PFs.
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Fig. 5: Comparison of clutter (a, b) and occlusion (c, d) problems
by the two tracking algortihms.

we present the handling of a leg occlusion case, where
the PFs predict the occluded right leg’s position, while the



KF-based algorithm fails to predict the left leg’s position,
causing a false estimation for the occluded leg. The proposed
computation of the observation likelihood for the PF tracker
with the data association gives better results than the KF
tracker, in cases of great noise, e.g. due to clothing, where
the KF tracking system fails most of the times to correctly
estimate the leg centers, while the PF observation likelihood
penalizes points that seem to be outliers.

Table II presents the total time of correct tracking, the
total tracking errors both in frames and as a percentage of
the total frames provided by the LRF. It also contains the
re-initialization times of the KF tracking algorithm. The PF
tracks almost all users successfully.

Only for subject #2 in Scenario 1, PF has a 2.3% false
tracking, but it was due to the wrong initialization of the
filter because of the cluttered environment; however the
particles in our implementation had the necessary variability
to dynamically search and finally get assigned correctly to the
user’s legs; therefore the PF-based tracking manages to detect
and track the user successfully for the rest of the scenario
without using any re-initializations of the algorithm. The KF
algorithm achieves successful tracking only for subject #3
in Scenario 2. The highest tracking error occurs in subject
#1 during the complex walking Scenario 2 with a failure
percentage of 39.6% of the total frames. The KF algorithm
tracks the user successfully in straight paths, but almost
always loses track of the user in turns when the legs are
occluded and requires re-initialization; without it, the filter
does not manage to re-detect the user and loses track of him.

V. CONCLUSIONS AND FUTURE WORK

For a completely non-invasive pathological walking ana-
lysis and assessment system in a context-aware robot control
for an intelligent robotic walker, the accurate and robust
tracking system of the user’s legs is a crucial parameter.
We utilize data from an LRF mounted on a robotic assistant
platform, constituting a non-invasive approach using a non-
wearable device. We validate the performance of two human
gait tracking algorithms; a system based on KF and a second
one based on two probabilistically associated PFs. The two
methodologies are compared regarding their accuracy in
estimating the user’s legs kinematic state with ground truth
data from visual markers, worn by patients while walking
with the assistant robot in real experimental scenarios. The
robustness of the two tracking algorithms is also examined.
The experimental results clearly present the superiority of
the PFs over the KF system. The PF methodology is more
accurate in estimating the user’s kinematic state, and it can
also successfully handle difficult cases of leg occlusions
and clutter and can track patients with different mobility
inabilities, while they are walking in mazy environments
needing complex maneuvers, when the KF fails.

Our goal is to develop a multilayered PF tracking system
for an augmented state estimation of the user. We aim to
implement a multiple motion model PF tracker for a real time
estimation of gait parameters, that will provide feedback for
an ACARCA. We intend to create a system for detecting

in real time specific gait pathologies and automatically
classify the patient status or the rehabilitation progress, thus
providing the necessary information for effective cognitive
active mobility assistance robots.
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