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Abstract— For a robotic walker designed to assist mobility
constrained people, it is important to take into account the
different spectrum of pathological walking patterns, which
result into completely different needs to be covered for each
specific user. For a deployable intelligent assistant robot it
is necessary to have a precise gait analysis system, provid-
ing real-time monitoring of the user and extracting specific
gait parameters, which are associated with the rehabilitation
progress and the risk of fall. In this paper, we present a
completely non-invasive framework for the on-line analysis
of pathological human gait and the recognition of specific
gait phases and events. The performance of this gait analysis
system is assessed, in particular, as related to the estimation
of double support phases, which are typically difficult to
extract reliably, especially when applying non-wearable and
non-intrusive technologies. Furthermore, the duration of double
support phases constitutes an important gait parameter and a
critical indicator in pathological gait patterns. The performance
of this framework is assessed using real data collected from
an ensemble of elderly persons with different pathologies. The
estimated gait parameters are experimentally validated using
ground truth data provided by a Motion Capture system. The
results obtained and presented in this paper demonstrate that
the proposed human data analysis (modeling, learning and
inference) framework has the potential to support efficient
detection and classification of specific walking pathologies,
as needed to empower a cognitive robotic mobility-assistance
device with user-adaptive and context-aware functionalities.

I. INTRODUCTION

Mobility problems are common in seniors. As people
age they have to cope with instability and lower walking
speed. It is known that certain pathologies relato to changes
in stride length and alterations in phases of walking, [1],
while it seems that basic gait parameters of normal sub-
jects are affected with aging, [2]. Medical studies for past-
stroke patients establish the significance of evaluating the
gait parameters for rehabilitation purposes, [3]. The need
for non-invasive methods of medical monitoring is crucial.
Robotics seems to fit naturally to the role of assistance,
since it can incorporate features such as posture support
and stability, walking assistance, health monitoring, etc. For
a robotic walker that aims to support patients of different
mobility status and also assist their rehabilitation progress,
it is important to be able to assess the mobility state of the
user and to adapt its strategies accordingly.

This research work has been partially supported by two EU-funded
Projects: MOBOT (FP7-ICT-2011.2.1, grant agreement no. 600796) and I-
SUPPORT (H2020-PHC-19-2014, grant agreement no. 643666).

Fig. 1: On the left: a patient walking with support of the passive
walker, while wearing a set of motion markers. On the right: a
robotic platform, constructed with financial support of EU project
MOBOT. Both devices are equipped with a Hokuyo Laser Sensor
aiming to record the experimental gait data of the user (below knee
level).

Our motivation is to use intelligent robotic walkers (Fig.1),
which can monitor and understand the patient’s walking
state and will autonomously reason on performing assistive
actions regarding the patient’s mobility and ambulation, [4].
A robotic walker should provide a physical interaction and
optimal support to each user regardless of his mobility status.
Thus, a context-aware robot control architecture should be
implemented. Towards this end, the development of an online
non-intrusive system that would recognize the pathological
walking state along with the specific characteristics of each
user’s gait, is an important feauture for such a control
architecture. In our previous work, we have analysed the
potential of a system based on a Hidden Markov Model
(HMM) to recognize the normal human gait phases, [5],
as well as the pathological human gait phases, [6], utilizing
data from a laser sensor mounted on a robotic walker, Fig. 1.
We have also used this system for extracting gait parameters
that are commonly used for medical monitoring, [7]. In this
work, we extend this system by employing a combination
of HMMs for the detection also of the double limb support
time period, which is an important gait parameter associated
with fall risk, [8].

Automatic gait recognition and analysis is very useful for
many technical and biomechanical applications. Research
approaches can be discriminated regarding whether they
use wearable or non-wearbale devices for capturing human
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motion, [9]. In the wearable devices category, which is the
most common approach [10], we find gait analysis methods
using foot pressure distributions (Smart Shoes), [11], joint
angles and accelerations (gyroscopes, accelometers, inertial
sensors, [12]–[14]), etc. Non-wearable systems for gait ana-
lysis commonly use cameras, [15], or foot-pressure mats,
[16]. A number of research groups worldwide, are actively
pursuing research, currently investigating problems related to
the development of smart walking support devices, aiming
to assist motor-impaired persons and elderly in standing,
walking and other mobility activities, as well as to detect
abnormalities and to assess rehabilitation procedures, [17],
[18]. The development of a low-cost pathological walking
assessment tool was presented in [19], using a robotic
platform equipped with a Kinect sensor that detects targets
placed on the subject’s heels and estimates the stride length.
Several works use the GAITRite System for validating their
gait analysis results, [20].

Gait analysis can be achieved by using Hidden Markov
Models (HMMs), which can model the dynamic properties
of walking. The versatility of HMMs makes them useful
in extracting human patterns. HMMs are currently used for
gait modelling employing data from wearable sensors, like
gyroscopes mounted on human’s feet, [21].

This paper presents current results of our ongoing research
for the development of a reliable online pathological gait
analysis and assessment system for an intelligent robotic
walker. As opposed to most of the literature available on
the topic, the proposed method presented in this paper
is completely noninvasive based on the use of a typical
non-wearable device. Instead of using complex models and
motion tracking approaches that require expensive or bulky
sensors, like motion capture systems that are difficult to use
because of their cost, setup and calibration, the measured
data used in this work are provided by a laser rangefinder
sensor mounted on a robotic rollator platform. The aim is that
the users will not be subject to wearing any special clothing
or specific shoes and they will walk, making habitual use of
their typical assistive device such as a rollator walker frame.

In this work, we use two contralateral HMMs working for
both left and right legs, providing independent gait analysis
results that can be used in combination to extract more
reliable stride-level gait parameters impossible to obtain
with typical single-HMM segmentation schemes, employed
in previous work, [7]. The new HMM-based approach can
detect internal events and segment temporal phases, which
enables the estimation of critical gait parameters such as
stride time and stance time with reference to each leg, but
also the double support time intervals, which are of spe-
cial significance in characterising gait stability and walking
impairment level and as indicators of specific gait patholo-
gies. In this paper, we focus on validating the extraction of
the temporal gait parameters from the HMMs-based frame-
work using ground truth data from a VICON Motion Capture
system and provide initial results regarding the validation of
the temporal parameters of gait.

Fig. 2: Internal phases of human normal gait cycle along with the
distinction of the stance/swing periods.

Fig. 3: Alternative representation of human gait cycle regarding
Single Leg or Double Leg Support (DS).
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Fig. 4: Example of the detected gait phases HS, FF, HO and TO
from the heel and toe markers.

II. HUMAN GAIT CYCLE ANALYSIS

There are two main periods in gait cycle, [22]: The stance,
when the foot is on the ground, and the swing when that
same foot is no longer in contact with the ground and is
swinging through, in preparation for the next foot strike. The
gait cycle can be successively divided into eight events, Fig.
2. This segmentation is sufficiently general to be applied
to most types of human gait, including five during stance
phase and three during swing, which are (as a percentage
of the total duration of the gait cycle): 1. Initial contact
(0%) - [IC] -Heel strike (HS) initiates the gait cycle. 2.
Loading response (0-10%) - [LR] - Foot-flat (FF) is the
time when the plantar surface of the foot touches the ground.
3. Midstance (10-30%) - [MS] - Midstance occurs when
the swinging (contralateral) foot passes the stance foot. 4.
Terminal stance (30-50%) - [TS] - Heel-off (HO) occurs
as the heel loses contact with the ground and pushoff is
initiated. 5. Preswing (50-60%) - [PW] - Toe-off (TO)
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terminates the stance phase as the foot leaves the ground.
6. Initial Swing (60-70%) - [IW] - Acceleration begins
as soon as the foot leaves the ground. 7. Midswing (70-
85%) - [MW] - Midswing occurs when the foot passes
directly beneath the body, coincidental with midstance for
the other foot. 8. Terminal swing (85-100%) - [TW] - The
foot stabilizes in preparation for the next HS. In this paper,
we have used the seven gait phases of walking in order to
analyze the gait cycle, since the TW phase is an equivalent
trigger to the IC phase, and therefore are treated as identical.

According to [22], we can alternatively subdivide the
stance period into three internal time intervals: the initial
Double Support (DS), the single leg support and the terminal
DS, Fig. 3. The initial DS begins with the initial contact and
it is the time when both feet are on the ground. The single leg
support is the period when only one leg is at stance while the
opposite leg is swinging. The terminal DS begins with the
HS of the contralateral foot and continues until the original
stance leg begins to swing.

Specific gait parameters can be computed, which are
commonly used for medical diagnosis, [9], [23]. In this work,
besides from detecting the sequence of gait events according
to Fig. 2, we are also experimentally validating the following
temporal gait parameters: 1) stride time: the duration of each
gait cycle, 3) stance time: the stance phase duration in one
cycle and 3) double support: the time period when both feet
are in contact with the ground, as shown in Fig. 3.

III. HMMS-BASED PATHOLOGICAL GAIT PHASES
RECOGNITION SYSTEM

The recognition of gait patterns that can be associated
to specific medical conditions along with the sequential
estimation of gait parameters are necessary for continuously
assessing the gait status of the user as required to enable user-
adaptive and context-aware control of a cognitive mobility-
assistance robotic device. Those parameters are extracted by
processing the raw laser data, provided by a laser rangefinder
sensor mounted on the walker (see Fig. 1), using a Probab-
ilistic Data Association Particle Filtering (PDA-PF) system
to track user legs. The PDA-PF sequentially estimates the
relative position and velocity of the patients legs w.r.t. the
robotic rollator. The posterior estimates of the legs’ states
are fed into two HMMs that recognize the left and right gait
cycles respectively. The distinction of the gait cycles can be
seen in Fig. 3. The HMMs recognize the respective left/right
gait cycles and segment them into the corresponding gait
phases of Fig. 2. Subsequently, we use the HMM time
segmentation of the respective gait cycles in order to compute
the temporal gait parameters.

PDA-PF Leg Tracking: For the PDA-PF leg tracking, we
have designed a system that uses two PFs, for estimating the
position and velocity of each leg separately and associate
them probabilistically at each time instant, using as input raw
laser data converted from polar to Cartesian coordinates. The
users’ legs’ states posteriors, at time instant t, are denoted
as: xt

f =
[

x y υx υy
]T , where the first two components

are the positions and the last two the velocities of the legs

along the axes and f = {L,R} is the label for the left and
right leg. The details of the PDA-PF implementation can be
found in [24].

HMM Gait Cycle Recognition: We assume that each gait
cycle potentially consists of seven internal events, as shown
in Fig. 2, since the TW phase is characterized by HS that
is an equivalent trigger to the IC phase, and therefore those
phases are treated as identical. These seven phases can define
the hidden states of the HMM, which detects the gait cycles
and the double support, Fig. 3. The states of the HMM at
time t = 1,2, ...,T , where T is the total time, are the values
of the (hidden) variable st = i ∈ S, for i = 1, . . . ,7, where
1≡ IC/TW , 2≡ LR, 3≡MS, 4≡ T S, 5≡ PW , 6≡ IW , and
7≡MW . As observables we utilize the posterior estimates of
the legs’ states provided by the PDA-PF tracking system, i.e.
the observations at time t, are represented by the vector Ot =
[xT

L xT
R Dlegs]T , where x f is defined above and Dlegs is

the distance between the legs. The observation data for the
HMM are modelled using a GMM, [6].

The sequence of the gait phases recognised by the two
HMMs, in parallel for both legs, can be used to compute
the temporal gait parameters: the stride time: the time from
one IC till the next detected IC, the stance time: computed
as the time between the gait phases IC and PW, the double
support: the time intervals during which the left and right
stance phases overlap constitute the DS periods (Fig. 3).
In this work, we assume a Right-HMM reference for the
gait parameters estimation. However, all parameters can be
extracted for both left and right leg gait cycles.

IV. GAIT PHASES DETECTION FROM MOTION
CAPTURE DATA

For validation purposes we have used a VICON Motion
Capture system (Fig. 1). We have developed an automatic
gait phases detection system for motion capture data based on
the algorithms presented in [25], [26]. In Fig. 5 a snapshot of
the experimentation scene with a subject walking supported
by the robotic rollator while wearing a set of visual markers
is shown. On the left a CAD representation of the walker-
human configuration is presented, while on the right a rep-
resentation of the markers from the MOKKA visualization
system is provided. Marked with green are the Heel and Toe
markers, with red the Tibia markers, while with blue are
depicted the Rollator markers. For the automatic gait phases
detection we are using 1 Heel marker and 3 Toe markers
for each foot. The following approach is an off-line rule-
based method. Although we have 3D information we will be
only considering the impact of those markers on the vertical
direction, i.e. along the z-axis as shown in Fig. 5, and more
specifically we are interested in computing the vertical heel
and toe trajectory and also the toe vertical velocity. Linear
interpolation is applied on the raw data, for retrieving as
much information as possible from each marker (information
loss occurs due to occlusions, or reflection problems, etc.).
We, then, uniformly resample the data streams in order to
accommodate the frame rate of the VICON system to that
of the laser scanner device that captures the leg’s motion as
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Fig. 5: A snapshot from the experimentation scene. A patient with
his normal clothes wears a set of visual markers while walking with
support of the passive rollator. The position of the laser is marked
on the rollator and the respective field of view.

shown in Fig. 1. Subsequently, we low pass filter the data
using a Butterworth filter with a cutoff frequency of 7Hz,
[26], but also apply a moving average filter with a ten frame
span. After the filtering, we get the heel trajectory, while for
the toe trajectory we combine the three toe markers data by
calculating their median for each time instant, thus giving
the final vertical toe trajectory. Also, for the needs of our
algorithmic approach we have also calculated the respective
toe velocity, which is computed as the first derivative of the
toe positions using finite difference equations.

Having computed the heel and toe vertical trajectories as
well as the toe velocity in the vertical direction, we can
now detect certain gait phases that are important for the
detection of the gait cycles, the stance/swing phases and the
double support periods. More specifically, we can extract
the following gait phases: HS, FF, HO and TO, which are
described in Section II. In Fig. 4 the heel (blue line), toe
(red line) trajectories and the toe velocity (black line) are
depicted, along with the detected gait phases, which are
important for the analysis of our approach.

The TO phases correspond to the peaks of the heel
trajectory, i.e. the black triangles in Fig. 4. Before each TO
event we search within a predefined time window for the
HO event. The HO occurs when the heel trajectory exceeds
a threshold. This threshold is adjustable according to each
patient and was computed as the mean of the valleys of the
heel trajectories plus a 40mm bias (the bias was set according
to [25]). The HO events are represented by the magenta “x”
in Fig. 4. On the other hand, a HS occurs when the toe
velocity reaches a local maximum, inside a time-window
after each TO event. In Fig. 4, the HS is denoted by the
green squares. Finally, FF is detected between a HS and
a consecutive HO, at the moment when the toe velocity is
approaching zero with a negative slope and the toe vertical
position is at the same level as the heel position with a small
offset. The FF event is depicted with a cyan cross in Fig. 4.

This approach has been implemented on the markers data of
both feet.

A stride is detected between two consecutive HS, while
the stance phase starts with a HS and ends before TO and the
swing phase starts with a TO and ends at the next HS. The
DS period has been calculated as the time interval between
the HS of one leg till the HO of the opoosite leg, and vice
versa.

V. EXPERIMENTAL ANALYSIS & RESULTS

A. Experimental setup and data description

The experimental data used in this work were collected
in Agaplesion Bethanien Hospital - Geriatric Center with
the participation of real patients, under ethical approval by
the ethics committee of the Medical Department of the
University of Heidelberg. All subjects had signed written
consent for participating in the experiments. The participants
presented moderate to mild mobility impairment, according
to clinical evaluation. The patients were wearing their normal
clothes. A set of motion markers from a VICON Motion
Capture system was placed on certain areas of the subjects’
body, Fig. 5. For the detection of the patients’ legs, we
have used a Hokuyo rapid laser sensor (UBG-04LX-F01 with
mean sampling period of about 28msec/scan, scanning range
of 20 to 5600mm, angle range -120o to 120o and angular
resolution 0.36o), mounted on the passive rollator of Fig.
1, which was designed for data collection experiments. The
laser sensor is placed at a height of about 40 cm from the
ground in order to capture the motion of the subject’s tibia.

In this work, we present results for four patients aged over
65 years old. The subjects participated in a walking scenario,
where they walked with physical support of the rollator on
a straight direction of about 3 m, performed a 180o turn and
returned to initial position, Fig. 1. All patients performed the
experimental scenarios under appropriate carer’s supervision.
The subjects were instructed to walk as normally as possible.
This results in a different walking speed for each subject. We
have used 300 particles per PF to track the users’ legs. The
HMMs training procedure comprises data from the tracking
system for a training set of 12 patients with different patho-
logies that performed simple walking scenarios in initial data
collection experiments.

B. Validation Strategy

Our validation strategy comprises qualitative and quantit-
ative comparisons of the pathological gait recognition system
that can detect the double support periods using HMMs
w.r.t. ground truth (GT) data, which were extracted from
motion markers. We aim to validate the time segmentation
provided by the HMMs-based system by comparing to the
recognised temporal gait parameters stride time, stance time
and double support time w.r.t. those extracted by the ground
truth data. We have isolated the data corresponding to the
same strides per subject. We provide statistical results of
the mean values and standard deviations, along with the
Mean Absolute Error (MAE) and Mean Absolute Deviation
(MAD) of the errors for four patients from a dedicated testing

104



TABLE I: Temporal Gait Parameters Estimation

Patient Parameter Mean ± std MAE MAD
HMM Ground truth

1
stride time (s) 1.33±0.10 1.32±0.09 0.02 0.02
stance time (s) 0.76±0.07 0.73±0.07 0.06 0.05
DS time (s) 0.10±0.06 0.12±0.06 0.03 0.00

2
stride time (s) 1.29±0.11 1.30±0.09 0.04 0.02
stance time (s) 0.74±0.06 0.71±0.08 0.05 0.04
DS time (s) 0.13±0.07 0.13±0.06 0.06 0.04

3
stride time (s) 1.27±0.09 1.32±0.09 0.06 0.06
stance time (s) 0.72±0.09 0.78±0.11 0.13 0.06
DS time (s) 0.04±0.02 0.10±0.05 0.06 0.05

4
stride time (s) 1.57±0.13 1.58±0.12 0.06 0.02
stance time (s) 0.97±0.09 1.05±0.11 0.12 0.14
DS time (s) 0.20±0.07 0.18±0.09 0.03 0.04

Comparison of the mean values and standard deviations of the
estimated temporal gait parameters from the HMM-based method
and the ground truth extraction, along with their MAE and MAD.

set. These randomly selected four subjects presented various
pathological status associated with their walking activity,
without knowing whether such medical conditions appear in
the training set.

C. Experimental Results & Discussion

The accumulated results per patient are introduced in
Table I. In this table, we present the mean and standard
deviation of the temporal parameters that were extracted by
the HMMs methodology and the GT data from markers.
Those are followed by the MAE and MAD errors per patient.
Inspecting the results of Table I, we notice that the HMMs-
based method has a very good performance in recognizing
the gait cycles and the DS periods. For all patients the MAE
and the respective MAD values for the stride time are less
than 60 msec. Only stance time estimations exhibit slightly
bigger errors, having better results for Patients 1 & 2 (less
than 60 msec MAE and MAD), for Patient 3 a MAE of 130
msec but small variability of errors with MAD of 60 msec,
and finally, for patient 4 bigger errors and higher variability,
with a MAE of 120 msec sec and MAD 140 msec.

We provide graphical results of the evolution of the
temporal parameters for seven strides per patient. In Fig. 6
the evolution of the HMMs-based estimated stride time and
stance time per patient w.r.t. those extracted by the GT data
during the whole experiments is depicted. On those graphs,
the y-axis is the time in seconds and the x-axis refers to
the current number of stride while walking. The stride time
segmentation is very accurate presenting small variabilities
from GT for all patients, as this was also evident in the results
of Table I. The stance time is also well estimated; we can see
that even for Patients 3 & 4, which exhibited errors higher
than 60 msec according to Table I, in the majority of the
strides the estimations follow the same pattern with a small
error. Meaning that the HMMs-based methodology has the
ability to recognise the dispersion of the data and retain the
information about the gait variability, which is also a crucial
feature of gait analysis.

On the other hand, in Fig. 7 the evolution of DS time
periods, as those were estimated by the HMMs-based method
contrasted to the evolution of the DS period computed from
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the GT data, is presented. Also, in those graphs the y-axis
refers to the time duration of the double support event in
seconds, while the x-axis refers to the current number of
stride. Two DS events contribute to each stride, assuming for
presentation purposes that the initial DS is depicted at the
half of each stride. At a first glance, we can inspect that for
patients 1 and 4 the HMMs-based method achieves very good
recognition of the DS periods, following the pattern and the
variability of the DS periods for those patients. Regarding
patient 2, we notice that the HMM-based estimation of
the DS periods follows quite well the pattern of the GT
evolution, however presenting higher variations from the GT.
Only for patient 3, our method underestimates the duration
of the DS events, as it can also be ascertained by the
results of Table I. The most probable reason is that patient 3
presented a type of pathological walking that was not present
in the training set of the HMM. In Fig. 7 we can notice
that for patient 3 the GT double support periods present
higher variability than for the rest of the patients. Thus, the
HMM approach was not able to accurately estimate the DS
durations and follow their evolution pattern for patient 3.

A general remark is that the proposed methodology of
using a combination of HMMs for the recognition of the left
and right gait cycles and their internal events, along with
the computation of the double support period, seems to be
performing well in our first experimental results. Taking into
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account the large variations of pathologies, our system shows
important evidence that it could be an efficient non-intrusive
gait analysis and assessment tool using data from a non-
wearable device. However, there is still room for increasing
the accuracy of the system, which will be confronted in our
future work, extending the training set with a broader range
of datasets associated with different pathologies.

VI. CONCLUSIONS AND FUTURE WORK

We aim to develop a completely non-invasive pathological
walking analysis and assessment system, as a subsystem
of a context-aware robot control for an intelligent robotic
walker. We utilize data from a laser scanner mounted on
a robotic assistant platform to track the user’s legs, using
two PFs which are probabilistically associated, constituting
a non-invasive approach using a non-wearable device. The
legs’ state estimates are the observations of a pathological
gait cycle recognition system consisting of a combination of
HMMs that detect the left and right gait cycles. The time
segmentation of the gait cycles, provided by the HMMs,
is exploited for computing temporal gait parameters, which
are commonly used for medical diagnosis and are important
for predicting the risk of falling. We validate our on-board
framework with patients of variable mobility impairment,
who performed walking scenarios simulating normal daily
living walking activities. We evaluate the ability of the
HMMs-based system to accurately recognize pathological
gait patterns and validate the given temporal segmentation,
by comparing them with ground truth data, which were
extracted by an automatic gait phases segmentation algorithm
employing data provided by a motion capture (VICON)
system.

The data presented here are a first part of a broad ongoing
study with more subjects that will be reported upon conclu-
sion of the study. We plan to test different HMM schemes for
improved accuracy, such as parallel HMMs with associated
estimations for the left and right gait cycles. As the accuracy
of the system is heavily influenced by the training data, we
plan to utilize ground truth training data to increase the sys-
tem’s accuracy. Our ongoing research includes the HMMs-
based methodology to classify specific gait abnormalities
according to pathologies, allowing a variety of abnormal
gaits (corresponding to specific motor impairments) to be
characterized by different models. Furthermore, within our
future plans is to model more gait patterns based on HMM,
regarding turning motions during indoor ambulation, as well
as more complicated and maneuvering motions that appear in
daily activities. We intend to create a system for detecting in
real time specific gait pathologies and automatically classify
the patient status or the rehabilitation progress, thus provid-
ing the necessary information for a user-adaptive context-
aware robotic assistant walker.
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