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Abstract— Towards a mobility assistance robot for the el-
derly, it is essential to develop a robust and accurate gait
tracking system. Various pathologies cause mobility inabilities
to the aged population, leading to different gait patterns and
walking speed. In this work, we present the experimental
comparison of two user leg tracking systems of a robotic
assistance walker, using data collected by a laser range sensor.
The first one is a Kalman Filter tracking system, while the
second one proposes the use of Particle Filters. The tracking
systems provide the positions and velocities of the user’s legs,
which are used as observations into an HMM-based gait
phases recognition system. The spatiotemporal results of the
HMM framework are employed for computing parameters that
characterize the human motion, which subsequently can be used
to assess and distinguish between possible motion disabilities.
For the experimental comparison, we are using real data
collected from an ensemble of different elderly persons with a
number of pathologies, and ground truth data from a GaitRite
System. The results presented in this work, demonstrate the
applicability of the tracking systems in real test cases.

I. INTRODUCTION

A. Motivation

Mobility problems are common in the elderly, as they have
to cope with instability and lower walking speed, [1]. Certain
pathologies are responsible for changes in stride length and
in walking phases, [2]. Elder care constitutes a major issue
for modern societies, and the use of non-invasive methods for
medical monitoring is crucial. Robotics seems to fit naturally
to the role of assistance, since it can incorporate features such
as posture support and stability, walking assistance, health
monitoring, etc.

Our aim is to use intelligent robotic platforms (Fig.1),
which can monitor and understand the patient’s walking state
and will autonomously reason on performing assistive actions
regarding the patient’s mobility and ambulation, [3]. We are
working on the development of an Adaptive Context-Aware
Robot Control architecture, when the robotic assistant is in
front of the user and detects the patient’s mobility state
by using real-time laser data. We recognize specific gait
patterns and also compute gait parameters that are indicative
of particular pathologies, [4]. This indication will trigger

This research work was supported by the European Union under the
project “MOBOT” with grant FP7-ICT-2011-9 2.1 - 600796.

Fig. 1: Left: Typical market-based passive assistive device for el-
derly. Right: A robotic platform, constructed with financial support
of EU project MOBOT, equipped with a Hokuyo Laser Sensor
aiming to record the experimental gait data of the user (below knee
level).

control assistive actions and behaviors (velocity adjustment,
approach of the patient due to changes in gait patterns) from
the robotic assistant that follows the user. It is therefore
crucial to have a robust tracking system, as the estimated
gait parameters of the user are essential for the low level
robot controller, [5].

In this paper, we address the challenge of developing
a reliable pathological gait tracking system. The proposed
system utilizes a laser sensor that detects the user (which
does not interfere with human motion). We test two dif-
ferent leg tracking approaches, for extracting the necessary
gait parameters. The first approach is based on K-means
clustering and Kalman Filtering. The second approach is
based on Particle Filter, which tracks each leg separately,
while performing a data association for the two targets-
legs. The results of both methods, i.e. the estimated leg
positions and velocities are the observations of a Hidden
Markov Model (HMM) for recognizing the different gait
phases. This information is then used to extract the gait
parameters. Our goal is to employ this setup as a subsystem
within a larger behaviour-based robot control framework for
the development of a cognitive context-aware walking-aid
robot.
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B. Related Work

The automatic classification and modeling of specific hu-
man activities is useful for many technical and biomechanical
applications. A number of research groups worldwide, are
actively pursuing research, investigating problems related to
the development of smart walking support devices, aiming
to assist motor-impaired persons and elderly in standing,
walking and other mobility activities, as well as to detect
abnormalities and to assess rehabilitation procedures, [6],
[7]. Many researchers cope with gait analysis using machine
learning algorithms, aiming to detect pathological cases that
require medical treatment, using sparse representation for the
detection of Parkinsonian gait patterns, [8].

For extracting gait motions, different types of sensors have
been used, from gyroscopes and accelometers to cameras,
e.g. [9], [10]. Other approaches refer to human detection
and tracking, or recognition of human activity utilizing laser
sensors, and in some cases complementary with cameras, or
force sensors, [11]. The detection and tracking of humans
is a common problem. Most research work focuses on
detecting and tracking human legs from static sensors, as
in pedestrian tracking, [12], or from laser scanners mounted
on mobile robotic platforms for person following, [13],
[14]. Approaches for tracking users of robotic walkers can
be found in [15], [16]. Human tracking with particle filters
using laser scanners mounted on mobile robots can be found
in [17], [18], while in [19] the researches used two laser
scanners and a particle filter-based prediction of the legs’
positions and velocities used as input to a PID controller for
the mobile robot. Several works use the GAITRite System
for validating their gait analysis results, [20]. GAITRite
System is commonly used for gait impairments detection and
analysis, [21].

Gait analysis can be achieved by using Hidden Markov
Models (HMMs), which can model the dynamic properties
of walking. The versatility of HMMs makes them useful
in extracting human patterns. HMMs are currently used for
gait modelling employing data from wearable sensors, like
gyroscopes mounted on human’s feet, [22].

This paper presents a comparative study of two tracking
frameworks, the first is based on Kalman Filter and the
second one uses Particle Filters with a data association
technique, that were developed for the estimation of the
legs’ positions and velocities of a subject using a robotic
assistant platform (Fig. 1). The estimated parameters are fed
into an HMM-based gait recognition system, that detects
specific phases of human walking. Given that segmentation
we can extract spatiotemporal gait parameters, which will be
used for the impairment level assessment of the user in an
Adaptive Context-Aware Robot Control architecture. Instead
of using complex models and motion tracking approaches
that require expensive or bulky sensors and recording devices
that interrupt human motion, the measured data used in this
work are provided by a standard laser rangefinder sensor
mounted on a robotic rollator platform. In this work, we aim
to compare the performance of the two tracking methods

by testing their accuracy in extracting gait parameters with
respect to the ground truth data from a GAITRite System
and their robustness in tracking the user in difficult cases,
such as occlusions or cluttered environment.

II. HUMAN GAIT CYCLE ANALYSIS

The human gait motion analysis is based on the periodic
movement of each foot from one position of support to the
next, [23]. The gait cycle is divided into eight events. This
segmentation is sufficiently general to be applied to most
types of human gait, including five during stance phase (the
foot is on the ground) and three during swing (the same foot
is no longer in contact with the ground), [24]. The internal
gait phases are (as a percentage of the total duration of the
gait cycle): 1. IC - Initial Contact: 0%, 2. LR - Loading
Response: 0-10%, 3. MS - Midstance: 10-30%, 4. TS -
Terminal Stance: 30-50%, 5. PW - Preswing: 50-60%, 6.
IW - Initial Swing: 60-70%, 7. MW - Midswing: 70-85%,
8. TW - Terminal Swing: 85-100%. In this paper, we have
used the seven gait phases of walking in order to analyze
the gait cycle, since the TW phase is an equivalent trigger
to the IC phase, and therefore are treated as identical.

Specific gait parameters can be computed at every walking
cycle, which are commonly used for medical diagnosis, [4],
[25]. In this work, we are using three temporal parameters:
1) stride time: the duration of each gait cycle, 2) swing
time: the swing phase duration in a gait cycle, 3) stance
time: the stance phase duration in one cycle, and three spatial
parameters: 1) stride length, i.e. the distance traveled by both
feet in a gait cycle, 2) right step length: the mean distance
traveled by the right leg and 3) left step length: the mean
distance traveled by the left leg in a gait cycle.

III. GAIT PARAMETERS EXTRACTION BASED ON
HIDDEN MARKOV MODEL

Hidden Markov Models are well suited for gait recognition
due to their statistical properties and their ability to reflect the
temporal state-transition nature of gait. In our previous work,
we analyze extensively the properties of our HMM system
and its applications for modelling normal human gait, [26],
as well as for pathological gait recognition, [27].

A. HMM Gait Cycle Recognition

The seven gait phases can define the hidden states of
the HMM. As observables, we utilize several quantities that
represent the motion of the subjects’ legs, (relative position
w.r.t. the laser, velocities, etc.), which are estimated using
sequential signals from a laser sensor. We consider seven
hidden states according to the seven gait phases, while the
observations are the legs’ positions and velocities along the
axes and the the distance between the legs. The observation
data are modeled using a mixture of Gaussian distributions
(GMM). The observations at each time instant are expected
to be extracted by the raw laser data collected by the
laser range scanner mounted on the robotic rollator (the
measurements are relative to the robotic platform motion),
Fig. 1. We will, later, discuss the implementation of two
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different approaches for the estimation of the user’s legs
kinematic parameters, that are used as observables for the
HMM framework.

B. Gait Parameters Extraction

The recognized sequence of gait phases is indicative of
the subject’s underlying pathology, since it differs from the
normal gait phase sequences. Using this segmentation we can
compute the gait parameters from the range data. Each re-
cognized gait cycle is used for the gait parameter extraction.
The stride time equals the duration of the recognized gait
cycle. Given the time segmentation by the HMM, we have
isolated the stance and swing phase of the gait cycle, and
computed the swing time between the gait phases IW and
MW and the stance time between the gait phases IC and
PW. The right and left step lengths are computed by the
absolute maximum distance traveled by each leg, while their
summation during the gait cycle provides the stride length.

IV. TRACKING USER’S LEGS USING KALMAN
FILTERING

This detection and tracking system of the subject’s legs
uses K-means clustering and Kalman Filtering (KF) for the
estimation of the central positions and velocities of the left
and right leg along the axes, [27]. Towards detecting the
user’s legs we preprocess the raw laser data at each time
frame. A rectangle observation window is defined in the
walking plane, which is wide enough for initialization, while
in the consecutive frames it is adjusted according to the
uncertainty of the predicted legs’ positions. The laser points
lying outside the window are discarded, while the remaining
are separated into groups according to a euclidean distance
threshold between consecutive laser points. The laser groups
containing less points than a pre-specified number are de-
leted. We wish to end up with two groups (handling of cases
with more than two groups are discussed later), which are
labeled as left/right leg by the K-means clustering algorithm.
Circle Fitting is used for computing the legs’ centers, which
compose the observation vector, zk, for the tracking process.

The state vector of the user’s legs used in KF comprises the
state vectors of both legs: xle f t

k =
[

xL yL vL
x vL

y
]T and

xright
k =

[
xR yL vR

x vR
y
]T , where (xL,yL) and (xR,yR)

are the Cartesian coordinates of the centroid legs’ positions
w.r.t laser, and (vL

x ,v
L
y ), (vR

x ,v
R
y ) are their velocities along

the axes, at time instant k. Thus, the KF state vector is:
xk =

[
(xle f t

k )T (xright
k )T

]T
. We use the standard KF state

equations: xk = Akxk−1 + Bkuk−1 + wk, where k refers to
time, xk is the state vector, uk is the input vector, Ak is
the state transition matrix, Bk is the input matrix and wk
is the process noise with normal probability distribution
p(wk)∼ N(0,Qk), where Qk is the process noise covariance
matrix. The observation vector zk of the true state is updated
according to the standard equation: zk = Hkxk +vk, where Hk
is the observation matrix, which maps the true state space
into the observed space, and vk is the observation noise,
following the normal distribution p(vk)∼N(0,Rk), where Rk

is the measurement noise covariance matrix. Since we have
no direct influence on the acceleration (it is “user” generated)
nor any measurements, we treat it as the process noise.

The predictions of the KF are used as seed for the K-
means algorithm. Around the legs’ predicted positions we
place the observation window, which is adaptively adjusted
according to the KF prediction variability. The detected
raw data inside it, are ready to be preprocessed. Thus, the
described method results in an iterative interaction between
detection and tracking processes. The predicted positions are
fed back to the preprocessing stage as a prior information of
the expected positions of the legs for the next time frame.

If one leg is occluded by the other (common problem
while turning) or there is interference of the carer’s legs
(clutter), we have a false detection case. A false detection
occurs during leg detection process, whenever more than
two groups of laser points appear or there is a violation of
a distance threshold from the detected legs’ centers. Then,
we do not account any observations, but we only apply the
prediction step of the KF. However, if we cannot track the
user for over 5 time frames we re-initialize the system.

V. TRACKING USER’S LEGS USING PARTICLE
FILTERING WITH DATA ASSOCIATION

We have designed a Particle Filter (PF) Leg Tracker to
deal with problems in the performance of the KF tracking,
such as tracking loss in cases of long time occlusions. We
have used the particle filter theory, [28], for tracking each
leg separately and applied a probabilistical data association,
[29], of the legs.

We use two particle filters to estimate the posteriors of the
legs’ states xle f t

k and xright
k at each time instant k. The particles

represent samples of the posterior density distribution of the
legs’ states. At the first time instant k=1, we initialize the
particles of each leg by drawing N samples from an initial
prior distribution.

For approximating the true posterior of the state we have
used the Sequential Importance Resampling method (SIR
PF), [28]. According to SIR PF, every new time frame
k=2,..,T, (where T is the total tracking time), the new
particles of the state are sampled from the importance density
function: x f ,i

k ∼ p(x f
k |x

f
k−1), where f = {le f t,right} and i

denotes the ith sample. This distribution function represents
the transition probability of the state from time k-1 to time
k and constitutes the motion model, that propagates the
particles’ state of each leg at each time instant k, given
the previously estimated state x f

k−1. We considered the fact
that the leg motion does not follow a constant velocity or
acceleration model, but have variable velocity according to
its gait phase. We model the velocity of each leg along the
axes by a GMM of two mixtures. Every time instant k,
we draw N velocity samples for each leg. Those samples
are then used for updating the particles position through
time, by adding to the previous estimated leg position the
displacement imposed by the new velocity of each particle
along the axes.
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After the particles are propagated through time, we need
to associate each particle set with the corresponding laser
points of the left/right leg. Inspired by the methodology
in data association literature, [30], we take as observations
only the laser points that fall inside a particle gate. In this
work, a particle gate is an experimentally defined rectangular
area centered around each particle, so that every sample x f ,i

k
refers to a different cluster of laser points, y f ,i

k . Because
we have defined the prior distribution to be equal to the
proposal distribution, the particle weights are equal to the
observation likelihood: ω

f ,i
k = p(y f ,i

k |x
f ,i
k ). Considering the

circular representation of the legs described in Section IV,
the observation likelihood evaluates how the laser points are
distributed on the circular contour given the center, which is
the particle’s position for each leg. Thus, we have divided
horizontally the circle into two semicircles. Laser points in
the upper semicircle do not contribute to the observation
likelihood. The lower semicircle is split into M regions Rl
with l = 1, ..,M, of equal angle range and we have evaluated
the normal distribution of the distances of the laser points
of each region with respect to the corresponding particle
position, which is a candidate leg center.

Because the human legs are two interacting moving
targets, we introduce an association probability βi, that
regulates the observation likelihood of the one leg with
respect to the other, by evaluating a likelihood of the
Euclidean distance of the two legs modeled by a Gamma
distribution. Finally, the observation likelihood for each leg
is computed using the following function: p(y f ,i

k |x
f ,i
k ) = βi ·[

λi ·
4
∑

l=1
πl · ∏

j∈Rl

N (d j|µl ,Σl)

]
where y f ,i

k = [(x j,y j)], is the

set of the laser points in the gate of the ith particle of
each leg, j ∈ Rl , where Rl is the lth region of laser points,
N (d j|µl ,Σl) is the normal distribution of the distances d j
of the laser points of each region from the ith particle,
µl is the mean vector and Σl is the covariance matrix of
the normal distribution for each region Rl . The πl are the
importance weights of the regions, which were set so that
the extreme regions, which often contain many outliers,
have less importance; λi is a scaling factor that depends on
the cluster length for the ith particle. All parameters have
been experimentally defined. The weights are normalized

according to: ω̂
f ,i

k = ω
f ,i

k /
N
∑
j=1

ω
f , j

k . To overcome weight

degeneracy, i.e. when most particles have infinitely small
weight, we use the systematic resampling method, [28], [31],
for eliminating particles with small weights and replicating
particles with higher weights. Finally, the state’s posterior
estimate is approximated by the Minimum Mean Square

Error (MMSE): x f
k =

N
∑

i=1
ω̂

f ,i
k x f ,i

k .

VI. EXPERIMENTAL ANALYSIS & VALIDATION

A. Experimental setup and data description

The experimental data used in this work were collected in
Agaplesion Bethanien Hospital - Geriatric Center. Patients

with moderate to mild impairment, according to clinical
evaluation of the medical associates, took part in this ex-
periment. The patients were wearing their normal clothes
(no need for specific clothing nor there was placement of
visual markers on them). We have used a Hokuyo rapid laser
sensor (UBG-04LX-F01 with mean sampling period of about
28msec), mounted on the robotic platform of Fig. 1 for the
detection of the patients’ legs. A GAITRite System was used
to collect ground truth data. GAITRite is an electronic mat,
equipped with pressure sensors placed at 1.27 cm each, used
for gait analysis. GAITRite provides measurements of the
spatial and temporal gait parameters and is commonly used
for medical diagnosis, [20].

We have used data from four patients with moderate
mobility impairment (aged over 65 years old). Each subject
walked straight with physical support of the robotic rollator
over the walkway defined by the GAITRite mat. All pa-
tients performed the experimental scenarios under appropri-
ate carer’s supervision. The subjects were instructed to walk
as normally as possible. This results in a different walking
speed for each subject, and in different gait parameters.

In Fig. 2, snapshots of a subject are presented, while
performing the experimental scenario, captured by the Kinect
camera that was also mounted on the robotic rollator (Fig.
1). Also, in Fig. 3 the sequence of the detected footprints by
the GAITRite System for the same subject are depicted.

B. Validation Strategy

In this work the comparison of the KF-based tracking
system and the PF leg tracker is presented. The latter was
tested with 300 particles per leg for a correct tracking,
which is less than the respective amount of samples used
by other researches that used data from a laser scanner to
track humans, [17]–[19]. We will use the gait parameters
measured by the GAITRite System as ground truth data to
validate the results. We ascertain if the tracking results of
the two filters alters the gait phase recognition by the HMM-
based methodology and if so, to check which filter combined
with HMM produces gait parameters that converge better to
the ground truth data.

We have isolated the laser data corresponding to the
respective strides detected on the GAITRite mat. These data
were processed according to the two approaches, in order to
extract the gait parameters, as described in subsection III-
B. The HMM training procedure comprises estimation data
from the KF tracking system for 12 different patients that
performed the experimental scenario without the GaitRite
mat. The evaluation is based on an assessment of the
estimated states provided by the constructed HMM, which
represents the human gait cycle. Data from all patients that
performed the experimental scenario on the GAITRite mat
are used for testing.

The validation of the results comprises both quantitative
and qualitative comparisons. Table I contains the mean and
standard deviations of the gait parameters, as those were
estimated using as input to the HMM recognition system the
observations by the two methods, in order to compare the
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TABLE I: Extracted Gait Parameters

Subject Parameter Unit HMM-KF HMM-PF GAITRite

1

stride length m 0.73±0.05 0.71±0.01 0.75±0.01
right step m 0.36±0.02 0.35±0.01 0.39±0.04
left step m 0.37±0.04 0.36±0.05 0.36±0.01

stride time s 1.11±0.09 1.06±0.02 1.10±0.02
swing time s 0.37±0.04 0.38±0.05 0.41±0.02
stance time s 0.73±0.05 0.68±0.04 0.61±0.04

2

stride length m 0.93±0.02 0.88±0.05 0.86±0.05
right step m 0.44±0.07 0.43±0.03 0.44±0.02
left step m 0.46±0.02 0.45±0.02 0.42±0.04

stride time s 1.03±0.03 1.03±0.03 1.07±0.05
swing time s 0.32±0.01 0.34±0.06 0.44±0.01
stance time s 0.72±0.03 0.69±0.08 0.60±0.09

3

stride length m 0.57±0.06 0.57±0.04 0.57±0.03
right step m 0.27±0.01 0.26±0.02 0.26±0.03
left step m 0.30±0.01 0.31±0.03 0.31±0.01

stride time s 1.17±0.04 1.18±0.05 1.19±0.03
swing time s 0.32±0.02 0.34±0.06 0.47±0.04
stance time s 0.84±0.03 0.84±0.04 0.73±0.03

4

stride length m 0.71±0.08 0.68±0.03 0.68±0.03
right step m 0.35±0.01 0.34±0.07 0.34±0.02
left step m 0.36±0.01 0.34±0.03 0.34±0.01

stride time s 1.18±0.06 1.21±0.07 1.19±0.03
swing time s 0.37±0.06 0.32±0.09 0.44±0.04
stance time s 0.81±0.01 0.89±0.01 0.73±0.07

Gait parameters means and standard deviations computed by the
HMM recognition system using as observations the KF and PF
estimates, along with the ground truth measured parameters of the
GAITRite System for the four subjects.

TABLE II: Accuracy measures

MEAN RMSE MAD
KF PF KF PF KF PF

stride length (m) 0.063 -0.013 0.043 0.036 0.030 0.023
right step (m) -0.008 -0.010 0.031 0.042 0.024 0.028
left step (m) 0.060 -0.016 0.046 0.026 0.033 0.034

stride time (s) -0.019 -0.024 0.066 0.051 0.047 0.035
swing time (s) -0.101 -0.093 0.116 0.116 0.042 0.060
stance time (s) 0.079 0.057 0.091 0.085 0.035 0.057

Statistical comparison of the two filters using the measures Mean
error, rms error (RMSE) and mean absolute deviation (MAD) error
of the estimated gait parameters from the ground truth data.

TABLE III: Tracking Robustness

Subject Total Tracking Total errors Total errors
time (s) (# frames) (% of total frames)

1 KF 16.97 1 0.16
PF 17.00 0 0

2 KF 13.10 64 12
PF 14.89 0 0

3 KF 13.52 47 8.89
PF 14.84 0 0

4 KF 13.05 7 1.48
PF 13.24 0 0

Total tracking time and tracking errors for all subjects for evaluating
the tracking robustness of the two filters.

accuracy of the tracking systems. Table II presents the Mean
error, the Root Mean square Error (RMSE) and the Median
Absolute Deviation (MAD) of the errors of the estimated gait
parameters from the KF-HMM and the PF-HMM systems
from the GAITRite ground truth data.

Furthermore, we present results of laser frames where we
can inspect the actual performance of the two systems in
cases of occlusions, etc., and we compute the parameters
total tracking errors and total time of tracking, presented in
Table III, in order to account for the tracking robustness of
the two implementations.

C. Validation Results and Discussion

1) Accuracy: Inspecting the results of Table I, it is
obvious that both filters converge quite well to the ground
truth data. Table II contains the statistics for the errors of
the filters from the ground truth data. We can see that the
spatial parameters errors for both filters are quite small. We
should consider that the GAITRite system refers to the foot
impact for measuring the gait parameters, while our raw
data are provided by a laser range scanner that detects the
human tibia, so they depend on the subject’s height, and
also the movement of the lower limb, while the motion of
its hypothetical center, is not aligned with the heel center
movement, making the extraction of the gait parameters even
more difficult. However, in most cases the PF tracking system
performs better than the KF. As for the temporal parameters,
we detect larger errors in the swing/stance time segmentation
for both filters, but the results clearly demonstrate that there
is significant space for increasing the accuracy of the HMM-
based recognition system.

2) Robustness: In Fig. 4 we present results that would
help us evaluate the tracking robustness of the two filters. In
Fig 4a, 4c the black stars represent the raw laser data, the
red ’x’ the left estimated and the green ’x’ the left detected
leg position, while the blue ’x’ is the right estimated and
the magenta ’x’ the right detected leg position. In Fig. 4b,
4d the black stars represent the raw laser data. The green
circles are the left leg particles and the red ’x’ is the position
estimate, while the magenta circles are the right leg particles
and the blue ’x’ is the estimation. Fig. 4a, 4b show a typical
case of cluttered environment, for which the KF wrongly
estimates the position of the two legs while the PF performs
well. In Fig. 4c, 4d we present a case of leg occlusion,
where once more the PF predicts the occluded left leg’s
position, while the KF detection and tracking strategy fails to
predict correctly the position of both legs. Also, the proposed
computation of the observation likelihood for the PF tracker
with the data association gives better results than the KF
tracker, in cases of great noise, e.g due to clothing, where
the KF tracking system fails most of the times to correctly
estimate the leg centers, while the PF observation likelihood
penalizes points that seem to be outliers.

Table III presents the total time of correct tracking, the
total tracking errors in frames and the total errors as a
percentage of the total frames provided by the laser scanner.
The PF tracks all the users successfully, while the KF
tracking system loses track of the user many times, especially
subjects #2 and #3, who presented different types of walking
according to Table I, i.e. subject #2 did larger strides than
subject #3. This is also an indication of the applicability of
the two filters regarding large variations on gait speed, that
cannot be successfully modeled by the linear motion model
of the KF tracking system.

VII. CONCLUSIONS AND FUTURE WORK
We aim to develop a completely non-invasive pathological

walking analysis and assessment system, as a subsystem
of a context-aware robot control for an intelligent robotic
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Fig. 2: Snapshots of a subject walking on the GAITRite walkway
assisted by the robotic platform, during one stride.

Fig. 3: The captured footprints of the subject by the GAITRite
System.

(a) Kalman Filter (clutter) (b) Particle Filter (clutter)

(c) Kalman Filter (occlusion) (d) Particle Filter (occlusion)

Fig. 4: Snapshots of false detection from Kalman Filter that can
be handled well by Particle filter. (a) KF estimated leg positions in
clutter, (b) PF estimation in clutter. (c) KF estimation while left leg
is occluded and (d) PF estimation during left leg occlusion.

walker. An accurate and robust tracking system of the user’s
legs is a crucial parameter for the control system. Thus, we
compare a tracking system based on K-means clustering and
Kalman Filter, with a Particle Filters leg tracking framework.
A typical laser rangefinder sensor provides data, constituting
a non-invasive approach using a non-wearable device. The
two methodologies are compared using ground truth data
from a GAITRite System, and both can successfully extract
the gait parameters in most cases. The experimental results
clearly show that the PF tracker is more reliable than the KF
tracking system, as it is more accurate in estimating the gait
parameters and it can also successfully handle difficult cases,
such as leg occlusions and environmental clutter. But there
is still room for further accuracy increase on the PF tracking
system and the HMM-based gait recognition framework.

Our goal is to implement a multilayered particle filter
tracking system, that will incorporate multiple modalities
such as visual cues, for an augmented state estimation of
the user. We aim to increase the filter accuracy by testing
particle filter smoothing techniques and by using multiple
motion models according to the patient’s impairment level,
that will populate the samples of the particle filter leg tracker
according to the patient’s walking speed. We intend to create
a system for detecting in real time specific gait pathologies
and automatically classify the patient status or the rehabilit-
ation progress, thus providing the necessary information for
effective cognitive active mobility assistance robots.
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