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Abstract— Elderly people have particular needs in perform-
ing bathing activities, since these tasks require body flexibility.
Our aim is to build an assistive robotic bath system, in order to
increase the independence and safety of this procedure. Towards
this end, the expertise of professional carers for bathing
sequences and appropriate motions has to be adopted, in order
to achieve natural, physical human - robot interaction. In this
paper, a real-time end-effector motion planning method for
an assistive bath robot, using on-line Point-Cloud information,
is proposed. The visual feedback obtained from Kinect depth
sensor is employed to adapt suitable washing paths to the user’s
body part motion and deformable surface. We make use of a
navigation function-based controller, with guarantied globally
uniformly asymptotic stability, and bijective transformations for
the adaptation of the paths. Experiments were conducted with a
rigid rectangular object for validation purposes, while a female
subject took part to the experiment in order to evaluate and
demonstrate the basic concepts of the proposed methodology.

I. INTRODUCTION

The results of the advances in medicine and nursing ser-
vices is the increase of life expectancy and constant growth
of the elderly population. Elderly people, who have special
and augmented needs for nursing attention (in-house and
clinical), especially in performing Personal Care Activities
such as showering, dressing and eating [1], [2], will induce
great financial burden both to the families and the insurance
systems.

Body care (showering or bathing) is among the first daily
life activities which incommode an elderly’s life [1], since
it is a demanding procedure in terms of effort and body
flexibility. Roboticists have already proposed solutions to
this basic personal care disability, with either static phys-
ical interaction [3], or mobile solutions [4]. Most of these
focus exclusively on a body part e.g. the head, and support
people on performing other personal care activities with rigid
manipulators.

Soft robotic arm technologies have already presented new
ways of thinking robot operation [5]. Autonomous continuum
robot interaction with rigid and static objects in unknown
working scenes, for manipulation and grasping scenarios,
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Fig. 1: CAD design of the robotic bath system installed in a pilot
study shower room. The real soft-arm, which is currently under
construction, is also depicted (courtesy of Sant’Anna School of
Advanced Studies).

has been addressed in [6], [7]. However, applications with
physical contact with human (such as showering) are way
more demanding, since we have to deal with curved and de-
formable human body parts. Furthermore, unexpected body-
part motion may occur during the robot’s operation, therefore
safety and comfort issues the washing process should be
taken into account. Moreover, control architectures of a
hyper-redundant soft arms [8], [9], in an environment with
human motion is a challenging task, since several control
aspects should be considered such as position, motion and
path planning [10], stiffness [11], shape [12] control.

In [13], [14] a potential field based real time path planning
for a tendon driven continuum style manipulator is proposed,
although the aforementioned method suffers from local min-
ima problem and therefore this algorithm does not ensure
global convergence. However, solutions regarding real-time
motion planning problems in static or dynamic environments
towards Human Robot Interaction (HRI) were proposed in
several works [15], [16].

From the perception point of view, the use of vision
sensors for object detection and pose estimation in robotic
applications has been investigated within the last decades.
More recently, researchers have been developing algorithms
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and systems, which use depth and RGB images to segment
human limbs [17].

In this paper, we propose a real-time motion behavior
planning approach, which exploits the visual information
from Depth sensors and the advantages of a Navigation
Function approach [16], in order to calculate each time-
step the 6D reference pose (position and orientation) for
the end-effector of a robotic manipulator. The proposed
method is independent of the robot model, therefore it can
be applied to any robotic manipulator. This system will help
elderly during bathing, by enhancing mobility, manipulation
and force exertion abilities, and increasing in that way the
independence and safety of the showering activity. This is
a demanding task, since suitable washing actions should be
adapted on different user body-part’s deformable surface and
motion.

This is achieved by establishing bijective transformations
between a 2D “Canonical” space (on which predefined
washing paths are described) and the 3D robot’s operational
subspace visible by the camera, using as an intermediate
the 2D Image space provided by the Depth sensors. The
proposed methods are validated through real experiments
by using a Kinect camera and a rigid rectangular object.
This experimental setup is suitable for the evaluation and
demonstration of the basic concepts of this approach. Finally,
a female subject was employed, in order to demonstrate the
adaptability of the proposed approach on different user size
and needs.

II. SYSTEM DESCRIPTION

The robotic shower system, which is currently under
development Fig. 1, will support elderly and people with
mobility disabilities during showering activities, i.e. pouring
water, body part scrubbing, etc. The degree of automation
will vary according to the user’s preferences and disability
level. In Fig. 1, a CAD design of the system’s basic parts is
presented.

The robotic arms will be constructed with soft materials
(rubber, silicon etc.) and will be actuated with the aid of
tendons and pneumatic chambers, providing the required
motion to the three sections of the robotic arm, as de-
scribed in [18]. This configuration makes the arms safer
and more friendly for the user, since it generates little
resistance to compressive forces. Moreover, the combination
of these actuation techniques increases the dexterity of the
soft arms and allows for adjustable stiffness in each section
of the robot. The end-effector section, which will interact
physically with the user, will exhibit low stiffness achieving
smoother contact, while the base sections supporting the
robotic structure will exhibit higher stiffness values.

Visual information of the user will be obtained from
Kinect depth cameras. These cameras will be mounted on
the wall of the shower room in a proper configuration, Fig.
1. It is important to mention that information exclusively
from depth measurements will be used to protect the user’s
personal information. Accurate interpretation of the visual
information is a prerequisite for human perception algorithms

(e.g. accurate body part recognition and segmentation [17])
and human-system interaction [19]. Depth information will
also be used as a feedback for robot control algorithms
closing the loop and defining the operational space of the
robotic devices.

III. PROBLEM STATEMENT

The motion behavior problem of a robotic manipulator’s
end-effector, which operates over a curved deformable sur-
face (e.g. user’s body part), in a workspace equipped with a
depth-camera, is considered. We assume that we have a robot
which can be kinematically described by q̇ = u, where q is
the vector of end-effector position and orientation, and u is
the vector of velocity inputs. Let the admissible and feasible
state space (workspace) for the robot be denoted W ⊂ R6.
The obstacle free subset of the workspace is denoted W f ree⊆
W . Let O ∈ W \W f ree be the set of all obstacles in 3-D
workspace. These obstacles should be visible by a depth
camera, whose field of view should include the workspace
of the robot. Obstacle areas may regard restricted areas,
either on the user’s body (e.g. local injury), which should
be avoided during the washing sequence, or on other body
parts that interfere to the robot’s motion (e.g. the hands of
the user).

The core of this motion behavior task is to calculate on the
fly the reference pose for the end-effector of the robotic arm,
which will let the robotic manipulator execute predefined
surface tasks (e.g. scrubbing the user’s back) and at the
same time to be compliant with this body part. This is a
challenging task, since all human’s body parts are non-planar
surfaces, that are moving and deforming either systematically
(e.g. user’s breathing motion) or randomly.

Adaptability to different users is also a very important
feature of the system. Different users have dissimilar body
areas and needs during the washing sequence. Hence, the
basic course of this paper commences with the planning
of the end-effector path on a fixed 2D normalized space
(“Canonical” space) as depicted in Fig. 2 (a), in order to
compensate the operational variability.

In addition, proper and human friendly washing motions
for each subtask should be learned by demonstration of
health care experts [20]. This demonstration might raise
some requirements for each task, in terms of execution
time and motion complexity. These requirements can be met
using ideas and algorithms from Dynamic Motion Primitives
(DMP) approach [21].

These motions can be followed with use of the controller
presented in Section IV, satisfying both the time and the
spacial constraints of the motion. The resulting point from
the controller should be transformed from the fixed 2D
“Canonical” space to the 3D actual operational space of
the robot (Task space). This is achieved with two bijective
transformations, Fig. 2(b),(c), described in Section V. These
bijections ensure that the path will be followed within the
body part limits, will be adaptable to the body motions and
deformations, and can also provide feedback to the controller.
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Fig. 2: Three different spaces described in the proposed methodology. (a) 2D space normalized in x,y dimensions notated as “Canonical”
space. The sinusoidal path from the Canonical space is transformed the rectangular area on the Image space, using scaling and rotation.
(b) 2D Image space is the actual image (of size 512 x 424 pixels) obtained from Kinect sensor. The yellow rectangular area marks the
user’s back region, as a result of a segmentation algorithm. The transformed path is fitted on the surface of a female subject’s back region,
using the camera projection transformation. (c) 3D Task Space is the operational space of the robot. The yellow box represents a Cartesian
filter, including the points on which the robot will operate.

IV. BEHAVIORAL BASED MOTION CONTROLLER

The task is described by a predefined stored washing
motion qd(t) (blue path in Fig. 2(a)) described in the “Ca-
nonical” space (e.g. composition of time constrained motion
primitives designed for rinsing water on the back region).
We make use the following controller to satisfy both the time
constraints imposed by the health-care specialist or the user
needs (e.g. the user prefers a quicker washing action than the
predefined) and the spacial constraints imposed by the region
of action (e.g. the back of the user) and the obstacle areas
from the 3D operating scene. In this section we present the
definition and the convergence proof of the behavioral based
motion controller.

In more detail, we utilize a navigation function of the
form:

ϕ(q, t) =
γ(q, t)

[γκ(q, t)+β (q, t)]1/κ
(1)

where κ > 0, γ is the distance to the 2D time constrained
washing motion, and β (q) is the product of obstacle func-
tions coming from visual feedback, [22].

We consider convergence of the system to a small ball of
radius r > 0 containing the target.

Before defining the control we need some preliminary
definitions. We can define the Hessian of the ϕ , as ∇2ϕ(q, t).
Let λmin, λmax, υ̂λmin

, and υ̂λmax , be the minimum and the
maximum eigenvalues of the Hessian, and the correspond-
ing unit eigenvectors. Then we assume the R region, as
described in [23], to identify sets of points that contain
measure zero sets whose positive limit sets are saddle points:
R = {q|(λmin < 0)∧ (λmax > 0)∧

(∣∣υ̂λmin
·∇ϕ

∣∣< r1
}

, where
r1 < min

S={q:‖q−qd‖=r}
(‖∇ϕ (S)‖). If

∣∣υ̂λmin
·∇ϕ

∣∣= 0. The set R

consists of the measure zero set of initial conditions that lead
to saddle point. Therefore, r1 can be chosen to be arbitrarily
small so the sets defined by R eventually consist of thin sets
containing sets of initial conditions that lead to saddle points.

Proposition 1: The system q̇ = u, under the control law
defined by the vector field u = −∇ϕτ converges to the set

where ‖q−qd‖< r, almost everywhere1. We can define ∇ϕτ ,
as:

∇ϕτ = a+b · a
f (‖a‖2,r2)− r2 ·g(b) ·g(‖a‖2)

(2)

with f (c,s) =
{

c, c≥ s
s, c < s , and g(c) = c

1+|c| , where a =

∇ϕ , b = ∂ϕ

∂ t , and ϕ is the defined navigation function (1).
Proof: We form the Lyapunov function V = ϕ(q, t) as

described by (1), and we can take it’s derivative:

V̇ =
∂V
∂ t

+u ·∇V = b+u ·a (3)

After substituting the control law u = −∇ϕτ by using (2),
and since we pursue convergence in the set ‖q−qd‖< r, we
get:

V̇ =−‖a‖2 +b ·
(

1− ‖a‖2
‖a‖2−r2·g(b)·g(‖a‖2)

)
Therefore, we can discriminate the three cases:

1) b < 0⇒−1 < g(b)< 0⇒
‖a‖2 < ‖a‖2− r2 ·g(b) ·g

(
‖a‖2

)
< ‖a‖2 + r2⇒ V̇ ≤ 0

2) b > 0⇒ 0 < g(b)< 1⇒
‖a‖2− r2 < ‖a‖2− r2 ·g(b) ·g

(
‖a‖2

)
< ‖a‖2⇒ V̇ ≤ 0

3) b = 0⇒ V̇ =−‖a‖2 ≤ 0
The sets defined by the set R are by construction repulsive.

We make the assumption that the initial conditions of the sys-
tem are in the set {W}\E , where the set E = {q|‖∇V‖< r1}.

Remark 1: Practically, we have the choice of an r1, such
that r1 < min{r0,‖∇V (q0, t0)‖}, so we are sure that the
system’s initial conditions are not in E .

Based on this motion controller the next robot desired pose
is extracted and propagated to 3D Task space for execution.

V. ROBOT REFERENCE BEHAVIOR ADAPTATION
USING DEPTH SENSOR DATA

In this proposed approach, we use as input the Point-
Cloud data received from the depth sensors, and on-line

1i.e. everywhere except a set of initial conditions of measure zero.
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Fig. 3: Visualization of experimental results with the rectangular box. The blue arrows represent the normal vector to the surface, whereas
the green and red arrows represent the tagential axes to the surface. (a) The rectangular box is stationary and the reference path is fitted on
its surface. The orientation is calculated w.r.t the robot base frame. (b) A zoomed and segmented version of the box’s front side providing
a more clear aspect of the path fitted on the surface. (c) The box is rotated initially w.r.t. the z (blue) axis and then w.r.t. the y(green)
axis and the calculated path adapts to this motion.

calculate and modify the reference motion, that the robot
should execute in order to fulfill a showering task, Fig. 2.
In particular, the data from Kinect depth sensors will be
processed initially by user perception algorithms, which are
currently under development and will be based on Deep
Learning techniques [24], providing body parts recognition
and segmentation.

The output of these algorithms will be depth images,
which will contain depth information only for the pixels
that correspond to the body part (denoted as valid pixels)
on which the robot will operate (e.g. the back or the legs of
the user), Fig. 2 (c). We can define the 2D extends of the
body part on the image plane by calculating the minimum
and maximum coordinates of the valid pixels along the image
axes. The learned motion is followed by the controller and
the result is transformed from the 2D “Canonical” space to
the image space by performing an anisotropic scaling in order
to fit to the projection limits calculated in the previous step,
as depicted in up-left side of Fig. 2. Since scaling is a linear
transformation we have one-to-one correspondence between
the points of the motion on the “Canonical” space and the
image space. At each time step one point of the motion is
transformed from the “Canonical” space to the image space
and then to the task space, i.e. the 3D space that the robot
will normally operate, as shown in Fig. 2 (c).

The latter stage of this workflow is implemented by using
the depth information from the image space. More specific-
ally, from the depth data of the pixel, which corresponds to
the motion point and of its neighboring pixels in the image
space, we are able to directly calculate their 3D position.
This group of points in the 3D task space form a small
planar segment of the body part surface. Computing the
mean of this group of points pk , [pk

x pk
y pk

z ]
T where

pk
x, pk

y, pk
z , are the Cartesian coordinates of points k = 1, ...,n,

and applying eigenvalue decomposition to their covariance
matrix, as follows:

C =

Cxx Cxy Cxz
Cyx Cyy Cyz
Czx Czy Czz

 ,

where

Ci j =
1
n

n

∑
k=1

(pk
i −mi)(pk

j−m j),

and

m =
1
n

n

∑
k=1

pk , [mx my mz]
T

with i, j = {x,y,z}, we are capable of determining the 6D
reference pose for the robot. The 3D point, which the robot’s
end effector should meet, equals to the mean point of the
group, whereas the orientation is calculated with the aid of
the eigenvectors of the covariance matrix.

The eigenvectors resulting from this decomposition cor-
respond to the principal axis of the 3D data and more
specifically, the normal direction of the planar segment is
the axis that corresponds to the minimum eigenvalue, i.e. the
direction of minimum variance of the data (the blue vector
in Fig. 3), and the rest two eigenvectors are defining the
tangential plane of the considered region, as depicted with
green and red vectors in Fig. 3. Considering these vectors as
the reference orientation for the end-effector of the robot, we
are able to calculate the angles w.r.t. the robot base frame,
which the robotic manipulator should follow. The aim of
these calculations is to achieve smoother surface tracking
techniques and proper force exertion to the human.

VI. EXPERIMENTS

A. Setup Description

In order to test and analyze the performance of the pro-
posed approach, an experimental setup is used that includes
a Kinect-v2 Camera providing depth data for the back region
of a subject, as shown in Fig. 2 (c) , with accuracy analyzed
in [25]. The segmentation of the subjects’ back region is
implemented, for the purposes of this experiment, by simply
applying a Cartesian filter to the Point-Cloud data. The setup
also includes a 5 DOF Katana arm by Neuronics, [26] and a
HC-SR04 Ultrasonic Range Finder (range 2cm−400cm with
accuracy 0.3cm) for the distance measurements between the
robot end-effector and the object or the subject.
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Fig. 4: Experiment on a female subject. (a) Adaptation of the sinus-
oidal path on the curved surface of a female subject represented with
PointCloud data. (b) A zoomed aspect of the experiment depicting
in more detail the adaptation of the path. (c) A more clear view of
the zoomed path without the PointCloud.

Fig. 5: Evolution of the object’s rotations, the reference trajectory
orientation and the executed robot end-effector orientations, during
the first experiment that involves the static rectangular object.

Fig. 6: Evolution of the object’s rotations, the reference trajectory
orientation and the executed robot end-effector orientations, during
the second experiment that involves the moving rectangular object.

Fig. 7: Perpendicular distance between the Katana end-effector and
the experimental subject.

B. Validation Strategy and Results

The experiments conducted include the following of a
simple sinusoidal path, keeping simultaneously a constant
distance and perpendicular relative orientation to the surface
of a rectangular box, that represents a rigid body. Also, the
same experiments are conducted on a female subject’s back
region.

For the first and the second experiment we employ a rigid
and rectangular object for the evaluation of the method (Fig.
3). In particular, we segment the side of the object facing
the camera as shown in Fig. 3(b). The reference orientation
of this planar segment is calculated with the same procedure
described in Section V, using in the calculations the total
amount of points constituting the front side of the object.
Since the chosen object is non-deformable, the calculated
orientation is used as ground-truth. Both the ground-truth
orientation and the on-line calculation of the reference pose
subject to the same camera accuracy constraints (e.g. errors
and noise) analyzed in [25].

During the first experiment the box is stationary Fig. 3(a),
whereas in the second experiment the box performs rotations
around y and z axes Fig. 3(c). Furthermore, for evaluation
purposes we used an initial set-up including the Katana robot
with the described distance sensor, since firstly this approach
doesn’t take into account the model of the robot and secondly
the soft manipulator is currently under construction as shown
in Fig. 1. In the third experiment, a female is involved (Fig.
4). In this case, there is no ground truth data for total rotation
of the subject, since the back region is a non-planar and
deformable surface. This experiment was conducted, in order
to highlight the adaptability of the algorithm to different
users (a female subject with much thinner silhouette than
the object).

The blue arrows in Fig. 3 and 4 represent the normal vector
to the surface, whereas the green and red arrows represent the
tangential axes to the surface. In Fig. 4(a) a general aspect
of the experimental scene is shown, whereas in Fig. 4(b)(c) a
zoomed and more clear view of the same scene is depicted,
showing that the reference path is adapted to the subjects’
back region.

In Fig. 5, 6, the evolution of the object’s surface rotations
w.r.t. the robot base frame and the reference path orientation
are depicted. In Table I, the Mean Absolute Error of the
object’s rotations w.r.t. the reference path orientation are
presented in degrees, along with the mean perpendicular
distance between the end-effector and the experimental
subject. It is obvious, that the calculated reference path
manages to compensate with the object’s motion, while the
under-actuated robotic platform converges to the reference
path. The variance of the Mean Absolute Error is primarily
affected by the roughness of the object’s material.

Moreover, in all experiments the perpendicular distance
between the Katana end-effector and the experimental rect-
angular object is measured with the range-finder sensor and
is presented in Fig. 7. Based on these results, the proposed
method successfully keeps bounded distance taking into
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TABLE I: Mean Absolute Error in Orientation and Mean Distance

Roll (deg) Pitch (deg) Yaw (deg) Distance (cm)

Static Object 0.673±0.443 0.767±0.553 0.537±0.408 20.18±1.055
Moving Object 0.721±0.551 1.01±0.711 0.284±0.212 19.79±0.872

Mean Absolute Error of the calculated reference orientation w.r.t
the rotations of the object. The forth column presents the mean
and standard deviation of the perpendicular distances between the
Katana end-effector and the object.

account the noise inserted by the accuracy of the sensor and
the fact that the Katana manipulator is under-actuated for
this specific task and during the progress of the motion is
stressed to the limits of its dexterous workspace.

The mean time performance of the algorithm presented
in Section V over the frames of the experimental procedure
is 6ms (measured with Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz and 16Gb RAM.). The timing performance
of the algorithm is low, making the proposed approach
computationally efficient for on-line procedures.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an efficient algorithm for defining the
behavior of a robot’s end-effector, whose task is to interact
in a friendly way with moving and variably curved body
parts. Initially, the complexity of the problem is reduced
by using predefined washing paths on a 2D normalized
space (“Canonical” space). The washing path is tracked
by a navigation function-based controller, which guaranties
globally uniformly asymptotic stability. The extracted path
points are transformed firstly to the 2D Image space and
then to the Task space with two bijective transformations,
respectively. In particular, the first bijection includes affine
transformations, whereas for the necessary calculations of
the second transformation, we have used depth information
from a camera and applied eigenvalue decomposition to
the covariance matrix of the 3D points around a small
region of the body area. The proposed methods are validated
through real experiments on a rectangular rigid object and a
female subject by using a Kinect camera. The experimental
results show, that the calculated reference paths manage to
follow the motion and non-planar, deformable surface of the
subject’s back region.

For further research, we aim to ameliorate this meth-
odology in order to meet any soft robotic manipulation
special requirements. Furthermore, we will use paths learned
by demonstration of professional carers, in order to make
the bathing sequence more human-like. Image processing
techniques will also be adopted to increase the method’s
robustness, to filter the noise of the camera and overcome the
occlusions in the image, due to robot motion. Finally, another
aspect of the proposed approach is to design the controller
directly on the image space, to exploit in a more sophistic-
ated manner the visual feedback information coming from
the camera, to achieve for example avoidance of obstacles
induced by sensitive areas of the body (e.g. injuries) and to
integrate hybrid (force/position) control properties.
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