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ABSTRACT
In this paper, we present a new and improved synergistic approach
to the problem of audio-visual salient event detection and movie
summarization based on visual, audio and text modalities. Spatio-
temporal visual saliency is estimated through a perceptually inspired
frontend based on 3D (space, time) Gabor filters and frame-wise
features are extracted from the saliency volumes. For the auditory
salient event detection we extract features based on Teager-Kaiser
Energy Operator, while text analysis incorporates part-of-speech tag-
ging and affective modeling of single words on the movie subtitles.
For the evaluation of the proposed system, we employ an elementary
and non-parametric classification technique like KNN. Detection re-
sults are reported on the MovSum database, using objective evalua-
tions against ground-truth denoting the perceptually salient events,
and human evaluations of the movie summaries. Our evaluation
verifies the appropriateness of the proposed methods compared to
our baseline system. Finally, our newly proposed summarization al-
gorithm produces summaries that consist of salient and meaningful
events, also improving the comprehension of the semantics.

Index Terms— Visual saliency, auditory saliency, affective text
analysis, audio-visual salient events, movie summarization

1. INTRODUCTION

Summarization task refers to producing a shorter version of a video,
which contains all the necessary information required for context
understanding without sacrificing much of the original informative-
ness and enjoyability. Automatic summaries can be created with: 1)
key-frames, which correspond to the most important video frames
and represent a static storyboard, or 2) by video skims that include
the most descriptive and informative video segments. Movies con-
sist of visual, audio and textual streams, and many computational
models have been proposed to estimate their multimodal saliency
[1, 2, 3]. Moreover, movies contain a lot of semantic events, whose
modeling is not always easy employing only bottom-up and data-
driven techniques. In this paper, we deal with the prediction of
audio-visual salient events, meaning salient event estimation in a
multimodal stream. This task is closely related to visual saliency
estimation, however we show that the two additional modalities of
audio and text, are not only important but also necessary for produc-
ing informative and enjoyable movie summaries with smooth scene
transitions.

Designing a complete summarization system requires multi-
modal saliency models. The early methods for video skimming
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were mainly based on visual features such as color or motion [4]
and techniques from statistical pattern classification [5, 6, 7]. Meth-
ods for video synopsis are also based on a cost minimization [8, 9].
The most recent movie summarization systems usually employ mul-
timodal saliency models, which in addition to visual saliency they
also exploit auditory saliency and semantics. In [10], attention mod-
els for video summarization are used, i.e., motion, face, camera and
static attention models for visual attention and energy based features
for auditory saliency estimation, since loudness attracts people’s at-
tention. Both visual and audio feature extraction is performed in [11]
for the analysis of objects and events and consequently semantically
oriented video summarization. An audiovisual model is also used
in [12] so as to assist visual saliency in predicting eye movements
in dynamic conversations. For more general reviews about movie
summarization see also [1, 2, 13, 14].

Analysis of text to estimate affect or sentiment is a relatively re-
cent research topic that has attracted great interest with application
to numerous domains spanning from tweet analysis [15] to dialogue
systems [16]. Text can be analyzed at different levels of granularity:
from single words to entire sentences. In [17], the affective ratings
of unknown words were estimated using the affective ratings for a
small set of words (seeds) and the semantic relatedness between the
unknown and the seed words. A sentence-level approach was pro-
posed in [18] applying techniques from n-gram language modeling.

In this work, we present an extension of our baseline multimodal
saliency-based movie summarization algorithm [14]. In addition
to the proposed spatio-temporal visual saliency model described in
Sec. 2, we introduce new frameworks for both the audio and text
modality so as to enhance the detection of salient events. Section 3
describes the audio features which are based on energy tracking and
other perceptual features that correlate to the human perception of
sound. In Sec. 4 we present the text analysis which is based on part-
of-speech tagging and affective modeling of single words found on
the subtitles of the movies. The problem of audio-visual salient event
detection is approached using a machine learning technique, Sec. 5,
where a frame-wise classification of salient vs. non salient events
is taking place in order to validate the efficiency of the proposed
algorithms. In Sec. 5 we also introduce a new movie summariza-
tion algorithm which resulted, according to subjective evaluations,
to both informative and enjoyable summaries.

2. VISUAL ANALYSIS

Our energy-based model for spatio-temporal visual saliency estima-
tion is more relevant to the cognition-inspired saliency methods,
based on Koch & Ullman theory [19], as it was implemented in
[20]. It uses biologically plausible spatio-temporal filters, like ori-
ented 3D Gabor filters, in order to extract visual features. In a first
phase the initial RGB video volume is transformed into Lab space
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Fig. 1: Example frames of the four energy volumes computed using our vi-
sual frontend on the Lord of the Rings.

and split into two streams: luminance and color stream. We use
the CIE-Lab color space because in this space luminance and chro-
maticity components can be well separated while it has the addi-
tional property to be perceptually uniform [21]. In the resulting
video volume ILab(x, y, t) the L∗ component expresses the per-
ceptual response to luminance, while a∗, b∗ describe differences be-
tween red-green and yellow-blue colors respectively. We have also
employed an approach that models the double color opponent cells
that exist in primary visual cortex V1 and has been used in color
constancy applications [22]. Instead of using the R,G,B compo-
nents, we use the chromaticity components (a∗, b∗) that indirectly
include the R − G and B − Y differences. The resulting color
stream that expresses both the color intensity and contrast is given
by: Cab(x, y, t) =

√
(a∗(x, y, t))2 + (b∗(x, y, t))2. Then follows

the filtering process [23] which is applied both on luminance and
color stream channels.
3D Gabor Filtering: For the filtering process of the video’s lumi-
nance we choose to use oriented Gabor filters in a spatio-temporal
version, due to their biological plausibility and their uncertainty-
based optimality [24, 25]. Specifically, we apply quadrature pairs
of 3D (spatio-temporal) Gabor filters with identical central frequen-
cies and bandwidth. These filters can arise from 1D Gabor filters
[24] in a similar way as Daugman proposed 2D Oriented Gabor Fil-
ters [26]. An 1D complex Gabor filter consists of a complex sine
wave modulated by a Gaussian window. Its impulse response with
unity norm has the form:

g(t) =
1√
2πσ

exp

(
− t2

2σ2

)
exp(jωt0 t) = gc(t) + jgs(t). (1)

The above complex filter can be split into one odd(sin)-phase (gs(t))
and one even(cos)-phase (gc(t)) filters, which forms a quadrature
pair filter.

The 3D Gabor extension [27] yields an even (cos) 3D Gabor
filter whose impulse response is:

gc(x, y, t) =
1

(2π)3/2σxσyσt

exp

[
−

(
x2

2σ2
x

+
y2

2σ2
y

+
t2

2σ2
t

)]

· cos(ωx0x+ ωy0y + ωt0 t), (2)

where ωx0 , ωy0 , ωt0 are the spatial and temporal angular center fre-
quencies and σx, σy, σt are the standard deviations of the 3D Gaus-
sian envelope. Similarly for the impulse response of odd (sin) filter
which we denote by gs(x, y, t).

The 3D filtering is a time consuming process due to the com-
plexity of all required 3D convolutions. However, Gabor filters are
separable [27], which means that we can filter each dimension sepa-
rately using an impulse response having the form of (1). In this way,
we apply only 1D convolutions instead of 3D [23].

For the spatio-temporal filterbank we used KG = 400 Gabor
filters (isotropic in the spatial components) which are arranged in

five spatial scales, eight spatial orientations and ten temporal fre-
quencies. The spatial scales and orientations are selected to cover
a squared 2D frequency plane in a similar way to the design by
Havlicek et al. [28]. We also use ten temporal Gabor filters, five at
positive and five at negative center frequencies due to the 3D spec-
trum symmetries. For the static (only spatial) filterbank we use the
same spatial parameters with zero temporal frequency (LG = 40
filters). The spatio-temporal filterbank can detect motion activities,
while the static one can find significant image regions which may
attract human attention such as specific texture or strong edges.

Postprocessing: After the filtering process, for each filter i we ob-
tain a quadrature pair output (y3D

s (x, y, t), y3D
c (x, y, t)) which cor-

responds to the even- and odd-phase 3D filter outputs. For each
filter we can compute the total Gabor energy E(·), which is in-
variant to the phase of the input, by taking the sum of the squared

energy of these two outputs: E(y3D
s , y3D

c ) =
(
y3D
s (x, y, t)

)2
+

(
y3D
c (x, y, t)

)2
.

After applying the above energy operator to each filter we
have KG energy volumes for the spatio-temporal part (STEi) and
LG for the static part (SEi). In order to form one volume for
each of these independent filtering parts we apply the first step of
Dominant Component Analysis [28, 29] both to spatio-temporal
and static energy volumes. Specifically, for each voxel (x, y, t)
we keep its maximum value between all existing energy volumes:
STDE = max1≤i≤KG STEi, SDE = max1≤i≤LG SEi. In-
stead of keeping only the dominant energy we can keep the NB = 6
highest spatio-temporal energies for each voxel and afterwards
compute the min value of them. Finally, we have two raw energy
volumes for each luminance and color stream: spatio-temporal
dominant energy STDE (see Fig. 1b,d) and static dominant energy
SDE (see Fig. 1c,e). These energy volumes can become further
smoothed by applying a temporal moving average (TMA). Thus,
each frame energy is computed as the mean inside a temporal win-
dow which includes NT successive frames whose total duration is
1 second. In this way, we integrate visual events which take place
close in time, in a similar way that humans are believed to do.

The produced energy maps can be mapped to a 1D map giving
time-varying saliency features. We employed a simple 3D to 1D
mapping by taking the mean value for each 2D frame slice of each
3D energy volume. The resulting temporal sequence of feature vec-
tors, each corresponding to the 4 different TMA energies, along with
its first and second time derivatives comprise the feature set for the
visual modality.

3. AUDIO ANALYSIS

The issue of saliency computation in the audio stream is approached
as a problem of assigning a measure of interest to audio frames,
based on spectro-temporal cues. The importance of amplitude and
frequency changes for audio saliency has motivated various studies
where subject responses are measured with respect to tones of mod-
ulated frequency or loudness [30, 31, 32].

Extensive experimentation with different configurations, for
the analysis of the audio stream, leaded to an energy-based feature
set for the saliency-modeling of the audio stream, which was ap-
proached using the nonlinear differential energy operator proposed
by Teager [33] and further investigated by Kaiser [34]. The Teager-
Kaiser Energy Operator (TEO), which can track the instantaneous
energy of a source, is given by

Ψ[x] = ẋ2 − xẍ, where ẋ = dx/dt. (3)

Since Teager energy is only meaningful in narrowband signals, the
application of the operator is preceded by bandpass filtering; specif-
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ically filtering of the signal with a mel-spaced Gabor filterbank con-
siting of 25 filters with 50% overlap of the successive filters [35].
The energy features that are used in this paper are the mean instan-
taneous energies derived for each Gabor filter.

Moreover, we computed two additional perceptual features
which are assumed to correlate to the functioning of the human
auditory system. The first one is roughness proposed in [36] and
reported to be associated with human attention [37]; which is an
estimation of the sensory dissonance of a sound. It expresses a sense
of roughness of a sound due to rapid fluctuations in its amplitude and
is related to the beating phenomenon whenever pairs of sinusoids
are close in frequency. An estimation of roughness can be given
by computation of the peaks of the spectrum followed by averaging
among all possible pairwise combinations of peaks [38]. In this
paper, we use a variant model that uses a more complex weighting
[39]. The second perceptual feature used in this work is loudness,
also associated to attention, which corresponds to the perceived
sound pressure level. For the computation of loudness the model
proposed in [37] was used, which is based on the calculation of the
excitation on the basilar membrane taking into account phenomena
such as the temporal frequency masking.

4. AFFECTIVE TEXT ANALYSIS

In this work, we extend the text analysis of [3] and we include af-
fective modeling of single words extracted from the subtitles infor-
mation available with each movie distribution. Our baseline text
analysis is summarized in the following steps: (i) extraction of the
movie transcript from the english subtitle file, ii) part-of-speech tag-
ging, (iii) audio-text alignment, and (iv) assignment of a text saliency
value to each frame based on the parser tag assigned to the corre-
sponding word.

A word w is characterized regarding its affective content in a
continuous (within the [−1, 1] interval) space consisting of three di-
mensions (affective features), namely, valence (v), arousal (a), and
dominance (d). For each dimension, the affective content of w is es-
timated as a linear combination of its semantic similarities to a set of
K seed words and the corresponding affective ratings of seeds (for
the corresponding dimension), as follows [18]:

û(w) = λ0 +

K∑
i=1

λi u(ti) S(ti, w), (4)

where t1...tK are the seed words, u(ti) is the affective rating for
seed word ti with u denoting one of the aforementioned dimensions,
i.e., v, a, or d. λi is a trainable weight corresponding to seed ti.
S(ti, w) stands for a metric of semantic similarity between ti and
w. This model is based on the assumption that “semantic similar-
ity can be translated to affective similarity” [18]. The S(.) metric
can be computed within the framework of (corpus-based) distribu-
tional semantic models that rely on the hypothesis that “similarity
of context implies similarity of meaning” [40]. A contextual win-
dow of size 2H+1 words is centered on the word of interest wi and
lexical features are extracted. For every instance of wi in the (text)
corpus the H words left and right of wi formulate a feature vec-
tor xi. For a given value of H the semantic similarity between two
words, wi and wj , is computed as the cosine of their feature vectors:
QH(wi, wj) =

xi.xj

||xi|| ||xj || . The elements of feature vectors can be

weighted according to various schemes.

In this work, the context-based QH metric was applied with
H = 1 over a web-harvested corpus, while the contextual features
were weighted using a binary scheme. The word affective ratings
were estimated using as seeds 600 entries selected from the ANEW
lexicon [41]. More details about the corpus, seed selection, and the

training of λ weights can be found in [18].

5. MACHINE LEARNING EVALUATION AND MOVIE
SUMMARIZATION ALGORITHM

MovSum Database: We have evaluated our framework on seven
movies from the Movie Summarization (MovSum) database [14],
which consists of half-hour continuous segments (three and a half
hours in total), namely: “Beautiful Mind” (BMI), “Chicago” (CHI),
“Crash” (CRA), “The Departed” (DEP), “Gladiator” (GLA), “Lord
of the Rings” (LOR) and the animation movie “Finding Nemo”
(FNE). The movies were annotated by three expert viewers con-
sidering both monomodal and multimodal levels of saliency (incl.
audio (A), visual (V) and audio-visual sensory (AV) level) and
the sensory/semantic (AVS) level. Additionally, they were manu-
ally segmented into shots and scenes. The ground-truth framewise
saliency, used for evaluation purposes, consists of frames that have
been labeled salient by at least two labelers.

Machine Learning Approach: For the multimodal salient event de-
tection we follow a simple classification approach, instead of ex-
perimenting with various fusion schemes as in [14]. The resulting
audio-visual feature vectors (27 audio and 4 visual features) along
with its first and second time derivatives (computed over 3 and 5
frames respectively) and the 4 text features, comprise the feature set
for the classification process, where we employ a K-Nearest Neigh-
bor Classifier (KNN); following the same framework as in [42, 14].
Specifically, we consider framewise saliency as a two-class classifi-
cation problem, and a seven fold cross-validation is adopted by us-
ing the labeled frames from six movies and tested on the seventh.
We also define a confidence score for each classification result, thus
each frame, in order to obtain results for various compression rates.

5.1. Movie Summarization Algorithm
The new algorithm extends our baseline movie summarization algo-
rithm [14] and it includes new features intending to make the sum-
maries smoother, regarding audio and video transitions, while also
adding better comprehension concerning the semantics.

For the creation of the summaries we use the classifier’s out-
put, which consists of the frames classified as salient. Thus, we use
the segments/frames (chosen based on high confidence scores), as
an indicator function curve that marks the most salient audio-visual-
text events. The preprocessing steps that are followed are: 1) Me-
dian filtering of the audiovisual confidence scores CAV , so as to
obtain a smoother and coarse AV attention curve, followed by scene-
based normalization (the boundaries of the scenes are extracted from
the manual segmentation of the database). 2) The text confidence
scores CT that were only trained on speech segments are used; while
frames without speech are set to zero. 3) Late fusion of the Audio-
Visual and Text modalities is performed, where a weight w for the
text stream is chosen: CAV T = CAV + w · CT . In this paper, we
experimentally set the text weight to be w = 0.10 or w = 0.20.

In order to create summaries that do not include only salient
events but “meaningful” as well, we perform boundary correction
of the extracted events. This is achieved using ideas from math-
ematical morphology and specifically, the reconstruction opening:
ρ−(M |X) � connected components of X intersecting M [43]. In
such a way, we can extract large-scale components by detecting only
smaller markers inside them. First, we use the boundaries of the
manually segmented shots and then the single-word level bound-
aries of the automatically aligned text. More specifically, we use as
marker M the salient events that are selected to be included in the fi-
nal summary and as reference X the shots and the single words. The
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Fig. 2: Objective and subjective evaluation results by 20 humans. a) Saliency classification ROC curves for the different modalities. b) Informativeness and
c) enjoyability results of AVT summaries at (×5) rate, were FUS denotes the best summary obtained using fusion methods as presented in [14], FF denotes
“fast-forward”, while the two newly produced summaries are differentiated by the weight used in the text modality.

reconstruction is regarded extremely significant for the performance
of the summaries, as shown on the results of the human evaluation,
especially for the comprehension of the semantics and the creation
of smoother transitions [42].

The steps of the summarization algorithm are the following: a)
sorting of the confidence scores so as to define the frames/segments
that will be included in the summary, according to the number of
frames needed for a five times (×5) faster summary than real time.
b) Shot reconstruction, and c) “speech reconstruction” in order to
assure that no words will be “clipped”. d) The final step of the algo-
rithm includes a process based on [3] for the combination of frames
into segments. Thus, segments that are shorter than N frames are
deleted from the summary, while neighboring segments selected for
the summary are merged if they are less than K frames apart, where
N = 7 and K = 20 (experimentally tuned). e) The final render-
ing of the selected segments into a summary is performed by using
simple overlap-add on video frames to tailor together neighboring
segments.

5.2. Results and Discussion
Objective Evaluation: Figure 2a shows ROC curves for saliency
classification, while changing the percentage of frames in summary
(100% percentage corresponds to perfect recall score), for audio on
audio (A-A), visual on visual (V-V), audiovisual on audiovisual (AV-
AV) and audiovisual-text on audio-visual-semantics (AVT-AVS) an-
notation. The results for the proposed method (AV-AV and AVT-
AVS) are produced using the new summarization algorithm, while
for the A-A and V-V results we use the sorted median filtered confi-
dence scores. For the baseline method the results are shown for the
sorted RAW confidence scores as presented in [14].

We note that the proposed system outperforms the baseline
movie summarization system both when evaluating each modality
individually as well as when two (AV) or three (AVT) modalities
are combined. However, greater improvement can be seen for the
monomodal salient event detection than the multimodal one. Re-
garding the proposed system best performance is accomplished for
the audio modality (A-A evaluation). Moreover, we mark that the
audiovisual modality (AV-AV) manages to yield a quite as high score
as well. We have to highlight the fact that the classification approach
used is a framewise detection task, while the human annotators
marked salient events as segments and not as single frames.

Subjective Evaluation of Movie Summaries: Summaries obtained
five times faster than real time were subjectively evaluated by 20
users in terms of informativeness and enjoyability on a 0–100%
scale similarly to [14]. In total, four summaries were evaluated,

namely: two summaries based on the proposed method using dif-
ferent weights for the text modality w = 0.1 or 0.2, our best
performing summary produced using the fusion methods presented
in [14] (the summaries were chosen based on enjoyability), and a
fourth fast-forward like summary, which was created by subsam-
pling 2 seconds every 10 seconds of the original clip. The subjects
participating in the evaluation first viewed the original half-hour
clip, for each of the movies, followed by the four summaries (ca. 6
min each) in randomized order.

As shown in Fig. 2b and 2c the proposed method performs much
better in terms of both metrics compared to the best performing
summaries based on fusion and the fast-forward like summaries;
specifically up to 80% for informativeness and 90% for enjoyabil-
ity. Regarding the proposed method we marked that the assignment
of different weights in the text modality is important and it relates to
the movie genre, usually a smaller weight is needed for a dialogue
based movie than an action movie. Additionally, the reconstruction
of shots and speech segments contributed a lot to the enjoyability,
since it resulted to smoother transitions. Note that the subjects that
participated in this evaluation were different than the ones in [14],
that is why the results of the fusion based summaries may vary. Re-
garding the FF summaries none of the subjects realized that they
were intentionally added for evaluation (as a naive approach indi-
cating a lower bound for our metrics); and in this way we managed
to show that a uniform sampling of movie frames is not adequate in
order to create an acceptable summary.

6. CONCLUSIONS
A multimodal approach was adopted for perceptually salient event
detection with application in movie summarization. We showed that
our newly proposed spatio-temporal frontend for visual saliency es-
timation can be further improved when incorporating the two ad-
ditional modalities of audio and text. Our experimental evaluation
using a simple classifier confirms the adequacy of the proposed al-
gorithms. The combined framework shows to be promising as it
outperforms the baseline system over the saliency annotated Mov-
Sum database. The subjective evaluation of the automatic created
movie summaries quantitatively verifies the appropriateness of both
methods and our newly proposed movie summarization algorithm.
For future work, we intend to further refine our methods and the
movie summarization algorithm automating the weight selection for
the text modality as well as the segmentation of shots and scenes.
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