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Abstract
Recently a “Bag-of-Audio-Words” approach was proposed [1]
for the combination of lexical features with audio clips in a mul-
timodal semantic representation, i.e., an Audio Distributional
Semantic Model (ADSM). An important step towards the cre-
ation of ADSMs is the estimation of the semantic distance be-
tween clips in the acoustic space, which is especially challeng-
ing given the diversity of audio collections. In this work, we
investigate the use of different feature encodings in order to ad-
dress this challenge following a two-step approach. First, an
audio clip is categorized with respect to three classes, namely,
music, speech and other. Next, the feature encodings are fused
according to the posterior probabilities estimated in the previ-
ous step. Using a collection of audio clips annotated with tags
we derive a mapping between words and audio clips. Based
on this mapping and the proposed audio semantic distance, we
construct an ADSM model in order to compute the distance be-
tween words (lexical semantic similarity task). The proposed
model is shown to significantly outperform (23.6% relative im-
provement in correlation coefficient) the state-of-the-art results
reported in the literature.
Index Terms: Bag-of-audio-words, audio representations, fea-
ture space fusion, lexical semantic similarity.

1. Introduction
The creation of lexical descriptions for auditory perceptual ex-
periences is a challenging task [2]. For the human perceptual
system the auditory stimuli convey mainly low-level informa-
tion [3] while lexico-semantic descriptions are processed and
modeled via high-level cognitive processing [4]. In [5], acous-
tic and semantic models are defined as multidimensional spaces
aimed for the representation of sounds and words, respectively.
Obtaining crossmodal representations is desirable, especially
for applications such as information retrieval systems [4]. We
argue that a broader application of acoustic-semantic maps and
representations could be the development of cognitive models
motivated by evidence that multiple modalities contribute to the
acquisition and representation of semantic knowledge [6], [7].

Query-by-example (QBE) constitutes one of most widely-
used techniques in the framework of music information retrieval
(MIR). Audio similarity is at the core of QBE based on fea-
tures extracted from the audio signal, e.g., Mel-Frequency Cep-
stral Coefficients (MFCCs). For the case of similarity computa-
tion between music clips, numerous music-related features have
been exploited such as timbre and rhythm. For example, in [8]

distributions of timbre-related features were used for comput-
ing the Kullback-Leibler distance between songs. In [9], spec-
tral features and clustering algorithms were investigated for the
task of music genre classification. For most MIR applications,
the computation of similarities relying solely on acoustic dis-
tances was observed to exhibit a number of undesirable prop-
erties, e.g., some clips were found to serve as hubs exhibiting
high similarities with the majority of the collection clips [10].
It was suggested that this problem can be alleviated via the use
of other knowledge sources such as textual content (tags) that
is associated with the audio clips. Towards this direction, the
joint modelling of the audio content and textual artist names
was proposed in [11] with application to a variety of tasks in-
cluding artist/song/tag prediction and the identification of simi-
lar songs/artists.

The development of crossmodal Distributional Semantic
Models (DSMs) constitutes a recent research effort, focusing
mainly on the fusion of textual and visual features [12]. The ex-
ploitation of audio-based features for building DSMs is a less-
researched area, which is essential for the greater vision of truly
multimodal DSMs. Regarding audio, a step towards this di-
rection was the proposal of the “bag-of-audio-words” (BoAW)
model motivated by the text-based “bag-of-words” model. One
of the first applications based on the BoAW model was pre-
sented in [13] for the task of content-based video copy detection
followed by [14] for multimedia event detection. The creation
of audio-based DSMs was proposed in [1] and extended in [15]
by combining both auditory and linguistic features.

In this work, we adopt the baseline BoAW model and we
propose an extension via the fusion of feature spaces. An audio
clip is categorized with respect to three classes, namely, music,
speech and other. Next, the feature spaces are fused according
to their posterior probabilities. Using a collection of audio clips
annotated with tags we derive a mapping between words and
audio clips. The proposed fusion is evaluated for the task of
semantic similarity computation between words, outperforming
the state-of-the-art results reported in the literature.

2. System description
In this section, we describe the main system components for
constructing acoustic-semantic maps and representations. Each
clip is associated with metadata consisting of textual tags
aimed for the description of the audio content, e.g., audio clip
“172712.wav” is described by the following set of tags: “ani-
mal”, “farm”, “sheep”. A description of the audio data and their
respective tags is provided in Section 4. The BoAW system’s
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Figure 1: System overview depicting the creation of: 1) audio-word vocabulary, 2) audio representations, and 3) tag representations.

overview, which will be described in detail, is also presented
graphically in Figure 1. First, the audio-word vocabulary is cre-
ated by following the process described in Section 2.1. Then,
the window encodings are computed and fused for obtaining the
representation of an audio clip (see Section 2.2). Subsequently,
tag representations are derived, as indicated in Section 2.3.

2.1. Audio-word vocabulary

All audio clips are converted to WAV format and resampled at
44.1 kHz. Then, a subset of the collection is randomly selected.
In this work, we use a subset including 400 clips as in [1]. Each
clip of the subset is partitioned in partially overlapping windows
of fixed length and a feature vector is extracted from each win-
dow. The extracted features are described in Section 3. Hence,
every audio clip is represented by a set of vectors depending
on its length. Next, all vectors are clustered by applying the k-
means algorithm and the k centroids of the returned clusters are
considered as the audio words of the audio-word vocabulary.

2.2. Audio representations

In this section, we describe two schemes used for representing
the semantics of audio clips with respect to the audio-word vo-
cabulary described in Section 2.1.

2.2.1. Hard encoding

Given an audio clip, the same process for feature extraction is
followed as in Section 2.1. For each window ot, a feature vec-
tor xt ∈ Rd is computed (where d is the dimensionality of the
feature space) and associated with the audio-word vocabulary.
This is performed by assigning xt to the closest audio word
(centroid) using the Euclidean distance. The xt vector is en-
coded as a k-dimensional vector et containing one element set
to 1 and k − 1 elements set to 0 (one-hot representation):

et = (0, ..., 1, 0, ..., 0). (1)

The non-zero element corresponds to the closest audio word.
An entire audio clip is represented by summing the vectors com-
puted for the respective windows. Given a collection consisting
of M clips, this process results in a M × k matrix.

2.2.2. Soft encoding

Another way to calculate the encoded vector et is to use a soft
version of the previous technique, that is more robust to noisy
values. Here, we present a soft encoding scheme for formulat-
ing the et vector. The basic idea is to let more than one audio
words to contribute to the encoding of xt. This relaxation is ex-
pected to improve the robustness of the hard encoding scheme.
The contribution of the i-th audio word can be weighted via wi

ranging between 0 and 1, while the k weights sum to one. Con-
sider the i-th audio word, i.e., the centroid of cluster ci. Assum-
ing that the feature values corresponding to ci follow a Gaus-
sian distribution, we compute the respective meanµi ∈ Rd and
variance σ2

i ∈ Rd. The weight wi is computed as:

wi =
p(ci|xt)∑k
j=1 p(cj |xt)

, (2)

and

p(cj |xt) =
p(xt|cj)p(cj)

p(xt)
=

p(cj)e
− 1

2
h2
tj

(2π)d/2|Σ|1/2p(xt)
, (3)

where htj stands for the Mahalanobis distance between xt and
cj , p(cj) denotes the a-priori probability of cluster cj , Σ is
the covariance matrix and p(.) denotes probabilities computed
via maximum likelihood estimation. We have assumed that Σ
is diagonal, so, tying this matrix across all classes is equivalent
with using the Mahalanobis distance. Hence, we derive:

wi =
p(ci)e

−h2
ti∑k

j=1 p(cj)e
−h2

tj

. (4)

The feature vector xt is described by a k-dimensional vector

e
′
t = (w1, w2, ..., wk), (5)

where
∑k

i=1 wi = 1.

2.3. Tag representations

The representation of a tag is computed by averaging the rep-
resentations of the clips having this tag in their descriptions.
As every audio representation is created with respect to k au-
dio words, a tag representation will be a vector with length k.
For a collection of audio clips with T (unique) tags this results
in a T × k matrix. Then, Positive Pointwise Mutual Informa-
tion (PPMI) weighting is applied to the matrix for obtaining
more appropriate representations [16]. In addition, dimension-
ality reduction via Singular Value Decomposition (SVD) can be
performed.

3. Fusion of feature spaces
Various feature sets have been proposed in the literature for
a variety of audio signal processing applications [17], [18].
MFCCs and their temporal derivatives are the most common
and extensively used features for all types of audio signals
(speech, music, generic audio), however there are many others
that can be exploited in order to represent a sound depending
on its nature. For example features such as chroma [19], spec-
tral flux, zero-crossing-rate, spectral centroid, etc. [20] have
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shown promise for the description of musical signals. The dis-
crimination of speech vs. non-speech has been investigated us-
ing a variety of feature representations, e.g., Linear Prediction
Coefficients (LPC), Short-Time Fourier Transform STFT, mod-
ulations etc. [21], [22], [23]. Unlike MFCCs, most of these
features do not work universally for all genres of audio sounds,
although some intuition can be gained from the literature on the
relevance of these features for speech, music and generic au-
dio classification tasks [24]. It is necessary to include feature
representations that are able to describe, discriminate and dis-
tinguish all audio genres. That is why, we experimented with
three different feature spaces defined as follows:

• S1: 13 MFCCs (concatenated with spectral energy), the
1st and 2nd order derivatives (39 features in total).

• S2: F0 feature.

• S3: chroma features, spectral flux, zero-crossing-rate,
spectral centroid, brightness, spectral spread, spectral
skewness, spectral kurtosis, roll-off (85% threshold),
roll-off (95% threshold), spectral entropy, spectral flat-
ness, roughness, irregularity, inharmonicity (27 features
in total).

Since not all feature sets are equally relevant for each audio
genre (e.g., S2 is more relevant for speech, while S3 for music),
we apply weighted fusion of the features spaces, where the
weights are estimated from the posterior probabilities of a
3-class audio genre classifier as described next.

Audio-word vocabulary creation: For each feature space, an
audio-word vocabulary is built following the process described
in Section 2.1. This process results in three vocabularies
denoted as V1, V2, and V3 containing k1, k2, and k3 audio
words corresponding to S1, S2, and S3, respectively.

Genre classification: An audio clip q is categorized into
one of the following classes: 1) “music”, 2) “speech”, and 3)
“other” according to the posterior probabilities of a classifier.
Here, we trained a classifier based on Support Vector Machines
with linear kernel, using pyAudioAnalysis Python library [25].
The audio data for the training are presented in [26].

Encoding: The goal here is to represent an audio clip, q,
in the fused S1, S2, and S3. The clip q is partitioned in partially
overlapping windows of a fixed size. For each window ot a
feature vector is computed with respect to Sj , j = 1, 2, 3. For
each space Sj an encoding ejt ∈ Rkj is computed according
to (1). The encoded representation for each window of q is
computed as the weighted concatenation of the three encodings,
i.e.,

e
′′
t = (u1e

1
t , u2e

2
t , u3e

3
t ), (6)

where
∑3

i=1 ui = 1. The representation of an audio clip q is
computed by summing the e

′′
t representations of the respective

windows, as shown in Figure 1. The weights ui can be set ac-
cording to the classification of q to the “music”, “speech” or
“other” class.

4. Experimental and evaluation datasets
Experimental dataset: In total 4474 audio clips were down-
loaded from the online search engine Freesound [27] with
the use of the Freesound API. The clips were encoded in the
standard open source OGG format. These clips are not limited
to only music or speech but also include sounds like footsteps,
alarm notifications, street noise, etc. In general, these tend

Number of clips 4474 Number of tags 37203
Min duration 0.1s Avg tags per clip 8
Max duration 120s Avg clips per tag 40
Avg duration 16.6s Num of unique tags 940

Table 1: Statistics of clip collection.

to be short clips and all of them are provided with tags and
descriptions by the uploaders. Some basic statistics of the
clip collection are presented in Table 1. We retained the tags
that occur more than 5 times, while we discarded the tags
containing only digits.

Evaluation datasets: The task of human word semantic
similarity computation was used for evaluation. In order to
facilitate the comparison of the proposed approach with the
related works reported in the literature of ADSMs, we used the
MEN [28] and the SimLex [29] datasets. A limitation regarding
the use of MEN and SimLex is the rather limited number of
word pairs. In order to overcome this, we constructed two
datasets including hundreds of word pairs, as presented in
Table 2. The words of those pairs are included in the tag set of

Dataset MEN SLex CDSM PDSM
# word pairs 157 44 1084 785

Table 2: Evaluation datasets.

the clip collection described in Section 4. As groundtruth we
used the similarity scores that were automatically computed
via state-of-the-art CDSM and PDSM models presented in
[30]. These models achieve similarity scores that are highly
correlated with human ratings.

5. Experiments and evaluation results
The similarity score between two words is estimated as the co-
sine of their respective ADSM representations. The Spearman
correlation coefficient against groundtruth ratings was used as
the evaluation metric. In Section 5.1, we report the evaluation
results of various parameters of the baseline model. The perfor-
mance of the proposed fusion according to (6) is presented in
Section 5.2.

5.1. Parameters of baseline model

Here, we test the performance for each of the parameters of
the BoAW model. Results (correlation) are shown in Table 3
for the MEN, SLex, CDSM, and PDSM datasets. The first line
refers to the baseline proposed in [1] and the second line to the
results reported in [15]. The next lines correspond to our re-
implementations of the baseline model where the features of
space S1 were used. The proposed soft encoding scheme (see
Section 2.2.2) was found to yield comparable performance with
the hard encoding (see Section 2.2.1)1.

The overall performance with respect to all four datasets
equals to 0.365 correlation (computed by averaging the corre-
lation scores shown in bold that yielded the best performing
parameter settings).
Window length: We experimented with various values for
the window length (L) used for feature extraction ranging

1The reported results were obtained using the hard encoding
scheme. We focus on the larger datasets (i.e., CDSM, PDSM), where
improvements over 0.02 to 0.03 are statistically significant, while the
results for MEN, SLex are included for facilitating the comparison with
the literature.
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k SVD L MEN SLex CDSM PDSM
dim (ms)

Results reported in literature [1], [15]
100 60 250 0.402 0.233 n/a n/a
300 - 250 0.325 0.161 n/a n/a

Reimplementation of baseline
100 60 250 0.382 0.302 0.321 0.294
300 - 250 0.416 0.235 0.333 0.332

25 0.397 0.327 0.321 0.264
50 0.320 0.179 0.299 0.281

100 - 100 0.373 0.348 0.319 0.279
250 0.378 0.278 0.320 0.291
500 0.401 0.286 0.307 0.280

200 0.376 0.367 0.356 0.320
300 - 25 0.432 0.355 0.365 0.311
400 0.403 0.334 0.360 0.320
500 0.398 0.285 0.373 0.333
550 0.214 0.197 0.365 0.331

10 0.300 0.329 0.364 0.330
50 0.409 0.338 0.372 0.326
90 25 0.435 0.332 0.375 0.313

300 130 0.432 0.35 0.374 0.318
170 0.437 0.369 0.371 0.315
210 0.434 0.351 0.370 0.316

Table 3: Correlation results of different model configurations.

from 25 to 500ms. The window step (H) was increased (from
10 to 400ms) proportionally to the window length. Results
are reported for k=100. We observe that the performance is
relatively robust to a range of L values. The best correlation
achieved for CDSM is 0.321, for a 25ms window, while for
PDSM is 0.291 for a 250ms window2.

Auditory dimensions: We experimented with different
values for the auditory dimensions, i.e., the parameter k in
k-means. The values are ranging from 100 to 550. Window
length of 25ms is used with a 10ms update. As we see in Table
3, the top performance is achieved for k=500 for both CDSM
and PDSM, i.e., 0.373 and 0.333, respectively.

SVD dimensions: We also experimented with the SVD
dimensions regarding the dimensionality reduction of the
matrix of tag representations (see Section 2.3). The model’s
performance is tested for SVD dimensions ranging from 10 to
210 with a step of 40. Window length of 25ms is used with a
10ms update and k=300. As we see in Table 3, dimensionality
reduction slightly improves the results, i.e., from 0.365 to 0.375
for CDSM and from 0.311 to 0.313 for PDSM when reducing
from k=300 to 90 dimensions.

5.2. Fusion of feature spaces
Regarding the fusion scheme described in Section 3 we used
the weights presented in Table 4 according to the classifica-
tion result. These weights were selected after performing an
exhaustive search using held out data. The three feature spaces
were computed using window length of 250ms with a 100ms
update. All three of audio vocabularies are of the same size
(k1=k2=k3=k). In Table 5, we report the evaluation results
for the fusion of the three feature spaces (S123) along with the

2As the window length increases, the number of feature vectors
(used for clustering) per audio clip decreases. So, a good practice for
the building of the audio-word vocabulary would be to adjust the k pa-
rameter to the window length.

Clip categorized as u1 u2 u3

Music 0.3 0.2 0.5
Speech 0.8 0.2 0.0
Others 0.3 0.0 0.7

Table 4: Weights for the fusion of the three feature encodings.

Feature k SVD MEN SLex CDSM PDSM
Space dim
S1 0.416 0.235 0.333 0.332
S2 - 0.308 0.313 0.269 0.248
S3 0.418 0.205 0.278 0.315
S123 300 0.468 0.387 0.388 0.382
S1 0.436 0.209 0.283 0.320
S2 90 0.302 0.34 0.275 0.26
S3 0.422 0.252 0.343 0.337
S123 0.480 0.374 0.402 0.401
S1 0.457 0.24 0.298 0.309
S2 - 0.304 0.334 0.283 0.259
S3 0.423 0.300 0.384 0.343
S123 400 0.462 0.437 0.404 0.379
S1 0.427 0.317 0.375 0.331
S2 90 0.314 0.351 0.278 0.254
S3 0.46 0.225 0.293 0.302
S123 0.477 0.407 0.416 0.407

Table 5: Correlation performance of feature space fusion S123

vs individual encodings S1, S2, S3, (L=250ms).

performance of the individual spaces (S1, S2, and S3). We ob-
serve that the proposed fusion yields higher performance than
the individual spaces. For example, we achieve 12% relative
improvement in correlation for MEN, 23.6% for SLex, 16.5%
for CDSM, and 15.1% for PDSM (for k = 300, without apply-
ing SVD). Regarding the individual spaces, there is not a clear
winner since S1 and S3 appear to achieve comparable perfor-
mance (on average). The overall performance for the two large
datasets (CDSM, PDSM) is 0.412 correlation (when reducing
from k=400 to 90 dimensions).

6. Conclusions
In this work, we proposed the fusion of three feature spaces for
constructing an ADSM and estimating the semantic distance be-
tween audio clips in the acoustic space. The fusion was based
on the categorization of the content of each clip as “music”,
“speech” or “other”. Based on the mapping between words
and audio clips, this model was evaluated with respect to the
computation of semantic similarity between words outperform-
ing the baseline approach (up to 23.6% relative improvement in
correlation). Also, the role of various parameters of the base-
line model was investigated. It was found that the dimensional-
ity reduction (e.g., via SVD) of the feature space can improve
the performance. Regarding future work, we aim to experiment
with more feature spaces and evaluate the proposed model using
datasets in languages other than English. The long term goal of
this work is the development of fully multimodal semantic mod-
els integrating features extracted from text, audio, and images.
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