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ABSTRACT

In this paper, we present experiments on continuous time, continuous
scale affective movie content recognition (emotion tracking). A ma-
jor obstacle for emotion research has been the lack of appropriately
annotated databases, limiting the potential for supervised algorithms.
To that end we develop and present a database of movie affect, an-
notated in continuous time, on a continuous valence-arousal scale.
Supervised learning methods are proposed to model the continu-
ous affective response using hidden Markov Models (independent)
in each dimension. These models classify each video frame into one
of seven discrete categories (in each dimension); the discrete-valued
curves are then converted to continuous values via spline interpo-
lation. A variety of audio-visual features are investigated and an
optimal feature set is selected. The potential of the method is ex-
perimentally verified on twelve 30-minute movie clips with good
precision at a macroscopic level.

Index Terms— Emotion recognition, Multimedia databases,
Machine learning, Psychological emotion dimensions

1. INTRODUCTION

Emotion recognition has been a very active field in the past years,
since emotional information is highly valuable in applications rang-
ing from human-computer interaction to automated content delivery.
Emotion is of particular interest to content delivery systems that
provide personalized multimedia content, automatically extract
highlights and create automatic summaries or skims. The motiva-
tion behind using such technology is simple; humans pick content
(movies, music) based on its affective characteristics, therefore
a system designed to deliver it should have access to such data.
Furthermore, systems aimed at highlight extraction/summarization
require detailed representations of emotion in a scalable domain,
as well as information of the temporal dynamics of emotion. The
process of extracting such information is usually referred to as
emotion tracking and it is, ideally, a continuous-time continuous-
scale representation of the affective content of a movie. A suitable
continuous-scale representation is the dimensional representation
of valence-arousal. This two-dimensional representation is becom-
ing increasingly popular due to its flexibility and high descriptive
power, but also because the representation of emotion in a Euclidean
space allows for simpler general-purpose analysis and recognition
algorithms. In addition to the two-dimensional valence-arousal
model, the three-dimensional valence-arousal-dominance model (or
valence-arousal-tension for music) is also popular. In the field of
affective multimedia content analysis it has been shown that the
two-dimensional model is adequate to represent the range of emo-
tions experienced by viewers/listeners [1]. Adding time as a third

dimension, the affective content is represented as two continuous
signals, the combination of which can yield an emotional state at
any point within a multimedia stream.

There has been very little prior work towards emotion tracking
in movies [2], with most researchers instead focusing on the more
typical target of classifying large movie segments to a small number
of distinct categories [3]. In all cases research has focused in nar-
row domains, such as specific movie genres [4]. To our knowledge,
there has never been an attempt to apply supervised learning tech-
niques to continuous time emotion tracking in movies. A variety of
models have been used to classify affective content, including Gaus-
sian Mixture Models (GMMs), Hidden Markov Models (HMMs)
and Neural Networks (NNs). The features used are inspired by the
ones used to characterize the modalities that make up a movie; tim-
bre and rhythm to characterize music [5], color and motion to char-
acterize video [6], energy, short-time spectral envelope and prosodic
features to characterize speech [7].

One of the most important obstacles facing research in movie
emotion and more particularly emotion tracking is the lack of movie
databases annotated in an appropriate fashion, which probably ex-
plains the limited use of supervised techniques. As such, one of our
targets was the creation of such a database, containing emotional re-
sponses annotated as continuous curves. Section 2 describes the cre-
ation of such a movie database of affect. In Section 3, we implement
supervised learning techniques to train a classifier based on HMMs
in order to perform emotion tracking, using a variety of audio-visual
features. Experimental results are presented in Section 4 and con-
clusions in Section 5.

2. DATABASE

Before describing the database, it is important to distinguish between
three different “types” of movie emotion; intended, expected and ex-
perienced emotion. Intended emotion describes the emotional re-
sponse that the movie attempts to evoke in its viewers, experienced
emotion describes the emotion a user actually feels when watching
the movie, while expected emotion is the expected value of expe-
rienced emotion in a population. Some prior research has assumed
that intended and expected emotion match [2], however it is easy to
see that a movie can be unsuccessful in conveying the desired ef-
fect. In fact the degree of effectiveness with which a movie creates
the desired emotion in the viewer is a basic criterion humans use to
assess movie quality. Our system attempts to predict intended emo-
tion, however expected emotion is also desirable, since it can poten-
tially be used as a basis for personalized predictions of experienced
emotion [8]. This distinction is important for movie selection and
annotating procedure definition.



2.1. The data

This emotional database was created as part of a larger project aim-
ing at annotating movie data with affective, sensory and semantic
cues. This is a joint project developed by the Technical Univer-
sity of Crete and the National Technical University of Athens, de-
signed to be used by movie summarization systems such as that de-
scribed in [9]. The database consists of contiguous thirty-minute
video clips from twelve movies, featuring their visual, aural and tex-
tual data (subtitles). The movies selected are the ten winners of the
Academy Award for best picture for the years 1998-2007 and two
award winning animation films, namely; “Shakespeare in Love”,
“American Beauty”, “Gladiator”, “A Beautiful Mind”, “Chicago”,
“The Lord of the Rings: The Return of the King”, “Million Dol-
lar Baby”, “Crash”, “The Departed”, “No Country for Old Men”,
“Ratatouille” and “Finding Nemo”. Using the Academy Award win-
ners list is one way of ensuring the high quality of the movies by a
well-acknowledged criterion. One expected effect of this perceived
quality is the higher correlation between intended and expected emo-
tion; a high quality movie is expected to be successful in creating the
desired emotional experience.

2.2. Annotating Procedure

Annotation was performed on two levels; intended emotion was an-
notated by experts, while volunteers annotated their individual expe-
rienced emotion, from which we derive the expected emotion. The
annotations were performed using the FEELTRACE [10] emotion
annotation tool. The participants track the annotated emotional re-
sponse by moving the mouse pointer on a square two-dimensional
area representing the valence-arousal emotional space in real-time
as they were watching the movie. So far seven volunteers, 20-30
years old, two female and five male have performed the annotation
of experienced emotion. All annotators evaluated all clips, with five
(out of seven) performing the entire process twice for intra-annotator
agreement validation. Furthermore, annotators were presented with
their results (curves) and their interpretation in textual terms in or-
der to validate them and filled a questionnaire containing questions
regarding their prior knowledge of the movies, their opinion of the
movies and clips in regards to informativeness and enjoyability, their
own annotating performance and their own perception of some sus-
pected phenomena. Expected emotion is derived from the individual
experienced emotion annotations using a correlation-based rejection
scheme similar to that in [11] with particularly uncorrelated annota-
tions being rejected as outliers. Validation of the database was done
via analyzing the disagreement between users as well as between the
users and the intended emotion against the factors suspected of lead-
ing to such disagreement from their answers to our questionnaires.

2.3. Annotation Results

The result of each annotation is a pair of curves, one curve for
arousal and one for valence. These curves have values in the range
[−1, 1] for each dimension and are down-sampled to match the
video rate of 25 fps. Overall, including duplicates, 144 annotations
of the experienced emotion and 36 annotations of intended emotion
were produced, from which twelve annotations of expected emotion
and twelve annotations of intended emotion, one of each per movie
clip, were created. Fig 1 shows two-dimensional histograms of our
annotations for intended and expected emotion. The “V” shape is
very similar to that shown in [1] and [2] regarding the response
to emotional media, which is reasonable given the similar context.
Fig 2 shows some sample frames taken from the extremes of the

two emotional dimensions. Table 1 shows agreement statistics in
the annotations of experienced emotion. The low agreement is ex-
pected, since the participants annotate their own, very subjective,
affective response. It is worth comparing these statistics between
the two dimensions; distance metrics score higher for valence, while
correlation is higher for arousal. That means that agreement in rough
terms (“positive”, “exciting”) is higher for valence than arousal, yet
perception of the dynamics (“more”, “less”) is more uniform for
arousal. Factors expressing the viewer’s opinion alter agreement
as expected; for example, users that like a particular movie agree
more with each other and with the intended emotion. Expected and
intended emotion end up being highly similar, with correlation co-
efficients of 0.74 for arousal and 0.70 for valence. Before using for
classification, the expected and intended emotion curves are quan-
tized into seven equiprobable bins, using the cumulative distribution
function estimated via Parzen windows.
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Fig. 1. Joint valence-arousal histograms for (a) intended and (b)
expected emotion (darker signifies higher value).

Table 1. Inter-annotator agreement.
metric valence arousal

correlation 0.293 0.409
difference of means 0.288 0.411
mean abs. difference 0.445 0.513

Krippendoff’s α ordinal (7 levels) 0.308 0.152
Cohen’s k (7 levels) 0.035 0.029

(a) (b)

(c) (d)

Fig. 2. Sample frames for: (a) Low arousal, (b) High arousal, (c)
Very negative valence, (d) Very positive valence.

3. SYSTEM DESIGN

Emotion is a dynamic process that evolves rapidly through time. In
order to capture the dynamic nature of emotion, we choose to use
hidden Markov models that are popular in time series modeling and



have been shown to work to model emotion [3]. The next important
modeling issue is how to handle the two affective dimensions. As
shown in Fig 2, arousal and valence are correlated. A way to exploit
this relation would be either to model arousal and valence jointly,
e.g., using 2-D HMMs, or to use a series of classifiers, e.g., the out-
put of the arousal classifier being (one of) the input(s) of the valence
classifier. In this paper, we choose to use independent classifiers,
one for each dimension, which are also evaluated separately.

HMMs using various numbers of states and Gaussian compo-
nents were evaluated. We found that increasing the number of states
is more beneficial than increasing the number of Gaussian compo-
nents, particularly when using short-time spectral envelope audio
features, e.g. Mel Frequency Cepstral Coefficients (MFCCs), pre-
sumably because longer models better capture complex temporal in-
teractions between low level features and emotion. Results are pre-
sented next for recognizers that model each affective category with
a left-to-right HMM with 32 hidden states and a single Gaussian
distribution per state. Inter-category transitions are modeled with
a bigram language model that only allows transitions between ad-
jacent categories. Humans don’t change affective levels very fast
and the language model probabilities are assigned a large exponen-
tial weight (40) compared to the acoustic-visual features (1). This
weighting results also in smoother curves. The models are trained
using the Baum-Welch algorithm and classification is achieved via
the Viterbi algorithm (using the HTK speech recognition package).

A variety of features have been investigated broadly separated
into three categories/modalities: audio, music and video features.
The low level audio features tested were: fundamental frequency
(F0), intensity, log energy, signal zero crossings rate, spectral cen-
troid, spectral flux, spectral roll-off, line spectral pairs, chroma co-
efficients, MFCCs and Perceptual Linear Prediction (PLP) coeffi-
cients. Audio features were extracted via OpenSMILE [12] using a
200ms window and 40ms update. We also created a more extensive
feature set by extracting the aforementioned low level features using
a 40ms window, 10ms update, then calculating the statistics of these
samples (moments, derivatives, extrema) within a 200ms window
(and using the statistics as features). High level music features were
extracted using the MIR Toolbox [13], namely: tempo, pulse clarity,
event density, spectral flatness, rhythm irregularity and inharmonic-
ity. These features must be computed using a larger window in order
to be meaningful, so we used a window of 1sec, updated every 40ms.
The video features used were the statistics of color, intensity and
motion, extracted, per video frame (40ms), through the algorithms
described in [14]. All features were evaluated using three models of
increasing complexity (states, Gaussian components). The selected
feature set was created by hierarchically merging the best perform-
ing features. The rejected features did not necessarily perform inade-
quately, some were simply highly correlated with “more successful”
features and therefore provided no additional benefit. Energy and all
energy-related features (e.g., 0th order MFCC) performed very well,
as expected, for detecting arousal and for separating neutral from
non-neutral valence (but were not able to distinguish between posi-
tive and negative valence). F0 and rhythm-based features performed
poorly; this was perhaps due to the complexity of the audio stimulus
containing speech, music, silence and various audio sounds. Visual
motion and (musical) tempo performed well individually but failed
to provide any additional improvement if the feature set contained
energy-based features. MFCCs, PLPs and Chroma coefficients per-
formed similarly in isolation. Color-based video features proved
valuable in valence classification. All in all, the selected parsimo-
nious features set that provided the best emotion recognition results
can be seen in Table 2.

Table 2. List of features used for emotion recognition.

Valence
audio 12 MFCCs and C0, plus derivatives
video maximum color value
video maximum color intensity

Arousal audio 12 MFCCs and C0, plus derivatives

4. EXPERIMENTAL RESULTS
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Fig. 3. Misclassification matrices normalized by row (%) for (a)
arousal and (b) valence.

Table 3. Result evaluation metrics.
metric arousal valence 2-D

Accuracy 0.24 0.24 0.06
Discrete Accuracy±1 0.57 0.62 0.37
(7 levels) Mean abs. error 0.52 0.47 0.82

Mean sq. error 0.48 0.43 0.92
Correlation 0.43 0.22 -

Continuous
Mean abs. error 0.32 0.37 0.55
Mean sq. error 0.17 0.24 0.41

Correlation 0.54 0.23 -

The output of our system is a –usually very noisy– time series
of seven categories. The signal is initially filtered with a low pass
filter and then passed through a Savitzky-Golay filter [15] that in-
terpolates the affective signal into a continuous-valued curve. To
evaluate our system we compare the (seven-level) discrete output of
the HMM system with the discretized affective curves. The interpo-
lated continuous output curves are also compared with the reference
continuous affective curves. Thus separate results are provided for
the discrete-valued and continuous-valued curves.

Experiments are conducted using a “leave one (movie) out”
cross-validation scheme. Results are presented as averages across
all clips. The following evaluation metrics are shown: classification
accuracy, classification accuracy ±1 (which considers a miss by 1
category as a hit), mean absolute error (MAE), mean square error
(MSE) and correlation coefficient. MAE and MSE are calculated
after rescaling the curves to a [−1, 1] range. Results are shown in
Table 3. Classification accuracy for seven classes is, as expected,
rather low at 25%. Accuracy±1 (equivalent to using fewer cate-
gories) is fairly high at 60%; given the variety of movies in our
database and the difficulty of the task this is a promising result.
Note the very low correlation for valence that is further investigated
next. Smoothing the discrete-valued curves further improves our
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Fig. 4. Continuous intended emotion recognition vs. annotated curves for the “Ratatouille” clip: (a) arousal and (b) valence.

results, as can be seen from the significantly improved MSE and
MAE continuous results, especially for arousal.

Fig 3 shows the misclassification matrices for arousal (a) and
valence (b) normalized by the sum of each row, i.e, each cell (i, j)
indicates the percentage of samples that belong to category i (actual)
and are classified in category j (predicted). Best emotion recognition
results are obtained for high arousal values, over 50% of the high
activity frames are classified correctly (level 7). Note that frames
are rarely misclassified to very distant categories, while neighboring
categories are highly confusable.

Overall, the classifiers on both dimensions perform very well
in classifying the mood of large segments, with the arousal classi-
fier also performing well in describing detailed dynamics. The va-
lence classifier fails at describing the continuous curve in detail, as
revealed by the low correlation coefficient. Interestingly, this obser-
vation, as well as the overall relative performance of the classifiers
in the two dimensions (prior to interpolation) also holds true for the
performance of human annotators when evaluating their own expe-
rience (see Section 2). Note that a typical error in valence recogni-
tion is the misclassification of a contiguous area to entirely wrong
valence categories, very positive scenes being identified as very neg-
ative and vice versa. This seems to happen in scenes where there
is a conflict of modalities (e.g., “joyous” music, but “angry” video)
or a conflict of sensory and semantic information. Our system lacks
such semantic information, so it can not understand that a dark and
gloomy battle will be perceived as positive if the viewers know that
the hero is going to win. An example actual vs. predicted annotation
for a 30 minute movie clip is shown in Fig 4.

5. CONCLUSIONS

We have briefly presented an annotated database of affect and our
experiments in tracking the affective contents of the movies us-
ing HMMs. Evaluation of a large number of audio-visual features
yielded somewhat surprising results, with many popular features
being rejected before selecting the “optimal” feature set. Two inde-
pendent HMM recognizers were used for arousal and valence, each
utilizing a small number of low level features and a large number of
states. The recognizers work well at a macroscopic level, capturing
the general mood of the vast majority of scenes across movies. On
the arousal dimension, the model also does well in capturing fine
detail, subtle transitions, as revealed by the average correlation co-
efficient of 0.54. On the valence dimension, the model is successful

at capturing the mood but sometimes fails at capturing the valence
sign and transitions. Overall this is a first step towards continuous
emotion recognition in movies. Further research in feature extrac-
tion, high-level semantic analysis, modeling and modality fusion is
required to improve these results.
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