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Abstract. We explore new directions for automatic human gesture recognition

and human joint angle estimation as applied for human-robot interaction in the

context of an actual challenging task of assistive living for real-life elderly sub-

jects. Our contributions include state-of-the-art approaches for both low- and

mid-level vision, as well as for higher level action and gesture recognition. The

first direction investigates a deep learning based framework for the challenging

task of human joint angle estimation on noisy real world RGB-D images. The

second direction includes the employment of dense trajectory features for on-

line processing of videos for automatic gesture recognition with real-time per-

formance. Our approaches are evaluated both qualitative and quantitatively on a

newly acquired dataset that is constructed on a challenging real-life scenario on

assistive living for elderly subjects.

1 Introduction

The increase in elderly population is a fact worldwide [1]. In this context computer

vision and machine learning research applied on human-robot-interaction from the per-

spective of assistive living has both scientific interest and social benefits. In this work

we focus on two prominent directions and apply the respective methods in the context of

a challenging assistive living human-robot interaction scenario. This involves a robotic

rollator that interacts with the elderly subjects using visual sensors, assisting them in

every-day activities. These directions involve the use of state of the art deep learning

based approaches for human joint angle estimation for the future goal of subject stabil-

ity estimation, as well as the application of action recognition methods to enable elderly

subjects interact with the robot by means of manual gestures. Herein we focus on the

visual processing pipelines of this interface, and show a variety of rich applications and

experiments.

There has been a furore of activity on the pose estimation front in recent years.

Pose estimation usually involves inferring the locations of landmarks or body parts

and the quality of the prediction is measured by metrics that involve comparing the

predicted and the ground truth locations in the image plane. In this work we address

the problem of estimating human joint angles. The joint angle estimation task involves

estimating the angles made by segments of the human body at the joint landmarks in

world coordinates. More specifically, we are interested in estimating (a) the knee angles,

that is, the angles between by the thigh and the shank segments of the left and right legs,
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and (b) the hip angles, or the angles made by the torso and thigh segments. These angles

will later be used to determine if the user’s pose is unstable. In case of instability, the

robot can assist the user achieve a stable position by exerting a physical force of the

optimal magnitude in the optimal direction.

Human action recognition is a very active research area with a multitude of applica-

tions, such as video retrieval, health monitoring as well as human-computer interaction

for assistive robotics. Proposed approaches on action recognition span several direc-

tions, such as deep architectures [2] and local spatio-temporal features with the popular

Bag-of-Visual-Words (BoVW) paradigm [3–5], as well as one of the top performing

approaches, the dense trajectories [6, 7]. Application on human-robot interaction [8]

has received relatively little attention mainly due to the increased computational re-

quirements of most action recognition systems, which prevents them from performing

in real-time. We target the rocognition of elderly subjects’ gestural commands by em-

ploying dense trajectories and exploring alternative encoding methods. We have im-

plemented a real-time version of our gesture recognition system that uses an activity

detector and is currently integrated in the robotic platform.

In this work we present our contributions on applying these approaches on data

containing actual elderly subjects. We are guided by a vision whereby assistive human-

robot interaction is advanced by state-of-the-art results in mid and higher level vision

applications. The assistive scenario involves a robotic rollator equiped with multiple

sensors, as shown in Fig. 2, that is capable of estimating the pose and the joint an-

gles, as well as recognizing manual gestures using the proposed approaches. We utilize

a deep learning based 2D joint localization approach fused with 3D information ac-

quired from RGB-D sensors to localize joints in 3D and estimate the angles between

line segments(see Sec.3). Moreover, we apply our action-gesture recognition approach

based on the recent dense trajectories features [6], employing a variety of encoding

schemes. We also feed mid-level vision information [9] to the higher level of action-

gesture recognition. All cases are evaluated on rich scenarios of a new dataset and task

with elderly subjects showing promising results. Finally, we examine practical issues

concerning an online version of the system that is integrated in the robotic platform and

has close-to-real-time performance.

2 The human-robot interaction assistive dataset

The experimental prototype used for data acquisition [10] consists of a robotic rollator

equipped with sensors such as laser range sensors that scan the walking area for envi-

ronment mapping, obstacle detection and lower limbs movement detection, force/torque

handle sensors and visual sensors: an HD camera to record patient’s upper body move-

ments and two Kinect sensors. The first Kinect captures the torso, waist and hips and

the second faces downwards towards the lower limbs. The recording process involved

acquiring RGB-D videos using the open-source Robotics Operating System (ROS) soft-

ware capturing human subjects in a set of predefined use-cases and scenarios.

The dataset we use for estimating joint angles (Fig. 2) consists of (a) colour and

depth images captured by the ROS-Kinect system, and (b) human-joint landmark point
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Fig. 1: Sample gestures from Task-6a and illustration of the visual processing with

dense trajectories for gesture recognition (Sec. 4). First row: “Come here”. Second row:

“I want to stand up”.

trajectories captured by a Qualisys motion capture (MoCap) system. This dataset has

9K images coming from 27 video recordings.

The data acquired for gesture recognition (“Task-6a”) comprises recordings of the

patient sitting in front of the rollator, which is placed at a distance of 2.5 meters. Task-

6a includes 19 different gestural and verbal commands. Each command is performed

by the 13 patients, 3 − 6 times. Sample gestures are depicted in Fig. 1. The task is

challenging, as mobility disabilities seriously impede the performance ability of a verbal

and/or gestural command. Moreover, due to the cognitive disabilities of some users, in

some cases we observe different pronunciations of a command even among multiple

performances of the same user. In essence, we miss the consistency that is sometimes

assumed in other datasets [11]. In addition, background noise and other people moving

in the scene make the recognition task even harder.

3 Human Joint Angle Estimation from Kinect RGB-D Images

Our first contribution is a deep learning framework for human pose estimation. More

precisely, we are interested in estimating the hip and the knee angles. We define (a) the

hip angle as the angle made at the hip joint by the shoulders and the knees, and (b) the

knee angle as the angle made at the knee by the hips and the ankles. These angles give

a fair indication of the human pose, and can be exploited to determine if the user’s pose

is unstable.

3.1 Pose Estimation Dataset

Our objective is to use the RGB-D images to estimate the joint-angles in the world

coordinate system, and evaluate them against the angles computed from the point-

trajectories. We assume that any deviation between the actual joint angles and those

computed from the point-trajectories, due to an offset between the motion capture mark-

ers and the human body, is neglegible. Our dataset suffers from several severe limita-

tions. Firstly, the upper, lower kinect and MoCap systems are not aligned in time. Sec-

ondly, the upper and lower kinect sensors look at parts of the human body individually,
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Fig. 2: Example images from our dataset. Notice the scale changes, and noise in the

depth images. Our dataset also suffers from occlusion and truncation of body parts. We

also have multiple people in the videos.

and do not see the entire context. Finally, the depth images from the kinect are sparse

and noisy (fig. 2). We alleviate the first two limitations by using preprocessing proce-

dures described in the rest of this section. To cope with noisy depth estimates, we use a

sparse coding based strategy to denoise the predictions. This is described in section 3.6.

Data Alignment As mentioned, our input data and our ground truth are recorded by

two different systems, and are not aligned. To evaluate the accuracy of our predictions,

we require that the images are aligned-in-time with the joint-angle trajectories. More

specifically, we need to know which image-frame corresponds to which time-stamp in

the MoCap trajectory. This alignment problem is non-trivial due to several factors.

Firstly, the two recording systems do not start at the same time. Secondly, the two

systems capture data at different frequencies. Besides, while the MoCap system has

a constant frequency, the frequency of the ROS-kinect system varies with the system

load. Due to this, the upper-body frames and lower-body frames coming from the two

kinect sensors are not aligned. To fix the variable frame rate issue, we re-sample the

kinect captured videos at 10 fps via nearest neighbour interpolation. To align the upper

and lower body frames, we only use images from the time-stamps when both upper

and lower frames are available, discarding the remaining frames. Finally, to align the

MoCap trajectories with the kinect frames, we design an optimization framework. More

specifically, we define variation-functions for the images and trajectories. The variation

functions can be understood as how the data changes over time. Once we define these

functions, we can align the data by ensuring that these variations are correlated in time,

since each variation results from the same cause, namely the human subject moving.

We denote by fx(t) the variation function of the point trajectories. fx(t) is defined

to be simply the L2 norm of the position of center of the human body at each timestamp

t in the point trajectories,

fx(t) = ||b(t)||22, (1)
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Fig. 3: Results of our alignment procedure for 4 videos. The green curve shows the

image variation function fx(t), the red curve shows the trajectory variation function

fx(t). The human subjects in these videos performed the sit-stand exercise 3 times.

where b(t) denotes the center of the body (the pelvis). We define, fy(t), the variation

function of the images I as the L2 distance, in the HOG feature space, of an image at

timestamp t from the first image (t = 0) in the sequence.

fy(t) = ||Ihogt − Ihog0 ||22 (2)

The alignment problem can now be solved by aligning the fx and fy signals. To

achieve this, we minimize the cross-correlation between them by exhaustively sampling

a delay parameter between them. The exhaustive search takes less than 2−3 minutes per

video. Figure 3 shows the variation functions as the result of our alignment procedure

for two different videos.

Image Stitching. In our experiments, we observed that images containing only the

lower or the upper body are very hard samples for pose estimation methods because

these lack a lot of informative context about the pose. To cope with this issue, we stitch

the images from the lower and upper kinect to obtain a single image containing the full

human body. This stitching is done by estimating a planar homography transformation

between manually selected keypoints. Using this geometric transformation we overlay

the upper and lower sensor images to get the mosaic image. However, the mosaic images

look unrealistic due to perspective distortion. We fix this by performing perspective

correction on the mosaic image by estimating the necessary affine transformation. Since

the kinect sensors are stationary, this procedure is done only once, we use the same

transformation matrices for all images in our dataset. Results of image stitching can be

seen in fig. 2. In the following sections, we describe our approach.

3.2 Related Work

In the recent years, deep learning has emerged as the gold standard of machine learning

on nearly all benchmarks, including the task of human pose estimation. A number of

deep learning methods solve the pose estimation problem by first estimating the spatial

locations of interesting landmarks, and then inferring the pose from these landmark lo-

cations. In a broad sense, these approaches can be classified into two categories. The

first category consists of methods that directly recover spatial locations of interesting

landmarks via regression. Inspired by the deep convolutional cascaded network of Sun

et al. [12], the Deep Pose approach by Toshev et al. [13] treats pose estimation as a

regression task, refining the predictions iteratively via a cascaded network architecture.
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Fig. 4: A schematic representation of our joint angle estimation pipeline. We have two

stationary RGBD sensors (shown in the circle in the first column) on a moving rollator.

We stitch the upper and lower RGB images, and perform part localization on the mosaic

image using Convolutional Pose Machines. The mosaic image is then unstitched and

the part beliefs are transferred to the registered point cloud. This gives us the spatial

locations of the body parts in the world space. Given these part locations, we estimate

the joint angles using vector algebra.

The second class of methods estimate probability distributions of the presence of these

landmarks, which can then be treated as unaries in an inference procedure that enforces

spatial constraints to recover the likelihoods of these landmarks ([14–18]). These ap-

proaches typically use fully convolutional neural networks to estimate a per pixel like-

lihood of joint locations. A number of these approaches[19, 20] employ iterative error
feedback, that is, a cascaded system to repeatedly refine the per pixel likelihoods, sim-

ilar to recurrent networks. The DeeperCut approach [21] exploits a very deep residual

neural network and achieves promising results without using a sequential refinement

scheme. More recently, Haque et al. [18] proposed a viewpoint invariant pose estima-

tion framework for RGB-D images that utilizes Long Short Term Memory (LSTM) [22]

to incorporate the idea of error feedback.

3.3 Joint Angle Estimation from RGB-D Images

The joint angle estimation task can be addressed by either (a) directly regressing the

angles from the images, or (b) first estimating the spatial locations of the human parts,

and then estimating the joint angles using geometry. As described in section 3.2, we

have two broad classes of methods that address the problem of spatial localization of

landmarks. An advantage of methods that directly regress landmark locations from the

image data is that they can learn pairwise interactions in a fully connected graph effi-

ciently via fully connected layers, thereby exploiting the holistic context in the image.
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However, these methods typically use an object detector at the testing stage [13] and

then regress from the detected bounding boxes to the landmark locations. Object de-

tection is necessary to prevent noise in the context around the object of interest from

corrupting the features. While this is a reasonable strategy, this two step procedure can

be undesirable for datasets containing low resolution images, or images captured in the

wild where object detection can be inaccurate. Methods that estimate the probability

distributions can work around this requirement by estimating the probability distribu-

tions over the entire image, and then inferring the landmark locations by enforcing

spatial constraints. Our dataset has noisy, low resolution images, with significant oc-

clusion, and dramatic scale changes. This motivates us to employ a fully convolutional

network to estimate the spatial locations of the human parts in the image plane.

For our task of 3D localization of the human parts, it is natural to use the depth cues

from the depth images. The depth field of view of the Microsoft Kinect sensor ranges

from 25 centimeters to a few meters. This leads to a noisy and sparse reconstruction of

the depth field in cases where the object of interest is close to the sensor. Our dataset has

numerous instances where the human is too close to the kinect sensor. Consequently,

the depth information is unreliable (or absent) in these cases. The RGB sensors do not

suffer from this limitation. This motivates the usage of the clean RGB image for the

estimation of joint locations, later to be combined with the depth information to re-

construct the 3d joint locations. We therefore, first estimate the part positions from the

RGB images, then use the depth images to reconstruct the part positions in the world

system, and finally estimate the joint angles via geometry. Our pipeline is described

in Fig. 4. For estimating the part positions in 2D, we use the Convolutional Pose Ma-
chines[15] approach which achieves the state of the art results on the challenging MPII

dataset[23]. This approach was trained using thirty thousand images from the MPII and

Leeds Sports[23, 24] datasets.

3.4 Convolutional Pose Machines

As mentioned in section 3.3, our method is based on the convolutional pose machines [15]

approach, that uses sequential prediction convolutional blocks that operate on image

and intermediate belief maps and learn implicit image-dependent spatial models of the

relationships between parts. We now briefly describe the prediction strategy.

The human part localization task is done in several stages. The first stage of the

method predicts part beliefs from local image evidence via a fully convolutional net-

work. The network has seven convolutional layers, trained to minimize the L2 distance

between the predicted beliefs and the ground truth beliefs. The ground truth beliefs

are synthesized by putting Gaussian peaks at ground truth locations of parts. The sec-

ond stage learns convolutional features from the image, and combines them with the

beliefs from the first stage (via concatenation), and again learns a classifier to predict

part beliefs from this combination of features and beliefs using the L2 loss. The third

stage predicts the part beliefs by combining features and the beliefs from the second

stage and so on. While the network in [15] uses six stages, our network uses a cascade

of four stages. The network is designed to learn interactions within increasingly larger

neighbourhoods by repeatedly increasing the receptive fields of the convolutions in each

subsequent stage of the cascade. Larger receptive fields are able to model long-range
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spatial interactions between the landmarks, and help impose geometrical constraints on

the locations of the body parts, such as the knee, the hip, the shoulder, etc. The cascaded

network predicts the per-pixel beliefs for fourteen landmarks, namely the neck, head,

and the left and right ankle, knee, hip, wrist, elbow, shoulder and wrist.

3.5 Joint Angles from Part Locations

The method described in section 3.4 predicts human part locations in the image plane.

However, our objective is to estimate joint angles in the world space. After the part

beliefs are estimated in the mosaic image, we unstitch the mosaic image, and transfer

the part beliefs to the upper and lower images. We then construct the 3D point cloud

using the depth images and the intrinsic parameters of the kinect sensors, and transfer

the part beliefs to the point clouds. This is followed by registering the point clouds of

the upper and lower kinect sensors so that they are in the same space, and transferring

the part beliefs to the common system. For each part, we choose the location to be the

point with the maximum belief. If the maximum belief for a part is below a threshold

ε, we conclude that this part is either occluded or truncated. This gives us 3D spatial

locations of the body parts. Given the part locations in the world coordinate system, we

compute the joint angles using vector algebra.

3.6 Denoising via Sparse Coding

As described in section 3.3, our dataset suffers from drastic scale changes causing the

depth to be sparse and noisy. This causes the angle estimates to be noisy. To overcome

this difficulty, we pose reconstruction of our predictions as a classic sparse coding based

denoising approach. We estimate a dictionary D of codewords from the ground truth

angles x̂ by solving the following optimization

D∗ = argmin
D,w

||x̂−Dw||22 + λ1||w||1 + λ2||w||22. (3)

The reconstruction of noisy predictions x is done by estimating a sparse linear combi-

nation w∗ of the dictionary as

w∗ = argmin
w

||x−D∗w||22 + λ1||w||1 + λ2||w||22
y = D∗w∗

(4)

This reconstruction suggests that the predictions can be represented sparsely over

the dictionary, and helps tilt the distribution of the predicted angles towards the ground

truth angles. We use this technique to denoise our hip angle predictions. We report

results of denoising in section 3.7.

3.7 Experiments and Discussions

In this section we report empirical results for the estimation of hip, and knee angles. As

described in section 3.1, our dataset has 27 videos, containing about 9K image frames.
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We use the point trajectories of the shoulders, hips, knees and angles from the MoCap

data to compute the ground truth angles. Our prediction pipeline is described in section

3.4. Our networks are trained on 30K images from the MPII and Leeds Action Dataset,
as mentioned in section 3.4, and are the state of the art on these challenging datasets.

The evaluation criterion is the Root Mean Square Error (RMSE) in degrees between the

predicted angles and the ground truth angles. We also report the detection rate for each

angle. An angle is said to be detected if the locations of all three parts constructing the

angle are available. The detection rate for an angle is defined to be the ratio of frames

in which the angle is detected.

We first study the effect of changing the threshold ε described in section 3.5. This

threshold is applied to the maximum beliefs of parts, and introduces a measure of con-

fidence in the part localization. If the maximum belief of a part is below ε we conclude

that the part is absent. This absence occurs because of occlusion or truncation of parts

of interest. Fig. 5 shows the variation of RMSE and detection rate for different values

of ε. As the minimum accepted confidence ε increases, RMSE decreases substantially

and naturally the detection rate drops due to increasing number of rejected angles. High

confidence in part locations, which mainly depends on visibility of parts, leads to better

estimates of joint angles. This increase in performance with large ε is observed despite

the remaining erroneous joint locations, which would have been corrected if more con-

text (and in many cases joints themselves) were visible. This provides evidence that a

better placement of the cameras such that full body context is provided to the algorithm

would lead to an increase in the performance of the algorithm. To further emphasize

this, we exemplify estimated angles and groundtruth angles as a function of time for the

same subject and same task under two different camera configurations in Fig.6. In the

configuration where the patient is closer to the sensors and the ankles and shoulders are

occluded the algorithm is not able to estimate the angles, whereas in the setting where

the subject is distanced from the sensor, the angle estimation is more accurate.

RMSE
24 26 28 30 32

D
et

ec
tio

n 
R

at
e

0.5

0.6

0.7

0.8

0.9

1
Left Hip

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RMSE
24 26 28 30 32

D
et

ec
tio

n 
R

at
e

0.5

0.6

0.7

0.8

0.9

1
Right Hip

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RMSE
10 20 30 40

D
et

ec
tio

n 
R

at
e

0.5

0.6

0.7

0.8

0.9

1
Left Knee

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RMSE
10 20 30 40

D
et

ec
tio

n 
R

at
e

0.5

0.6

0.7

0.8

0.9

1
Right Knee

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 5: Variation of Root Mean Square Error in degrees and detection rate with confi-

dence threshold ε. As the confidence threshold increases (as the colours become hotter),

the detection rate and the angle estimation errors decrease.

For our quantitative results, we choose ε = 0.2, which gives a detection rate of 0.75
(figure 5). Our results are reported in table 1. We report the RMSE values for the estima-

tion of the left and right knee and hip angles, averaged over the entire dataset. It can be

seen that the errors in estimation of the hip angles are higher than those corresponding

to the knee angles. This is due to two factors: (a) the shoulders are truncated when the

human subject to too close to the camera (fig. 2, row 3), and (b) the hip joints are oc-
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Fig. 6: Angle estimation on same subject and same task(sitting - standing) under differ-

ent camera configurations. The left image corresponds to a time instance in the top row

time series and the right image corresponds to an instance in the bottom row time series:

Estimated (red) and the groundtruth angle (blue). The columns portray Left Hips, Right

Hips, Left Knee and Right Knee angles respectively. Corresponding RMSE values are

displayed on top of each time series.

cluded by the elbows and hands (fig. 2, row 1). Table 1 also reports the estimation errors

after the denoising process described in section 3.6. To estimate the dictionary (eq. 3),

we use a leave-one-out strategy. The dictionary for denoising of a video is constructed

using the dataset, leaving out this particular video. The parameters for the dictionary

learning procedure are as follows: λ1 = 10, λ2 = 0.001, and the size of the codebook

K = 200. We see an improvement in estimation of both the knee and hip angles after

denoising, however the improvement in case of the hip angles is more prominent.

Method Left Knee Right Knee Left Hip Right Hip Average

CPM 16.16 15.24 24.51 25.27 20.29

CPM + Denoising 13.66 14.23 15.06 16.48 14.86

Table 1: Quantitative results of our Convolutional Pose Machines pipeline for the esti-

mation of joint angles. The evaluation metric is the Root Mean Square Error in degrees.

Denoising using a sparse coding strategy improves average performance by 5.4 degrees.

4 Dense Trajectories for Gesture Recognition

Gesture recognition allows the interaction of the elderly subjects with the robotic plat-

form through a predefined set of gestural commands. Our gesture classification pipeline,

depicted in Fig. 7, employs Dense Trajectories features along with the Bag-of-Visual-

Words framework. We briefly describe the individual steps involved and present our

experimental results on Task-6a. Dense trajectories [25] consists in sampling feature

points from each video frame on a regular grid and tracking them through time based

on optical flow. Different descriptors are computed within space-time volumes along

each trajectory. Descriptors are: the Trajectory descriptor, HOG [26], HOF [27] and

MBH [26].

Features are encoded using BoVW, VLAD or Fisher vector to form a video repre-

sentation. BoVW uses a codebook which is constructed by clustering a subset of ran-
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Fig. 7: Gesture classification pipeline.

domly selected training features into K = 4000 clusters. Each trajectory is assigned to

its closest visual word and a histogram of visual word occurrences is computed, yield-

ing a sparse K-dimensional representation. VLAD encodes first order statistics among

features by computing differences between extracted features and the visual words.

Fisher vector encodes first and second order statistics using a Gaussian Mixture Model

(GMM) with K = 256 gaussians. To compensate for the high dimensionality of FV,

we reduce the descriptors’ dimensionality by a factor of 2 using Principal Component

Analysis.

Videos encoded with VLAD or Fisher vector are classified using linear support

vector machines (SVMs). Different descriptors are combined by concatenating their

respective VLAD or FV vectors. In the BoVW case, videos are classified using SVMs

with the χ2 [26] kernel. Different descriptors are combined in a multichannel approach,

by computing distances between BoVW histograms as:

K (hi,hj) = exp

(
−
∑
c

1

Ac
D
(
hc
i ,h

c
j

))
, (5)

where c is the c-th channel, i.e. hc
i is the BoVW representation of the i-th video, com-

puted for the c-th descriptor, and Ac is the mean value of χ2 distances D
(
hc
i ,h

c
j

)
between all pairs of training samples. Since we face multiclass classification problems,

we follow the one-against-all approach and select the class with the highest score.

Experiments Gesture classification is carried out on a subset of the Task-6a dataset

comprising 8 subjects and 8 gestures1, without limiting the generality of results. Re-

sults are shown in Table 2. It is evident that the large variability of the gesture perfor-

mance among patients has a great impact on performance. The combined descriptor per-

forms consistently better, since it encodes complementary information extracted from

the RGB channel. VLAD and Fisher vector further improve performance, since they

encode rich information about the visual words’ distribution. Fig. 8 depicts the mean

confusion matrix over all patients computed for BoVW and the MBH descriptor. Natu-

rally, gestures that are more easily confused by the elderly subjects are harder to classify

correctly, e.g. “Help” and “PerformTask” both consist of a similar horizontal movement

but in different height. To demonstrate the difficulty of the task, we use the same ges-

1 The 8 selected gestures are: “Help”, “WantStandUp”, “PerformTask”, “WantSitDown”,

“ComeCloser”, “ComeHere”, “LetsGo”, “Park”.
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BoW VLAD Fisher

p1 p4 p7 p8 p9 p11 p12 p13 avg. avg. avg.

traject. 50.0 24.0 35.3 30.3 20.8 43.8 37.5 68.8 38.8 37.0 45.0

HOG 56.3 28.0 38.2 48.5 25.0 62.5 37.5 71.9 46.0 56.6 48.0

HOF 62.5 36.0 32.4 45.5 54.2 46.9 62.5 71.9 51.5 54.9 51.7

MBH 62.5 56.0 44.1 51.5 58.3 56.3 45.8 81.3 57.0 69.9 66.3

combined 75.0 52.0 52.9 57.6 58.3 65.6 62.5 75.0 62.4 67.6 68.1

Table 2: Classification accuracy (%) per patient on a subset of the Task-6a dataset that

contains 8 gestures performed by 8 subjects. Results for different encoding methods are

shown; “avg.” stands for average accuracy over all patients.

Fig. 8: Mean confusion matrix over all subjects of the Task-6a dataset. The results are

obtained with the MBH descriptor and BoW encoding (6th row of Table 2).

Fig. 9: Sample frames from the ges-

ture dataset acquired in [28].

Task-6a dataset from [28]

traject. 38.8 74.0

HOG 46.0 53.8

HOF 51.5 77.3

MBH 57.0 82.5

combined 62.4 84.8

Table 3: Comparative results on Task-

6a and the dataset acquired in [28].

Mean classification accuracy (%) over

all subjects is reported.

ture classification pipeline on the dataset acquired in [28]. It includes 13 young subjects

(Fig. 9) that perform the same 19 gestures as the ones in Task-6a under similar condi-

tions. Training and testing is carried out with the same settings using BoW encoding.

Mean classification over all subjects is reported. Comparative results shown in Table 3

illustrate that variability in the execution of the gestures among healthy and cognitively

intact subjects is effectively handled by our pipeline. This highlights the challenge that

the development of a gestural communication interface for elderly people presents.

4.1 Filtering background trajectories

To further improve our gesture recognition results, we have worked towards the integra-

tion of the body part segmentation method introduced in [9] into our gesture recognition

Workshop on Assistive Computer Vision and Robotics, European Conference on Computer Vision, Oct.2016
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Fig. 10: Combining semantic segmentation with feature extraction for gesture classifi-

cation on the Task-6a. A separate BoVW histogram is computed for the whole frame

and the area enclosed by the bounding box. The two vectors are combined into a single

video representation.

pipeline. Specifically, we use the subject’s bounding box to reject noisy background tra-

jectories (see Figure 10). We compute a separate BoVW histogram that corresponds to

the area enclosed by the bounding box, which is used to augment the original BoVW

vector. The mask shown in the Figure 10 is the output of the semantic segmentation

algorithm introduced in [9] and applied on Task-6a data. Following the same experi-

mental protocol as in the rest of the experiments described in this section, we obtained

additional improvements on the related Task-6.a scenario, as shown in Table 4 below.

Given the simplicity of the employed approach, results show remarkable improvement.

A holistic approach for gesture recognition, such as dense trajectories, can greatly ben-

efit from exploiting mid-level information to remove background noise. Our current

research plans include more efficient exploitation of the rich information contained in

the output of the semantic segmentation pipeline.

Feat. Descr. GR SS+GR Impr. (%)

traject. 38.8 42.1 8.59

HOG 46.0 46.7 1.47

HOF 51.5 56.3 9.33

MBH 57.0 63.9 12.18

combined 62.4 65.6 5.22

Table 4: Average classification accuracy (%) over all 8 patients using our baseline

method (first column) and employing the foreground-background mask (second col-

umn). Results show a consistent improvement (third column) over multiple feature de-

scriptors. Results are obtained using the BoW encoding.

4.2 On-line processing

Towards the realisation of a user interface that enables elderly subjects interact with the

robotic platform, we have implemented an on-line version of our system that performs

Workshop on Assistive Computer Vision and Robotics, European Conference on Computer Vision, Oct.2016
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continuous gesture recognition. ROS is employed to provide the main software layer

for interprocess communication.

Our overall system comprises two separate sub-systems: (a) the activity detector

(AD node) that performs temporal localization of segments that contain visual activity

and (b) the gesture classifier (GC node) that assigns each detected activity segment

into a class. The AD node processes the RGB stream in a frame-by-frame basis and

determines whether there is any visual activity in the scene, based on an activity ”score”,

whose value is thresholded. The GC node is appropriately signaled at the beginning and

the end of the activity segments. Small segments of activity are rejected to ensure that

small spontaneous movements of the user are not processed.

The Gesture Classifier node processes video segments and assigns them to one of

the pre-defined categories using the classification pipeline described previously. To re-

duce the total processing time we downsample RGB frames both in space and time by

a factor of 2. The GC node caches input frames from the camera. When the appropri-

ate signal is received, feature extraction begins immediately, starting from the indicated

frame’s timestamp. When the activity segment ends features are extracted from the re-

maining frames of the activity segment, the classification pipeline continues. The robot

reacts to the recognized gestural command by either providing audio responses or mov-

ing in order to assist the elderly user. The system has been integrated in the robotic

platform and used by actual elderly patients. It operates approximately at 20 fps on an

Intel i7 CPU.

5 Conclusions

In this work we have examined multiple directions on an assistive human-robot interac-

tion task, from the visual processing point of view. We have provided rich algorithmic

and experimental evidence on how one may estimate joint angles of the elderly subjects

with the given challenging setup and have signified the importance of the sensor lo-

calization that includes a full view of the subject. Additionally, we have shown that the

adopted sparse coding based denoising approach increases performance. Another appli-

cation concerns the automatic recognition of gesture commands, as well as a practical

integrated system that online processes streaming video data, and accurately recognizes

the commands with real-time performance. The systems are currently under validation

studies conducted with elderly subjects in geriatric clinics, opening new perspectives in

the field of robotic vision for assistive living. Ongoing and future plans involve the more

deep integration of the multiple directions presented in this paper, by incorporating the

information of the estimated pose and joint angles for gesture recognition, as well as the

integration of gesture recognition in an overall network that jointly estimates the pose,

and the higher level gesture concepts. Finally, further exploiting the computer vision in-

terface applications with geriatric clinician experts can lead to a deeper understanding

on how we should advance and jointly experiment with our approaches so that it would

be for the best interest of the interdisciplinary research communities and above all for

the benefit of the elderly population.
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