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ABSTRACT

We explore new aspects of assistive living on smart human-robot
interaction (HRI) that involve automatic recognition and online vali-
dation of speech and gestures in a natural interface, providing social
features for HRI. We introduce a whole framework and resources
of a real-life scenario for elderly subjects supported by an assistive
bathing robot, addressing health and hygiene care issues. We con-
tribute a new dataset and a suite of tools used for data acquisition and
a state-of-the-art pipeline for multimodal learning within the frame-
work of the I-Support bathing robot, with emphasis on audio and
RGB-D visual streams. We consider privacy issues by evaluating
the depth visual stream along with the RGB, using Kinect sensors.
The audio-gestural recognition task on this new dataset yields up to
84.5%, while the online validation of the I-Support system on elderly
users accomplishes up to 84% when the two modalities are fused to-
gether. The results are promising enough to support further research
in the area of multimodal recognition for assistive social HRI, con-
sidering the difficulties of the specific task.

Index Terms— human-robot communication, assistive HRI,
multimodal dataset, audio-gestural command recognition, online
validation with elderly users

1. INTRODUCTION

During the last decades, an enormous number of socially interactive
robots have been developed constituting the field of Human-Robot
Interaction (HRI) an actual motivating challenge. This challenge has
become even greater, due to their relocation outside the lab environ-
ment and into real use cases. Robotic agents are nowadays able to
serve in various new roles, assisting with every day tasks involved in
the caring of elderly or children. The aim of such systems is to shift
part of the care burden from healthcare professionals and to support
individuals to manage and to take better care of their own health, to
enable independent living and to improve their life quality.

The evolution of the robotic industry towards this end have given
rise to new social, ethical, privacy challenges etc., and have led HRI
research to extend into many research areas [1]. One such area con-
cerns the development of multimodal interfaces, required to facilitate
natural HRI, including visual RGB/Depth and audio input, or iner-
tial sensors [2] for multimodal human-robot interactions. The con-
cept behind these systems is to design robots and interaction tech-
niques that will enhance the communication making it natural and
intuitive, so as the robots are able to understand, interact and re-
spond to human intentions intelligently; for a review, we refer the
reader to [3, 4, 5, 6, 7, 8, 9].

This research work was supported by the EU under the project I-
SUPPORT with grant H2020-643666.

Fig. 1: The I-Support automatic bathing environment. Setup of the Kinect
sensors as installed in the two validation sites, FSL (top) and Bethanien (bot-
tom) hospitals.

Arguments about robotic systems in health and hygiene care
[10] include: a) the economic advantages in supporting the growing
elderly population, b) the increased independence and life quality
and c) the increased sense of comfort and privacy; features that are
highly valued by the end-users [11]. However, domestic robots are
equipped with cameras and microphones not only for communica-
tion but for monitoring and security, as well. So, an issue that has
drawn much discussion is whether such sensor infrastructure could
infridge on the right to privacy, especially when an elderly person’s
mental health deteriorates.

In this paper, we contribute an experimental framework and sys-
tem on social human-robot interaction via a rich HRI set of resources
including a domain specific dataset and automatic machine learning
tools. These are applied on a real-life use case of an assistive bathing
robot, which helps elderly to perform and complete bathing tasks,
towards independent living and improved life quality. The domain
specific development dataset that is introduced includes audio com-
mands, gestures – an integral part of human communication [12]
– and co-speech gesturing data, which is still quite limited in HRI
[13]. Our goal is to enhance the communication making it natural,
intuitive and easy to use, thus, enhancing it with respect to social
aspects. Additionally, we present an automatic multimodal recogni-
tion system, based on state-of-the-art signal processing techniques
and pattern recognition algorithms that are able to model audio-
visual data, i.e., speech and RGB-D, so as to recognize, in an on-
line manner, multimodal data addressing aspects in assistive smart
HRI. We present promising results both when evaluating the two
streams independently (offline evaluation) and when validating on-
line the human-robot interaction between the I-Support system and
the elderly end-users.



Fig. 2: Data streams acquired by sensors #1 and #2: RGB (top), depth (2nd
row) and log-depth (3rd row) frames from a selection of gestures (“Tem-
perature Up”, “Scrub Legs”), accompanied by the corresponding German
spoken commands – waveforms (4th row) and spectrograms (bottom row) –
“Wärmer”, “Wasch die Beine”.

2. I-SUPPORT: A ROBOTIC SHOWER SYSTEM
The goal of the I-Support1 project is to develop a robotic bathing
system that will enable independent living and improved life quality
for the elderly. The core system functionalities identified as impor-
tant from a clinical perspective (taking into account various impair-
ments, limitations and user requirements) are the tasks for bathing
the distal region (legs) and the back region [14]. The experimental
prototype, for natural human-robot communication, consists of three
Kinect sensors, as shown in Fig. 1, for 3D pose reconstruction of the
scene (user and robot) and identification of user gestures, and an
audio system including 8 distributed condenser microphones. The
aforementioned sensors are also used to record, challenging multi-
modal data for modeling the user-robot interaction, including audio-
gestural commands related to the specific tasks.

Even though gestures, as means of communication, could be
questioned, since elderly have to perform and remember them re-
gardless possible impairments or their cultural background, the rea-
son for using them is manifold. “Gestures are an integral part of lan-
guage as much as are words, phrases, and sentences - gesture and
language are one system” [12]. It is also widely accepted that ges-
tures aid human communication significantly by elaborating upon
and enhancing the information, which is orally co-expressed [15,
12], while almost 90% of spoken utterances in descriptive conversa-
tions are accompanied by speech-synchronized gestures [16], which
occur similarly for speakers of more than 20 cultures [17].

Multi-view system architecture: Considering various con-
straints (i.e., the size of the bath cabin, the size and the placement
of the chair and the soft-arm robot base) we defined the setup for the
three Kinect sensors, so as to be able to capture the necessary infor-
mation for both washing tasks, i.e., information of the user’s back
and legs as well as the hand gestures performed for the communica-
tion with the robot. Specifically, two of the Kinect sensors (Kinect
sensors #1 and #2) were placed inside the bath cabin, in order to
capture the legs and the back of the user during the different tasks,
while a third camera (Kinect sensor #3) was placed outside the cabin,
in order to capture the gestures performed by the user during the task

1http://www.i-support-project.eu/

washing the back, see Fig. 1. Specifically, during the task washing
the legs Kinect sensor #2 records the legs of the user (including reg-
istered RGB and depth in SD resolution), for body pose estimation
and visual tracking of the robot; while sensor #1 is used by the ges-
ture and action recognition module. Except from the streams in SD
resolution sensor #1 also records the color stream (RGB) in Full HD.
During the task washing the back sensor #1 records the back of the
user (including RGB and depth in SD resolution), while sensor #3
records the color stream Full HD, used for gesture recognition.

3. SYSTEM DESCRIPTION AND OFFLINE EVALUATION
Audio-gestural data acquisition: Using the proposed system ar-
chitecture, we have collected an audio-gestural development dataset
for the multimodal recognition task. Specifically, we have recorded
visual data from 23 users while performing predefined gestures, and
audio data from 8 users while uttering predefined spoken commands
in German (the users were non-native German speakers, having only
some beginner’s course). The recorded gesture commands included
certain variability, so as to be able to analyze them and henceforth
to take care of factors such as intuitiveness and naturalness for the
performance (how the users feel more comfortable to perform the
various gestures), as well as to design a system that could recognize
smaller or larger variations of the same command.

The total number of commands for each task was: 25 and 27
gesture commands for washing the legs and the back, respectively,
and 23 spoken commands –preceded by the keyword “Roberta” –
for the core bathing tasks, i.e., washing/scrubbing/wiping/rinsing the
back or legs, for changing base settings of the system, i.e., temper-
ature, water flow and spontaneous/emergency commands. A back-
ground model was also recorded, including generic motions or ges-
tures that are actually performed by humans during bathing; so as
to be able to reject out-of-vocabulary gestures (motions/actions) as
background actions. For data collection and the simultaneous an-
notation of segments when the users were performing and/or utter-
ing the spoken commands, we employed the graphical interface tool
(GUI) described in [18]. Figure 2 shows examples of the acquired
data streams. Depth and log-depth are also explored and compared
to RGB, targeting robust and privacy-aware visual processing.

Gesture classification experiments and results: Gesture
recognition allows the interaction of the elderly subjects with the
robotic platform through a predefined set of gestural commands.
For this task, we have employed state-of-the-art computer vision
approaches for feature extraction, encoding, and classification. Our
gesture and action classification pipeline employs Dense Trajectories
along with the popular Bag-of-Visual-Words (BoVW) framework.
Dense Trajectories [19] has received attention, due to their perfor-
mance on challenging datasets and the main concept consists of
sampling feature points n from each video frame on a regular grid
and tracking them through time based on optical flow. Specifically,
the employed descriptors are: the Trajectory descriptor, HOG [20],
HOF [21] and Motion Boundary Histograms (MBH) [20]. As de-
picted in Fig. 3, non-linear transformation of depth using logarithm
(log-depth) enhances edges related to hand movements and leads to
richer dense trajectories on the regions of interest, close to the result
obtained using the RGB stream.

The features were encoded using BoVW and were assigned to
K = 4000 clusters forming the representation of each video. After-
wards, each trajectory was assigned to the closest visual word and
a histogram of visual word occurrences was computed, yielding a
sparse K-dimensional representation. Videos encoded with BoVWs
were classified with non-linear SVMs using the χ2 [20] kernel, and
different descriptors were combined in a multichannel approach, by



Fig. 3: Comparison of dense trajectories extraction over the RGB (top), depth
(middle) and log-depth (bottom) clips of gesture “Scrub Back”.

computing distances between BoVW histograms as:
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The features were also encoded using VLAD (Vector of Lo-
cally Aggregated Descriptors) [22]; first order statistics were en-
coded among features by computing differences between extracted
features and the visual words. Videos encoded with VLAD were
classified using linear SVMs and different descriptors were com-
bined by concatenating their respective vectors. Since multiclass
classification problems were considered, an one-against-all approach
was followed and the class with the highest score was selected.

Table 1 presents average (leave-one-out) accuracy results (%) for
25 and 27 gestures for the tasks washing the legs and the back, re-
spectively, performed by 23 subjects. All features using the two en-
codings were evaluated and are shown for RGB data and log-depth
(D) data. The combination of the proposed features (denoted with
the label Comb.) performs consistently better for both evaluation
setups and for both bathing tasks. Additionally, the motion related
descriptors (HOF, MBH) yield better results than the static (HOG),
since all employed gestures include motion of the whole arm rather
than motion of the handshape. Regarding the two encodings, VLAD
vector further improves the performance, since it encodes rich infor-
mation about the visual words’ distribution. Concerning the RGB
vs. D evaluation, we note that RGB accomplishes better results than
the log-depth (D). Concluding, we observe that the gesture classifi-
cation system shows a rather good performance of about 83% and
85% (for VLAD and RGB) for the tasks washing the legs and the
back, respectively.

Spoken commands classification experiments and results:
We have developed a spoken command recognition module [8] that
detects and recognizes commands provided by the user freely, at any
time, among other speech and non-speech events possibly infected
by environmental noise and reverberation. We target robustness via
a) denoising of the far-field signals, b) adaptation of the acoustic
models, and c) combined command detection/recognition. Herein,
the classification of pre-segmented commands is performed based on
a task-dependent grammar of 23 German commands, using the sig-
nals captured by the central microphones (channel 2) of the sensors

Task: Legs Task: Back
Feat. Encoding RGB D RGB D
Traj.

BoVW

69.64 60.52 77.84 60.87
HOG 41.01 53.34 58.51 57.14
HOF 74.15 66.26 82.92 71.58
MBH 77.36 65.31 80.81 65.73
Comb. 80.88 74.41 83.92 75.70
Traj.

VLAD

69.22 52.66 74.34 54.14
HOG 49.86 65.99 61.23 65.63
HOF 76.54 72.88 83.17 78.07
MBH 78.35 75.12 82.54 73.09
Comb. 83.00 78.49 84.54 81.18

Table 1: Average (leave-one-out) classification accuracy (%) results for the
pre-defined gestures performed by 23 subjects. Results for the four features
and their combination (Comb.), using the two encodings are shown for RGB
data and D (depth) data for the two bathing tasks.

#1 and #3 for the tasks washing the legs and the back, respectively.
Leave-one-out experiments were conducted by testing classification
on one subject after applying global MLLR adaptation of the acous-
tic models on the commands of the rest subjects, yielding average
accuracies of 75.8% and 67.6% on 8 subjects for the two tasks.

4. ONLINE VALIDATION WITH PRIMARY END-USERS
Online A-G command recognition system: The online A-G mul-
timodal action recognition system that we have developed [18], us-
ing the Robotic Operating System (ROS), enables the interaction be-
tween the user and the robotic arms so as to monitor, analyze and
predict the user’s actions, giving emphasis to the command-level
speech and gesture recognition. Always-listening recognition is ap-
plied separately for spoken commands and gestures, combining at
a second fusion level their results. The output is fed to the robot’s
controller and the predicted action or task is executed. The overall
system comprises two separate sub-systems: (i) the activity detector,
which performs temporal localization of segments containing visual
activity and (ii) the gesture classifier, which assigns each detected
activity segment into a class. The activity detector processes the
RGB or the depth stream in a frame-by-frame basis and determines
the existence of visual activity in the scene, using a thresholded ac-
tivity “score” value. The gesture classification system is signaled at
the beginning and at the end of the activity segments and herein, it
processes and assigns them to one of the pre-defined categories.

Validation studies with primary end-users: We evaluated the
online A-G recognition system, regarding its functionality and the
human-robot interaction between the I-Support bathing robot and
the primary end-users (elderly), using audio and audio-gestural com-
mands. During the experiments, we simulated the two bathing sce-
narios (bathing the legs and back) at dry conditions, at two pilot
sites: 1) the Fondazione Santa Lucia (FSL) Hospital (Rome, Italy)
and 2) the Bethanien Hospital (Heidelberg, Germany). Demanding
acoustic and visual conditions were faced along with large variability
in the performance of the audio-gestural commands by the partici-
pants, constituting the recognition task rather challenging. A sta-
tistically significant number of users, having various cognitive im-
pairments, were selected by the clinical partners for the HRI ex-
periments; thus, 25 (mean age±SD: 67.4±8.9 years) and 29 (mean
age±SD: 81.4±7.7 years) patients were recruited on each site.

The experimental protocol exhibited a variety of 7 audio or
audio-gestural commands in Italian and German (see Table 2) in se-
quences that would simulate realistic interaction flows for both tasks.
Table 3 shows the sequence of the audio (A) and audio-gestural (A-
G) commands as performed in the validation experiments. Prior
to the actual testing phase, all commands were introduced to the
participant by the clinical test administrator. During the experiment,



Vocabulary
English Italian German

Wash legs Lava le gambe Wasch meine Beine
Wash back Lava la schiena Wasch meinen Rücken
Scrub back Strofina la schiena Trockne meinen Rücken

Stop (pause) Basta Stop
Repeat (continue) Ripeti Noch einmal

Halt Fermati subito Wir sind fertig
Table 2: The audio-gestural commands that were included in the two bathing
scenarios. All commands were preceded by the keyword “Roberta”.

Distal Region Back Region
ID Command Modality Command Modality
1 Wash Legs A Wash Back A-G
2 Stop A Halt A-G
3 Repeat A Scrub Back A-G
4 Halt A Stop A-G
5 Wash Legs A-G Repeat A-G
6 Halt A-G Halt A-G
7 Halt A-G Halt A-G

Table 3: The sequence of Audio (A) and Audio-Gestural (A-G) commands
performed by the participants in the validation experiments.

the test administrator guided the participant on how to interact with
the robot by showing the audio commands written on posters or
the audio-gestural commands by performing them, and instructed
him/her to simply read or mimic them. The administrator could
also intervene whenever the flow was changed unexpectedly after a
system failure. Additionally, a technical supervisor handled the PCs
and annotated on-the-fly the recognition results of the system.

The Kinect sensors and the microphones were installed in the
bathrooms of the two hospitals according to the setup described in
Sec. 2; incorporating some adjustments regarding their positions and
angles depending on the available space of each room. In addition,
the A-G recognition system’s grammars and functionalities were
adapted to the specific bathing tasks, delivering recognition results
as ROS messages to the system’s finite state machine (FSM) that a)
decided the action to be taken after each recognized command, b)
controlled the various modules and c) managed the dialogue flow
by producing the right audio feedback to the user. The individual
speech and gesture recognition hypotheses were combined using a
late fusion scheme encoding the inter-modality agreements and fol-
lowing the ranking rule: “if the best speech recognition hypothesis
is among the 2-best gesture hypotheses, then it is announced as the
multimodal result” [18].

Online Recognition Results: Multimodal recognition was
evaluated in terms of 1) Multimodal Command Recognition Rate
(MCRR): MCRR= # of commands correctly recognized by the sys-
tem / # of commands correctly performed by the user, 2) accuracy
and 3) user performance/learning rate. Table 4 shows the obtained
MCRR (%) and accuracy results (%), which are up to 84% and 80%
for both washing tasks (averaged across 25 and 29 users). The result
deviations for the two tasks are due to the different setups of the
sensors, as emerged because of the space of the bathrooms. Gesture
recognition was expected more challenging while bathing the legs,
due to occlusions of the hands with the robot and/or the chair. The
users experienced only a limited amount of false alarms (3 in total
as measured at FSL), which were considered annoying, since the
system triggered a response without an “actual” input. Regarding
the user performance, the participants performed successfully the
spoken commands (over 90% accuracy), while the average perfor-
mance of gestures was satisfactory (between 70% to over 80%) after
the quick training provided by the administrator. As seen in Ta-
ble 4, the participants in Bethanien were less capable in performing
the commands and this is also the reason of the lower results in
MCRR and accuracy. Finally, we have to mention that the results of
both modalities were somehow degraded, when the user performed
simultaneously the A-G commands, due to increased cognitive load.

System Performance % User Performance %
MCRR % Accuracy % Speech Gestures

L B Av. L B Av. L B L B
FSL 80 87 83.5 86 73 79.5 98 99 81 78

Bethanien 85 74 79.5 67 77 72 91 90 84 71

Table 4: Average Audio-Gestural Command Recognition Results; system
performance (%) and user performance (%) averaged across 25 and 29 users
at FSL and Bethanien Hospitals, respectively. (L stands for legs, B for back
and Av. for average.

Fig. 4: Recognition statistics per command (FSL data). The vertical red lines
distinguish the command sequences (see the corresponding IDs in Table 3 for
the tasks “washing the legs” and “washing the back”.

Figure 4 shows indicative curves on how the users performed
on their first attempt each gesture command after the training. We
note that initially (gesture ID 5) the users either were not familiar
with this type of communication or their concentration level was low
since they were performing only spoken commands up to that point.
There was however a tendency of increased learning rate, meaning
that during the experiments the users got more familiar with the mul-
timodal commands and executed them more accurately, indicating
the intuitiveness of this HRI modality. Especially for commands
such as “Halt” which was repeated several times (id 4,6,7) during
the washing sequence the command performance of the user reached
levels higher than 90%. This observation is highly important, since
we can conclude that simple combinations of spoken and gestural
commands are both memorable and suitable for elderly user’s com-
munication with an assistive robotic system.

5. CONCLUSIONS
In this work, we presented a multimodal interface for an assistive
bathing robot and a real-life use case, providing a rich set of tools
and data. Such resources can be employed to develop natural inter-
faces for multimodal interaction between humans and robotic agents.
Our intention is to further investigate how the communication be-
tween end-users and the robot will be as intuitive and effortless as
possible using co-speech gesturing, which is the most natural way
for human-human communication, while also enhancing the recog-
nition, in cases of speech dysfluencies or kinetic problems. The
presented online results are considered really promising given the
difficulties of the task. By sharing such resources, we aim to build
a public crowdsourced library that shall open new perspectives in
smart assistive HRI. Regarding future work, we plan to involve the
incorporation of deep learning into our online audio-gestural recog-
nition system, expecting this way increased accuracy and robustness,
as well as improved system response time. Finally, we intent to de-
velop more effective audio and gesture recognition modules that will
be able to make more refined decisions and process sub-sequences
of gestures.
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