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ABSTRACT

In this paper, we explore a nonlinear AM-FM model to extract
alternative features for music instrument recognition tasks.
Amplitude and frequency micro-modulations are measured in
musical signals and are employed to model the existing in-
formation. The features used are the multiband mean instan-
taneous amplitude (mean-IAM) and mean instantaneous fre-
quency (mean-IFM) modulation. The instantaneous features
are estimated using the multiband Gabor Energy Separation
Algorithm (Gabor-ESA). An alternative method, the iterative-
ESA is also explored; and initial experimentation shows that it
could be used to estimate the harmonic content of a tone. The
Gabor-ESA is evaluated against and in combination with Mel
frequency cepstrum coefficients (MFCCs) using both static
and dynamic classifiers. The method used in this paper has
proven to be able to extract the fine-structured modulations of
music signals; further, it has shown to be promising for recog-
nition tasks accomplishing an error rate reduction up to 60%
for the best recognition case combined with MFCCs.

Index Terms— AM-FM modulations, energy separation
algorithm, music processing, timbre classification.

1. INTRODUCTION

Psychophysical research has shown that human hearing is
largely based on amplitude and frequency modulations. The
human auditory system through the transduction procedure,
using the spectral shapes of auditory filters (FM to AM trans-
duction), can perceive the frequency modulations [1, 2] of
sounds. The musical signals’ temporal microstructure con-
sists of instantaneous amplitude and frequency modulations
of their main resonances, which characterize the waveforms
of those sounds. Modulations, such as the vibrato (FM) and
the tremolo (AM), are easily understood, while smaller ones
are not, nevertheless contributing to the creation of “natural”
sounds [3], with particular importance in music composition
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[4]. Additionally, modulation analysis could be applied in the
analysis of medium- and macro-structures for the description
of different musical phenomena and the relations of their
basic construction units.

Based on indications for the existence of nonlinear phe-
nomena, i.e., modulations during speech production [5], such
ideas have been used for speech analysis and especially for
detection and recognition tasks. Maragos et. al [5] has pro-
posed an AM-FM modulation model for speech and devel-
oped a nonlinear Energy Separation Algorithm (ESA) for de-
modulation of speech resonances in their amplitude and fre-
quency components using bandpass filtering [6, 7, 8]. This
kind of modeling has been used in applications of automatic
speech recognition [9] and synthesis [10], while it has also
been proved useful in speech recognition and detection in
noisy conditions [9, 11].

Modulations have also been studied in [12] for the anal-
ysis and resynthesis of musical instrument sounds, in order
to determine the synthesis parameters for an excitation/filter
model. Similar ideas have been applied for recognition and
specifically the distinction of speech and music in audio sig-
nals [13, 14, 15]. In [16], amplitude modulation features have
been extracted as a set of features for instrument recognition
so as to describe the tremolo measured in a frequency range
between 4-8 Hz and the “roughness” of the played notes when
the range is between 10-40 Hz. Similar ideas, based on a
sinusoidal model [17], have been used for sound modeling
[18] and source separation [19]. The main difference of the
AM-FM model in comparison to sinusoidal model is that the
latter does not have significant FM components apart from
the frame to frame slow variation of the phase and the num-
ber of its components is almost one-order of magnitude larger
than that of the modulation model which represents resonance
components instead of harmonics.

In this paper, the analysis concerns isolated musical in-
strument tones, derived from the UIOWA database with in-
strument samples [20]. In Section 2, we motivate and explore
the micro-modulations of musical signals, based on AM-FM
modeling using the Gabor-ESA [9] for the demodulation. Ad-
ditionally, we apply the iterative-ESA [7], for the estimation
of the center frequencies fc of the Gabor filterbank. In Sec. 3,
we continue with recognition experiments, in order to exam-
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ine the discriminability capabilities of the modulation features
regarding instrument classification tasks, using both static and
dynamic classifiers. We compare the descriptiveness of the
extracted features against and in combination with a standard
feature set of MFCCs and finally, we report on promising re-
sults regarding the AM-FM model used in this paper.

2. AMPLITUDE AND FREQUENCY MODULATION

Small fluctuations or micro-modulations in frequency occur
naturally in both human voice and musical instruments. Ac-
cording to Bregman [21], such fluctuations are often very
small, ranging from less than 1% for a clarinet tone to about
1% for a voice trying to hold a steady pitch, with larger excur-
sions of as much as 20% for the vibrato of a singer. Bregman
also states that even smaller amounts of frequency fluctuation
could actually have important effects on the perceptual group-
ing of the existing component harmonics of a sound.

Herein, we assume that the musical signal can be repre-
sented as a combination of different “resonances”, which ap-
proximately correspond to oscillation systems formed by the
instruments’ characteristics and the sound production proce-
dure (e.g., instruments geometry, material, performance of
a musical piece). Hence, certain frequencies are enhanced
while others are reduced.

Inspired by similar ideas used for speech processing [5],
we propose the modeling of each resonance component of
music signals as an amplitude and frequency modulated sinu-
soid (AM-FM signal) while we model the whole music signal
as a sum of such AM-FM components

S(t) =

K∑
i=1

αi(t) cos (φi(t)) (1)

where αi and φi are the instantaneous amplitude and phase
signals of component i.

In each AM-FM signal, the instantaneous frequency mod-
els the time-varying frequency of the resonance, while the in-
stantaneous amplitude follows the time-varying energy of the
sound source producing the resonance. This model may es-
timate the average value of the frequency, the instantaneous
amplitude of the resonance, and the instantaneous deviation
of the frequency. The advantage of such an analysis is that
AM-FM modulations are able to capture the fine structure and
the rapid fluctuations of musical signals. Such modeling may
be applied to smaller or larger analysis windows by exploring
the modeling possibility of musical characteristics and theirs
micro-, medium- and macro-structures.

2.1. Modulations Features

The AM-FM related features investigated in this paper are:
the mean Instantaneous Amplitude (m-IAM) which is de-
fined as the short-time mean of the instantaneous amplitude

signal |αi(t)| for each resonance component i, parameteriz-
ing the resonance amplitudes and capturing part of the non-
linear behavior of the signal, and the mean Instantaneous
Frequency (m-IFM), which is a short-time weighted mean of
the instantaneous frequency signal fi(t), which provides in-
formation about the signal’s fine structure taking advantage
of the excellent time resolution of the continuous-time ESA
proposed by Maragos et al. [5].

The Energy Separation Algorithm (ESA), which makes
use of the Teager Energy Operator [22] estimates the instan-
taneous amplitude and frequency signals given by

f(t) ≈ 1

2π

√
Ψ[ẋ(t)]

Ψ[x(t)]
(2)

|α(t)|≈ Ψ[x(t)]√
Ψ[ẋ(t)]

(3)

where Ψ[x] = ẋ2 − xẍ and ẋ = dx/dt.
In this paper we use a regularized version of the ESA,

called Gabor-ESA and proposed in [9], which is a combina-
tion of the continuous time ESA and Gabor filtering of the sig-
nal. Prior to the extraction of the features a Gabor filterbank
consisting of twelve filters is applied to decompose the sig-
nal into bandpass components. The Gabor filters were chosen
for their good joint time-frequency resolution [5]. In the fre-
quency domain the filters were placed according to mel-scale
with a bandwidth overlap of adjacent filters equal to 50%.

The Gabor-ESA gives smoother instantaneous estimates.
In this case the operator Ψ and the bandpass filtering are com-
bined as follows:

(4)
Ψ[x(t) ∗ g(t)] =

[
x(t) ∗ dg(t)

dt

]2

− (x(t) ∗ g(t))

[
x(t) ∗ d

2g(t)

dt2

]
where x(t) is the input signal, and g(t) is the Gabor impulse
response.

2.2. Iterative-ESA for Estimating Filterbank Center
Frequencies

In this section, we apply an alternative method for the esti-
mation of the center frequencies fc of the Gabor filterbank,
the iterative-ESA [7]. This method implies the iterative ap-
plication of ESA to the Gabor filtered signal and thus adjust-
ing the center frequency of each filter after every iteration.
The method is considered important since it reduces the im-
portance of having good initial estimates of the center fre-
quencies of the filterbank. For this analysis, we calculated
the short-time instantaneous frequency of tones using 30 ms
segments. Some of the tones used were A3 and A4 with fun-
damental frequency equal to 220 Hz and 440 Hz respectively
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Fig. 1: Gabor filterbank with the estimated center frequencies fc af-
ter the application of the iterative-ESA superimposed over Bb Clar-
inet spectrum for a 30 ms frame of the note A4, Fs = 44.1 Hz.

from the instruments Bb Clarinet, Soprano Saxophone, Vio-
lin and Flute. We started the procedure using center frequen-
cies dictated by the mel-scale, updating each one of them af-
ter every iteration of the ESA, while keeping the bandwidth
fixed. The algorithm is assumed to have converged when the
center frequency of each filter does not change by more than
1% or reached a certain number of iterations. Convergence
was accomplished at average after four iterations for the low
frequency filters, while we marked that more iterations were
needed for high frequency filters.

The analysis showed that during this procedure the center
frequencies tend to converge on frequencies which are close
to integer multiples of the fundamental frequency of the anal-
ysis tone, i.e., the harmonics. Figure 1 shows the Gabor fil-
terbank with the updated estimates of the center frequencies
fc superimposed over the spectrum of a 30 ms analysis frame
of the note A4 (f0: 440 Hz) of Bb Clarinet. The frequencies
shown on x-axis are the estimated frequencies for the filter
numbers two through nine and the signal is shown up to 8
kHz. As seen, these frequencies are actually close estimates
to f0, 2f0, 3f0, 4f0, 6f0, 9f0, 12f0, and 17f0. In Fig. 2,
the procedure of convergence can be seen for the fifth Gabor
filter, superimposed over the spectrum of a 30 ms segment
for the note A4 from Bb Clarinet. The initial frequency was
equal to 1970 Hz while after two iterations it converged to
fc = 1760 Hz which is actually the fourth harmonic (4f0) of
the note A4. Similar results were gained from the analysis of
the other instruments too. Another important observation was
that some of the Gabor filters favored to converge at the same
center frequency. This is something that remains to be ex-
plored to find out whether it is due to the initially chosen cen-
ter frequencies or to the signal’s properties at these frequen-
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Fig. 2: Gabor filters superimposed over Bb Clarinet spectrum for a
30 ms frame of the note A4. The iterative-ESA for the fifth Gabor
filter started at fc = 1970 Hz and after two iterations converged to
fc = 1760 Hz which is 4f0 for the note A4, with a difference of
210 Hz.

cies where there are no accentuated harmonics. However,
we assume that our findings are significant and require fur-
ther exploration since they gave us strong evidence that such
a method could produce better estimates of |α(t)| and f(t)
while it shows a certain ability to estimate the harmonic con-
tent of the tone, despite the fact that there is no prior knowl-
edge of the examined tone.

3. RECOGNITION EXPERIMENTS

In this section, we investigate the recognition properties of
the proposed features. Two sets of experiments were car-
ried out: (1) 1331 notes were used from seven different in-
struments, which are Double Bass, Bassoon, Cello, Bb Clar-
inet, Flute, Horn and Tuba; (2) five more instruments (738
notes) were added, and they are Alto Saxophone, Bass Trom-
bone, Tenor Trombone, Bb Trumpet and Oboe, thus a total
of 12 instruments were used to evaluate the features. For
both sets of experiments, same parameters were used. The
collection consists of the instruments’ full range for the dy-
namic range piano to forte and the signals are sampled at 44.1
kHz. The different cases of feature sets were evaluated using
static (GMMs) and dynamic classifiers (HMMs) in order to
model the temporal characteristics of the signals too. The ex-
perimentation consisted of diverse combinations of N [3-9]
states and M [1-3] mixtures. For the implementation of the
Markov models the HTK [23] HMM-recognition system was
used, by means of EM estimation using the Viterbi algorithm,
adopting a left-right topology for the modeling. The results
obtained are after five-fold cross validation with randomly se-
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Feature Sets
Proposed Features

1 AMFM (12 m-IAM + 12 m-IFM)
2 AMFM∆ (12 m-IAM+12 m-IFM (+ their 12 ∆ + 12 ∆∆))
3 AMFM50 (50 AMFM features after PCA)
4 AMFM39 (39 AMFM features after PCA)
5 MFCC∆ (13 MFCC + 13 ∆ + 13 ∆∆)

Multi-Stream Cases
1 AMFM∆ + MFCC∆

2 AMFM39 + MFCC∆

3 AMFM50 + MFCC∆

Table 1: List of feature sets used in recognition experiments.

lected training set, using 70% of the available tones. The abil-
ity of the examined features was further compared to a stan-
dard feature set of 13 MFCCs (with their first and second tem-
poral derivatives), which are chosen both for their good per-
formance and the acceptance they have gained for instrument
recognition tasks. The analysis of the MFCCs was performed
in 30 ms windowed frames with a 15 ms overlap, and with
24 triangular bandpass filters. For the combined feature sets,
a multi-stream configuration was adopted where each subset
of features was trained in a different stream and then fused
employing different stream weights for experimentation pur-
poses.

In our experiments, we evaluate the performance of fixed
sets of features, which are listed in Table 1. The mean-IAM
and mean-IFM features are estimated in 30 ms frames with
a 15 ms overlap. For the demodulation, twelve Gabor fil-
ters were used since it was empirically found to be a good
choice, after extensive experimentation. The first and sec-
ond temporal derivatives of the features were extracted re-
sulting in a 72 AMFM∆ feature vector. The dimensionality
of the AMFM∆ feature space, consisting of the mean-IAM
and mean-IFM, was reduced using PCA, in order to decorre-
late the data and obtain the optimal number of features that
accounts for the maximal variance. Several different combi-
nations of the number of PCA components were examined in
order to investigate how the discriminability results varied and
thus were enhanced. The study showed that the mean-IFM
features were better decorrelated thus more were needed in
order to obtain the maximum discriminability among the ex-
amined instruments. The cases presented next, accomplished
the higher error reduction compared to MFCC∆ and to the full
set of AMFM∆ features. In the first case, the reduced feature
space of total 50 PCA components consists of 18 mean-IAM
components (6 m-IAM, 6 m-IAM∆, 6 m-IAM∆∆) and 32
mean-IFM (12 m-IFM, 10 m-IFM∆, 10 m-IFM∆∆). Since
our intentions were to acquire as small as possible feature
space or at least comparable in number with the 39 MFCC∆,
we reduced the principal components to 39 using 12 mean-
IAM components (4 m-IAM, 4 m-IAM∆, 4 m-IAM∆∆) and
27 mean-IFM (12 m-IFM, 8 m-IFM∆, 7 m-IFM∆∆).

Accuracy Results for 7 Instruments
Feature Set Weights GMM HMM

Proposed Features

MFCC-AMFM M = 3
N = 3 N = 5
M = 3 M = 3

AMFM - 88.74 94.90 95.00
AMFM∆ - 89.14 94.60 96.72
AMFM50 - 95.30 96.31 96.06
AMFM39 - 94.29 96.41 96.77
MFCC∆ - 86.06 94.65 96.16

Multi-Stream Cases

MFCC∆ - AMFM∆

1.00 - 0.50 91.57 96.67 97.57
0.50 - 1.00 90.50 95.66 97.17
0.50 - 0.50 90.91 96.61 97.93
1.00 - 0.10 90.10 96.52 96.97

MFCC∆ - AMFM50

1.00 - 0.50 95.81 98.33 98.64
0.50 - 1.00 96.26 97.78 97.67
0.50 - 0.50 96.26 97.88 97.83
1.00 - 0.10 89.6 96.46 97.73

MFCC∆ - AMFM39

1.00 - 0.50 95.46 98.48 98.68
0.50 - 1.00 96.31 97.82 98.13
0.50 - 0.50 96.16 98.18 98.18
1.00 - 0.10 90.71 96.61 97.37

Accuracy Results for 12 Instruments
Proposed Features

AMFM50 - 85.46 91.74 93.72
AMFM39 - 82.38 92.68 93.72
MFCC∆ - 79.09 88.23 90.60

Multi-Stream Cases

MFCC∆ - AMFM50

1.00 - 0.50 88.55 94.37 95.32
0.50 - 1.00 87.19 94.73 94.96
0.50 - 0.50 88.03 94.50 95.55
1.00 - 0.10 86.18 92.33 94.02

MFCC∆ - AMFM39

1.00 - 0.50 87.64 95.19 95.89
0.50 - 1.00 85.33 94.67 95.45
0.50 - 0.50 86.70 94.93 95.67
1.00 - 0.10 85.73 92.55 93.33

Table 2: Recognition accuracy results for 7 and 12 instruments,
where N denotes the number of states and M the number of mix-
tures. For feature set specific information, see Table 1.

3.1. Results

The obtained accuracy scores of the classification results for
the different cases of feature sets were promising and proved
out to yield better recognition than the MFCC∆ for most cases
(even those not presented here). The most representative for
both sets of experiments are reported in Table 2.

We notice that AMFM∆ showed higher discriminability
than the MFCC∆ with an error reduction of 15% for N = 5,
M = 3. The best case of AMFM39 yields and error reduction
up to 60% (15%), 33% (38%) and 16% (33%) for the GMMs
and the HMMs when N = 3, 5 and M = 3, for 7 and 12 in-
struments (the error reduction for 12 instruments can be seen
in brackets). We herein assume that the AMFM features are
favorable and they accomplish correct recognition among the
analyzed instruments.

The combination of the proposed features (AMFM39)
with the MFCC∆ is acquiring even higher error rate reduc-
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tion, which is ca. 60% and 56% in comparison to the MFCC∆

for 7 and 12 instruments respectively. The scores regarding
the stream weights that were used for the experimentation
are comparable, with slightly better being the case were the
weights are set equal to s1 = 1.00 for the MFCC∆ and
s2 = 0.50 for the various AMFM feature sets. However,
for the case where the MFCC∆ stream weight is equal to
s1 = 1.00 and for the AMFM features s2 = 0.10, we mark
that the obtained accuracy is much lower, which strengthens
the fact that the AMFM features contribute remarkably in the
recognition task. Furthermore, we notice that HMMs receive
greater results, since they imply the temporal information of
the tones too, although the error reduction for the proposed
features compared to MFCCs is higher for the classification
cases using GMMs.

4. CONCLUSIONS

In this paper, we presented a nonlinear AM-FM model for the
demodulation of musical signals to instantaneous amplitude
and frequency modulation signals, motivated by similar suc-
cessful ideas applied to speech recognition and speech/music
discrimination tasks. One of our long term goals in this area is
to gain insight about the instruments’ properties. In this paper
we examined the discriminability capabilities of the modula-
tion features regarding instrument classification tasks. Based
on the the evaluation scores from two sets of experiments,
strong indications have arisen that modulation features can
capture important aspects of music sounds and discriminate
among different instruments.

On that account, in our ongoing research, we are applying
the method to a full set of instruments to validate the results
while increasing the difficulty of the recognition task by in-
serting more instruments of the same family. We would also
like to improve our preliminary work on iterative-ESA and
examine whether it could endorse our first observations and
integrate it in the analysis of the micro-structure of the sig-
nals. Moreover, we plan to perform a more careful and com-
plete analysis of the AM-FM model regarding the medium-
and macro-structures of musical signals.
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