
Morphological  Filters-Part 11: Their  Relations to 
Median,  Order-Statistic,  and  Stack  Filters 

Abstract-This paper  extends  the  theory of median,  order-statistic 
(OS), and  stack  filters by using  mathematical  morphology  to  analyze 
them  and by relating  them  to  those  morphological  erosions,  dilations, 
openings,  closings, and  open-closings  that  commute with thresh- 
olding.  The  max-min  representation of OS filters  is  introduced by 
showing  that  any  median or other OS filter is equal  to  a  maximum of 
erosions  (moving  local  minima) and also  to  a  minimum of dilations 
(moving  local  maxima).  Thus, OS filters  can  be  computed by a closed 
formula  that involves a  max-min on prespecified  sets of numbers  and 
no  sorting.  Stack  filters  are  established  as  the  class of filters  that  are 
composed  exactly of a  finite  number of max-min  operations. 

The  kernels of median, OS, and  stack  filters  are  collections of input 
signals  that  uniquely  represent  these  filters  due  to  their  translation- 
invariance.  The  max-min  functional  definitions of these  nonlinear fil- 
ters is shown  to be  equivalent  to  a  maximum of erosions by minimal 
(with  respect  to  a  signal  ordering)  kernel  elements, and also  to  a  min- 
imum of dilations by minimal  kernel  elements of dual  filters.  The  rep- 
resentation of stack  filters  based on their  minimal  kernel  elements is 
proven  to  be  equivalent  to  their  representation  based  on  irreducible 
sum-of-products  expressions of Boolean  functions. 

It is  also  shown  that  median  filtering  (and  its  iterations) of any  signal 
by convex 1-D windows is bounded below by openings  and  above by 
closings; a  signal is a  root (fixed point) of the  median iff it  is  a  root of 
both  an  opening  and  a  closing;  the open-closing and  clos-opening yield 
median  roots  in  one  pass,  suppress  impulse noise  similarly  to  the me- 
dian,  can  discriminate  between  positive  and  negative noise  impulses, 
and  are  computationally less complex  than  the  median.  Some  similar 
results are  obtained for 2-D median  filtering. 

M 
I.  INTRODUCTION 

EDIAN filters and their generalization,  order-statis- 
tic (in short, OS)’ filters, are  a  class of nonlinear 

and translation-invariant discrete filters that have become 
popular in digital speech and image processing, and also 
in statistical or economic time series analysis.  These fil- 
ters  are  attractive because they are easy to implement and 
can suppress impulse noise‘ while preserving the edges of 
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the signal. This is in contrast to linear filters, which blur 
edges and only smooth impulses. 

Tukey [l] first used the median filter for nonlinear 
smoothing of data. Median filters were then used in speech 
smoothing [2], [3] and image enhancement [4]-[7]. Con- 
siderable interest and research has been invested in study- 
ing properties and  fixed points (roots) of median filters 
[SI-[19]. Roots of the median filter have been used in edge 
enhancement [ 11, [6],  [7] and image coding [ 141. The OS 
filters were studied in  [8], [ l l ] ,  [17],  [21], and [22] and 
used for AM signal detection and image enhancement. 
Any OS filter can be defined both for binary and  for mul- 
tilevel signals.  Moreover, OS filters commute with any 
monotonic pointwise transformation of the signal ampli- 
tude; thresholding at any level in such a monotonic trans- 
formation. This important property of OS filters to com- 
mute with thresholding was investigated independently in 
[23], [8], [9],  [7],  [15],  [17], [24]-[26]. It was proven for 
any cascade of min/max operations by Nakagawa and 
Rosenfeld [23], appeared with examples in Justusson [SI, 
and was stated for  the median by Tyan [9], who also notes 
that a signal is a median root iff each of its thresholded 
versions (cross sections) is a binary median root. Serra 
[24] outlined a procedure to prove that the  2-D hexagonal 
median filter commutes with thresholding. Serra also 
proved that  a signal can be uniquely decomposed into its 
cross sections and reconstructed from them using a supre- 
mum. Fitch et al. [ 151, [ 171 provided a complete proof, 
without using morphology,  for  the combined result that 
median and OS filters (recursive and nonrecursive) com- 
mute with thresholding and hence OS filtering of multi- 
level signals reduces to  a  sum of OS filters for binary sig- 
nals;  their result refers to signals with finite extent and a 
finite number of amplitude  levels. Wendt et al. [27], [28] 
defined the  stack filters as  the class of all filters that are 
defined via a finite window,  commute with thresholding 
and,  hence,  are  increasing. They made the connection be- 
tween stack filters and positive Boolean functions [29]- 
[3 1 ] , which have a unique minimal expression as Boolean 
sum of products. Finally,  in Maragos and Schafer  [25] 
and Maragos [26],  a unified approach was introduced for 
representing a  large class of linear and nonlinear filters 
(including median and OS filters) as a supremum of ero- 
sions or infimum of dilations. 

This  paper, which reports work from [25] and [26], in- 
troduces the use of mathematical morphology, minimal 
kernel elements, and concepts from Part I [32] to analyze 

0096-35  18/87/0800-1170$01 .OO O 1987 IEEE 



median, OS, and stack filters and  to relate them  with  mor- 
phological erosions, dilations, openings, and closings. We 
emphasize  at  this point that median, OS, and stack filters 
are related only to  the function- and set-processing mor- 
phological filters that  commute  with thresholding. The 
general function-processing morphological filters that in- 
volve a nonbinary structuring function do not commute 
with thresholding, and thus are not related to  median, OS, 
or stack filters. In Section I1 we  examine  some properties 
of OS filters and  provide  two alternative simple proofs of 
the fact that they commute  with thresholding. In Sections 
I11 and  IV we show that: 1) any OS filter can  be exactly 
represented as a maximum of erosions,  or  as a minimum 
of dilations; 2 )  medians  and  their iterations are bounded 
below  by openings  and  above by closings; 3 )  a signal is 
a median roof iff it  is a root of both  an  opening  and a 
closing; 4 )  the open-closing  and  clos-opening give us 
median roots in a single pass, smooth signals similarly to 
the median,  and  have  some  advantages  over the median. 
Some of the above results are  also valid for 2-D signals. 
In Section V  we put result 1) in the unified framework of 
the theory of minimal  elements [26]  by introducing the 
kernel representation of OS filters. Finally,  in Section VI 
we establish that stack filters is the class of all finite min- 
max and max-min operations,  and  we relate their repre- 
sentation based on positive Boolean functions to their rep- 
resentation based  on  minimal elements. 

Throughout this paper  we  use  the  same notation, ter- 
minology,  and concepts as in Part I [ 3 2 ] .  

11. OS FILTERS FOR SETS AND FUNCTIONS 
We shall deal only  with discrete OS filters, Le., pro- 

cessing sampled ~ i g n a l s . ~  Hence,  our functions (multi- 
level signals) will be defined on 2". (m  is any positive 
integer), and  our sets (binary signals) will be subsets of 
2". The functions will generally have their amplitude 
range in the continuum R. Let S be a set of n real num- 
bers,  where  we  allow in S multiple repetitions of the same 
element. Suppose  we  sort these n numbers in descending 
order with respect to their algebraic value; the  kth  number 
from this sorted list is called the kth OS of the finite set 
S ,  k = 1, 2 ,  * - , n.  I fn isodd,   fork  = (n  + 1)/2 we 
have the median of S .  

Let W be a window, which  is defined henceforth as a 
finite subset of 2"' with I W I = 'n, where 1 I denotes set 
cardinality. The kth OS of a function f ( x )  by W is the 
function 

[OSk ( f :  w ) ] ( x )  = kth os of { f (  y ) : y  E wx}, (1) 

wherex E Z", 1 I k I n,  and W, = { x  + a:a  E W ]  
denotes the set W shifted at location x. The kth OS filter 
for functions by W is a function-processing (FP) filter 
whose output is the kth OS of the  incoming function by 
W .  For k = (n  + 1 ) / 2 ,  whenever  n  is  odd,  we have, 
respectively, the  case of the  median of a function fby  W ,  
denoted  as med ( f; W ) ,  and the median filter. I f f  is  a 

binary function,  then  its kth OS by W is also a binary 
function. Thus,  FP OS filters are actually function- and 
set-processing (FSP) filters. 

The straightforward way to define OS for sets by a win- 
dow  would be  to represent these sets by their character- 
istic function  and  take  the OS of this binary function by 
this window. An equivalent set-theoretic definition is  the 
following. The kth OS of a set X by W is the set 

OSk(X;  W )  = { yEZm:IXn W,I 2 k ] ,  ( 2 )  

where  k = 1, 2 ,  - * - , I W 1 .  Hence,  we  shift  the  window 
W ,  locate it  at y, and  count  the points inside the intersec- 
tion X fl W,, where X is  the input set. If the  number of 
points is at least k, then  the point y  belongs  to  the kth OS 
ofXby  W .  Notethat IXn WyI I n f o r a l l y E 2 " .   I f n  
is odd and k = (n  + 1 ) / 2 ,  then  the kth OS of X is called 
the  median of X by W and  denoted as med (X, W ). The 
kth  OSfiZter for sets by W is a set-processing (SP) filter 
whose output is the kth OS of the  incoming set by W. 

In what follows, the term "OS," except otherwise 
stated, will always  refer  to OS of functions or sets by a 
window.  Furthermore,  we shall use interchangeably the 
terms "OS filters for signals" and "OS of signals." OS 
filters are  morphological transformations of signals by 
sets,  because they satisfy all four  morphological princi- 
ples [ 2 4 ] .  Moreover,  the window W is actually a  structur- 
ing element capable of assuming  any  shape  and finite size. 
It need not be a convex or symmetric  set as has  been  as- 
sumed so far by previous researchers. Below  we  prove 
some general properties of OS filters. 

Property I: OS filters for sets and functions are in- 
creasing. 

Proof: Let X 5 Y. Then z E OSk (X; W )  o I X fl 
fl W,l * z E OSk (Y; W). Hence, OSk (X; W )  C_ OSk 
(Y; W). Now, iff I g, then f (z)  I g ( z )  Vz E W,, Vx 
E 2". Thus, [OSk ( f ;  W ) ] ( x )  I [OSk ( g; W ) ] ( x ) ,  
vx. Q . E . D .  

Property 2: OS of functions commute  with threshold- 
ing. That  is, for any  functionf (of finite or infinite extent) 
and finite window W, for all t E R and  k = 1, 2 ,  - * , 

W,I 2 k. But, x n w, c Y n w, 3 (x n w , ~  I I Y  

I W I ,  

x,[osk (f;  W)] = OSk [ X J f ) ;  w ] .  ( 3 )  

Proof I: Let g ( x )  = [OSk (f;  W ) ] ( x ) .  Then, z E 

X , ( g )  g(z)  2 t o I W, fl X , ( f > l  2 k o z E OSk 
[X, ( f ) ;  W I .   Q . E . D .  

Proof ZZ: OS filters are  FSP filters that are transla- 
tion-invariant, increasing, and U.S.C. [ 2 6 ] .  Hence,  from 
Theorem 4 of Part I, they commute  with thresholding. 

Q . E . D .  
For the median  we  simply  have that X, [ med ( f; W )  ] 

= med [ X ,  ( f ); W ] .  Note that Property 2 refers to any 
signal of finite or infinite extent  with a continuous or di- 
Crete amplitude range; in [15] and [17] the  commuting 
with thresholding of OS filters was  proved  only  for  the 

3For a definition of an analog median filter, see [33]. special case of signals with finite extent  and a finite num- 
- 
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ber of amplitude levels. The  essence of Property 2 is the 
equivalence between the OS filtering of a function fol- 
lowed by thresholding at level t ,  on  the  one  hand,  and, 
on the other hand,  the thresholding of the function at level 
t followed by OS filtering of the resulting cross section. 
That  is, both ways should give the  same  set, i.e., the cross 
section of the filtered function at level t. In addition,  after 
having obtained all the cross sections of OSk (f; W )  via 
OS filtering of the  sets X, ( f ), we can reconstruct the fil- 
tered function by using a  supremum (or maximum,  for  a 
finite number of amplitude  levels).  Hence, from Property 
2 and Part I (Theorem l) ,  

[OSk (5  W I  ( 4  
= sup ( t  E R : z  E OSk [X,(f);  W ] } .  (4) 

In [ 151, [ 171, and [28] it is assumed that f ( x )  has only M 
(finite) amplitude  levels t ,  and hence the reconstruction 
(4) can  also be done by summing the characteristic func- 
tions of the  sets OSk [X, ( f ); W ] for  all M levels t. We 
can transpose this result to our  case, where t varies con- 
tinuously over R ,  by using integration; i.e. , 

n 

where xs denotes  the characteristic finction of a  set S 
(i .e. ,xs(z) = l f o r z ~ S a n d x s ( z )   = O f o r z $ S ) . T h e  
reconstructions (4) and ( 5 )  are  equivalent, and both make 
use of the fact that { OSk [X, ( f ); W ] : t E R } is a family 
of decreasing sets  as t increases.  Consequently,  the anal- 
ysis and implementation of OS filters can be done by fo- 
cusing only on the  case of sets.  Clearly, OS of sets are 
much easier to deal with since  their definition involves 
only counting of points instead of sorting numbers (as is 
the  case  in OS of functions). 

Let X"  denote the set complement of X with respect to 
2". 

Property 3: OS of sets interact with set complementa- 
tion as follows.  For any set X and finite set W ,  OSk ( X"; 
W )  = [ O S " - k + '  ( X  W ) ] " ,  fork = 1 , 2 ,  * * , n = I WI. 

proof: E osk (x"; W )  ($ lxc n WJ I k I X  
n w,l < - k + 1 $ O S , - ~ + ~ ( X ;  W )  e E 
[ O S " - k + ' ( X  W ) ] " .  Q.E.D. 

A corollary of the above  property, if I WI is odd, is 

Property 4: Median of sets commutes with comple- 
given. 

mentation; i.e., med (X"; W )  = [med (X, W ) ] ' .  

111. RELATIONS  BETWEEN OS AND MORPHOLOGICAL 
FILTERS 

By combining the definitions of OS in (1) and (2) with 
the definitions of erosion and dilation in Part I, we see 
that the first ( k  = 1 ) OS of any signal by a window W 
coincides with its dilation by W. Similarly,  the nth OS, 
where n = I WI,  is equal to  the erosion by W. Hence, it 
can be shown that, fork = 1, 2, , I W I ,  

X e W' E E osk+' (X W )  

s OSk ( X  W )  E * C X @ W". (6)  

Thus, the FSP (only) erosions and dilations by sets are 
special cases of OS filters. Since OS filters commute with 
thresholding, relation.(6) and all subsequent relations in- 
volving sets, OS or morphological filters for  sets,  and set 
inclusions are  also valid for functions too;  we only need 
to replace sets with functions and set inclusion E with 
function ordering I, and vice  versa. 

We can interpret the  kth OS filtering of S by a window 
W as  a  cascade of a  linear shift-invariant filter with im- 
pulse response h = xw followed by the nonlinear point- 
wise thresholding operation of taking the cross section of 
h * xs = xw * xs at level t = k I I W I ,  where * denotes 
linear convolution. That  is,  for  all k = 1 , 2, - , I W I , 

OSk (s; W )  = X,=k[XW * xs]. 

This formula allows us to implement OS filters (including 
SP erosion and dilation) in terms of linear  convolutions; 
obviously, this is  a serial implementation. 

Next we show how any OS filter can be expressed as  a 
maximum of erosions or minimum of dilations. Let (g) = 
n! /k! ( n  - k) ! denote the number of combinations of n 
items grouped k at  a  time, where O! = 1. 

Theorem I :  For any functionfand any finite set W ,  the 
kth OS off by W, k = 1, 2, * * , n = I W I ,  is equal to 
the pointwise maximum of the moving local minima off 
inside all ( z )  windows equal to the subsets of W contain- 
ing exactly k points,  and  it  is  also  equal to the minimum 
of the moving local maxima off inside all the subsets of 
Wcontaining exactly n - k + 1 points. As a special case, 
the median off by W is equal to  the maximum of minima 
(and also the minimum of maxima) off inside all subsets 
of W containing exactly ( n + 1 ) /2  points, where n is 
odd. 

Proof: Let a,  1 a2 2 - * 2 a, be the n ordered 
values off inside W shifted to any location z .  Let Si, i = 
1, 2, , (g), be the  sets of values o f fon  each of all 
the different subsets of W, containing exactly k points. 
Since { a l ,  * - , ak- 1 ,  u k }  is  one of the Si's, then ak is 
one of the minima off on  the Si's. Every other set Si will 
have at least  one  element from the set { ak+ , , ak + 2 ,  

- - , a,} and,  hence, it will have a minimum I ak. Thus, 
the maximum of all  these minima is equal to ak = [ OSk 
(f; W ) ] ( z ) .  Likewise, Tl = { a k ,  ak+,,  * - , a,) is one 
of the sets T,, m = 1, 2 ,  * , (,-%+ , >, of the values of 
f on the subsets of W, containing n - k + 1  points. 
Clearly, ak = max ( Tl).  Every other set T, # Tl will 
have at least one element from the set {a , ,   a2 ,  - , 
ak-l  } and,  hence, it will have  a maximum I ak. Thus, 
the minimum of all  these maxima is again equal to ak. For 
the case of the  median, n is odd and  k = ( n  + 1 ) / 2  = 
k = n - k + 1. Hence,  the subsets of W with k points 
are equal to the subsets with n - k + 1 points.  Thus, the 
minima and maxima refer  to  the  same subsets of W. 
Therefore,  the median can be expressed both as  a maxi- 
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mum of minima  and as  a minimum of maxima  on  all the 
subsets of W containing exactly (n  + 1 ) /2 points. 

Q.E.D. 
From  Theorem 1 the following theorem  immediately 

results. 
Theorem 2: The  kth OS of sets (respectively, func- 

tions) by a window W, k = 1, * * , n = ( W I ,  is equal 
to the  union (respectively, maximum) of erosions by all 
the subsets of W containing k points. It  is  also equal to 
the intersection (respectively, minimum) of dilations by 
all the subsets of W containing n - k + 1 points. That  is, 
for any set S E Z", 

osk (s; w) = U s e P' = n s 8 Q'. 
P E  w 
IPI = k  l Q l = n - k + l  

Q G  W 

( 7 )  
For  any function f (x), x E Z", and P ,  Q as in (7), we 
have 

[OSk (f; W)l(x> 
= max ( ( f  e P ' ) ( x ) )  = min ((f 8 @)(x)). (8 )  

If n is odd,  for  k = (n  + 1) /2  we have the special case 
of the median: 

P Q 

[med (f; W)](x) = max ( ( f  e B " ( x ) )  
jBI=(n+1)/2 

B E W  

- - min { (f Q B W ) .  (9) 

IB( =(n+1)/2 
B G  W 

The  median of S by W is  given  from (7) by setting k = 
(n  + 1)/2.  

Proofi Equation (8) results from  Theorem 1 and  the 
fact that the local minimum  (maximum) filter with respect 
to  a  moving window A is equal to the erosion (dilation) 
by A .  Equation (7) results from (8) by setting S = X, ( f ) 
for some  t  and  an arbitrary functionf,  because X ,  [ OSk ( f; 
w ) ]  = (s;  w>,  X, [maxp { f e P'(X))I = U,X, (f 
e P ' )  = U p  S e P", and  X,[minQ { f  8 @(x)}] = 
n , x , ( ~ @  @) = n Q S  8 @. I f n i s o d d a n d k  = (n  
+ 1 ) /2  = n - k + 1 we get (9) from (8) or (7). 

Q.E.D. 
IV. MEDIANS, OPENINGS, CLOSINGS 

So far,  our discussion has  been general and referred to 
every OS by an arbitrary window W. In this section we 
discuss only the case of median filtering by  convex win- 
dows,  because this constraint enables us to find some in- 
teresting properties between  such  median filters and  open- 
ingdclosings. An intuitive idea about  such properties can 
be obtained from  Fig. 1. Fig.  l(a) shows  a functionfrep- 
resenting a  256 X 256-pixel graytone  image corrupted by 
salt-and-pepper noise. In  Fig.  l(b) the opening fB off by 
a  2 X 2-pixel square convex  set B cuts  down  the  peaks  of 
f and  hence suppresses the positive noise spikes ("salt' ' 
noise). In  Fig. l(c) the  open-closing ( fB)B fills up the 
valleys of fB and  hence suppresses the negative noise 

Fig. 1.  (a) A 256 X 256-pixel (8-bit/pixel) graytone image f corrupted 
with salt-and-pepper noise; SNR = 15.1 dB. (Probability of occurrence 
of noisy samples is 0.1.) (b) Openingf, offby a  2 X 2-pixel square set 
B ;  SNR = 19.5 dB. (c) Open-closing ( f s ) B ;  SNR = 25.8 dB. (d) Me- 
dian offby a 3 X 3-pixel window; SNR = 29.1 dB. (The SNR's were 
computed by 20 log,, (255/e,,), where ems was the rms-value of the 
difference between the original and the noisy or restored images. ) 

spikes ("pepper" noise). Comparing  Fig. l(c) and (d) in- 
dicates that a  median filtering of f by a  3 X 3-pixel 
convex square window W behaves similarly to  the  open- 
closing by B ,  but the  latter  is computationally less com- 
plex than the median.  In  addition,  the  open-closing  can 
decompose  the noise suppression task into two parts; Le., 
opening suppresses the positive noise impulses, the clos- 
ing suppresses the negative noise impulses, but the me- 
dian cannot discriminate between  them. Qualitatively, the 
median  behaves like a  combined  opening  and closing by 
a set of size  about half the size of the  median  window. 
Next  we formalize our discussion. 

A. Medians by I-D Convex  Windows 
Assume in this section that the window  for  median fil- 

tering is a convex symmetric (with respect to the origin) 
set W and that the structuring element  for  openings  and 
closings is a  convex  set B, where W ,  B E 2, 

( w I  = 2n + 1, I B I  = n + 1, n E Z + ,  (10) 

and 2, is the set of positive integers. The  set B does not 
have to be  symmetric or contain the origin, because the 
opening by B is  equal  to  the  opening by  any translation 
By of B .  That  is, 

for any y E 2; likewise for the closing by B. 
The input signals to  the  examined filters will be sets or 

functions, and, if not otherwise stated, of finite or infinite 
extent. In proving  the theoretical results of this section 
we  assume,  for  simplicity, that the signals are  1-D. How- 
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ever,  the obtained results are  also valid for multi-D input 
signals.  This  is  true because we can "slice" (intersect) a 
multi-D signal by all 1-D discrete lines Z parallel to the 
line containing the 1-D median window Wand essentially 
reduce the multi-D filtering into 1-D filtering of each 1-D 
slice. 

A root (or f i e d  point) of a filter rl/ ( ) is any signal f 
such that $( f) = f. If rl/ is  FSP  and commutes with 
thresholding, then a function f is  a function-root of rl/ iff 
all  the cross sections off are set-roots of rl/. Let medok 
( * ; W), k E Z , ,  denote  the kth iteration of the median 
filter by W, where medo(k+l) (f; W) = med [medok (f; 
W);  W] and medo' (f; W )  = med (f; W ) .  If f h a s  a 
finite extent, then iterating the median by Wonfwill yield 
a median root, which we  denote by rned"" (f; W); ac- 
tually, this root will be obtained after only a finite number 
of iterations [lo], [ 181. 

The  ordering relations (6) show that  the median of a 
signal by a window W is bounded below by its erosion 
and above by its dilation by W. Below we  give  tighter 
bounds for the median and its iterations,  and  provide  a 
sufficient condition to find a median root. 

Theorem 3: The median (and any of its iterations) of 
any set  X or function f by W is bounded below by the 
opening and  above by the closing of the signal by B .  Fur- 
ther,  if  the signal is a root of the  opening  and closing by 
B ,  it is a root of the median by W. 

a) Xg C medok ( X  W) C X,, andf, 5 medok (f; 
W )  sf  , v k ~ Z + .  

b ) X = X , = X B * X = m e d ( X ; W ) , a n d f = f B =  
f B  * f =  med( f ;  W ) .  

Proof: Let k = 1. Then z E X, * there is y such that 
z E By C X. From (10) and  since W = W", I W, f l  By I 1 
n + 1 * I W, fl XI 2 n + 1 * z E med (X; W ) .  Thus, 
X ,  G med ( X  W). Now ( X " ) ,  E med (X";  W) * (X,)" 
E [med ( X  W)]" med (X;  W) C X , .  The median is 
increasing filter. Hence, med (X,; W )  C medo2 ( X  W) 
5 med (XB;  W). But X ,  = ( X , ) ,  C med (X,; W) and 
med ( X B ;  W )  5 ( X B ) ,  = X , .  Thus, X, C medo' ( X  
W) C X,, and by repeating the  same  procedure on the 
latter result we obtain X, C medok (X W) C X,, vk E 
2,. The FSP filter medok ( - ; W )  commutes with thresh- 
olding because it is  a  cascade of k  medians.  Thus, by set- 
ting in  the previous proof X = X, ( f ), it follows that Vt 

X,  ( f,) C Xk[medok (f; W)] E X, ( f B )  f, S medok 

Theorem 3b) is a  simple corollary of a)  since  X = X, 
E med ( X  W) c X,,=  X * X = med (X;  W). Likewise 
for  functions. Q.E.D. 

Note that we  take  the median by W, but the opening 
and closing by B.  From (lo), the set W is a fixed point of 
both the opening and closing by B .  Hence, from [24], X, 
E . X ,  and XB C X,. Therefore, if we  take the opening 
and closing by W instead of B ,  we will bound the median 
with looser bounds. 

By restricting the signal to be of finite extent,  we can 
find a necessary and sufficient condition relating the me- 

E R,  [ X , ( ~ > I ,  c medok [X, (f); WI E [X, ( f ) l B  * 
5.f * 

dian roots to the roots of the opening and closing. Gal- 
lagher and Wise [lo] proved that  a multilevel signal of 
finite length is a median root by a window of 2n + 1 
points iff it consists of edges (monotonic regions) and 
constant neighborhoods of at  least n + 1 consecutive 
points. Using their method of proof, we  now prove a sim- 
ilar theorem for  sets  (our approach differs in  the way  we 
handle the boundary conditions). 

Theorem 4: A finite set X is a root of the median by W, 
I W I = 2n + 1, iff it consists of convex subsets of length 
at least n + 1 points and  these subsets are separated from 
each other by convex subsets of X"  of at least n + 1 points. 

Proof (Suficiency): Both X  and X" consist of convex 
subsets of length 1 n + 1 = I B I .  Hence,  X = X,, and 
X" = (X"), * X = X,; thus,  X = med ( X  W)  due to 
Theorem 3.  

Necessity: Let  X = med (X; W ), as shown below for 
a setXwith W = { -2,  -1, 0, 1, 2 ) :  

U b 
-1 .1 

Wa -+ wb -+ 

x = . . *  0000111 1111110000111000  . . - .  - - 
(11) 

Slide the window W of 2n + 1 points from left to right 
(in (1 l) ,  n = 2 ). At the first point a of X, the left part of 
the window W, contains n points of X".  Thus,  the right 
part of the window W, must contain n points of X so that 
a E med ( X ,  W ). Thus, adjacent to  the point a from the 
right there is a convex subset of X of length k 1 n + 1 
points (in (1 l ) ,  k = 9) including point a. All these k 
points will remain after median filtering. Moving the win- 
dow W from left to right,  after  this k-point subset of  X, 
we will encounter points of X"; call b the first such point. 
The window w b  contains from the left n points of X, and, 
hence, it must contain from the right n points of X", so 
that b med (X; W ). Thus,  the point b must see from the 
right a convex subset of X" of length j 1 n + 1 points 
(in (1 l) ,  j = 4 )  including point b. All these j background 
points will remain unchanged after median filtering. Con- 
tinuing to the right we may encounter another point of X 
by repeating the above process, we complete the proof. 

Q.E.D. 
In the  above theorem and in all  our analysis concerning 

OS filtering, we did not assume,  as  in [lo], that the finite 
extent signal was extended by appending values at the 
border points. We simply let  the operation of set comple- 
mentation take  care of the  border points. That is, every 
point outside the finite extent of the set-signal belongs to 
the background. Based on Theorem 4 we can now relate 
the roots of the median with those of the opening and clos- 
ing,  as  follows. 

Theorem 5: A set X or function f of finite .extent is a 
root of  the median by W iff it is  a root of both the opening 
and the closing by B .  That  is, X = med (X;  W) H X = 
X , = X B , a n d f = m e d ( f ; W ) H f = f , = f B .  

Proof: 
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I) For Sets: Suficiency results from  Theorem 3b). 
Necessity: Let  X = med ( X ,  W ). Then, from  Theorem 

4, both X and X" consist of convex subsets of length 2 n 
+ 1 = 1 B I .  Hence, X = X,, and X" = ( X " ) ,  o X = 

2)  For Functions: Using the links between sets and 
functions and the fact that median,  opening,  and closing 
commute  with thresholding, we have: f = med ( f; W )  o 
X t ( f > = Y = m e d ( Y ; W ) V t ~ R ~ Y = Y B = Y B e f  

For infinite signals,  Theorem 3b) is still true,  whereas 
Theorem 5 is not always  true,  as  the following counter- 
example  shows.  Consider  the injinite 1-D set X below and 
let B = { -1, 0, 1,). Then, 

X B  . 

= f, = f B. Q.E.D. 

x =  ~ ~ ~ 0 1 0 1 0 1 0 1 ~ - ~  =,x, 
= - . *  0 0 0 0 0 0 0 0  - * -  

where 0 E X' and 1 E X. Then, if W = { -2, - 1, 0 ,  1, 
2},  X = med ( X  W ) ,  butX # X,. 

One implication of Theorem 5 is the idea that instead 
of iterating a  median filter many times to obtain a  median 
root, one  could alternatively obtain a signal that is a root 
of the opening  and closing; this latter signal would then 
be  a  median root. In contrast to  the  median filter, to obtain 
a root  of the opening or closing we need not iterate the 
opening or  closing, respectively, because  both operations 
are idempotent. That  is,  the opening  or closing of a signal 
is itself a root of the  opening or closing filter, respec- 
tively. 

A morphological filter that yields roots of both the 
opening  and  closing,  and  hence, of the  median,  is the 
open-closing or clos-opening. The  open-closing (open- 
ing followed by closing by the  same structuring element) 
of X by B is equal to (X,),. The  clos-opening (closing 
followed by opening) of X by B is equal to (X,),. Like- 
wise for functions. Before  we  prove the above assertion 
we need Theorem  6. 

Theorem 6: For any set X or  functionfof finite extent, 
the root of the median by W is bounded  below by the 
open-closing  and  above by the  clos-opening by B. That 
is, (X,), E medo" ( X  W )  E (X,),, and (f,), I 
med"" (f; W )  I (f,),. 

Pro08 After  a finite number, say k ,  of iterations of 
the  median, we obtain the  median root Y = medom ( X  
W )  = medok  (X; W ) .  Then,  from  Theorem  3, X, E Y 
E X,. Since Y is  a  median  root,  from  Theorem 5 ,  Y = 
Y, = Y E .  Thus, ( X , ) ,  E Y B  = Y = Y, C_ ( X , ) , ,  because 
opening  and closing are increasing. Similarly for. func- 
tions (by considering their cross sections since  all the ex- 
amined filters commute  with thresholding). Q.E.D. 

So far we  have  seen that the  median  is  bounded by the 
opening  and closing and that the median root of a finite 
signal is bounded by the  open-closing  and  the  clos-open- 
ing. Below we  prove that these two  latter  morphological 
filters are median roots by themselves. 

Theorem 7: The  open-closing  and  clos-opening by B 
of  any finite extent function f or  set X are roots of the 

median by W. That  is, ( f,), = med [ ( f,),; W ] ,  and 
( f B ) B  = med [ ( f'),; W]; likewise, if a  set  X replaces 

Proof: From  Theorem 6, ( f,), = [ ( f,),], I 
'med"" (f,; W )  I [(f,),], I (f,),. Hence, ( f,)' = 
[ ( f,),lB is  a root of-the  opening and, obviously, of the 
closing by B .  Thus,  from  Theorem  3b), ( f,), is a root of 
the median by W. Similarly, ( fB), is equal to  its  opening 
and closing by B and,  hence,  a  median root by W. Like- 
wise  for  sets, if we replace in the previous proof f with X 
and 5 with E .  Q.E.D. 

Fig. 2(a) shows  a finite 1-D multilevel signal f of 256 
samples representing a  graytone  image intensity profile. 
Fig.  2(b),  (c),  and (d) shows, respectively, the open-clos- 
ing and  clos-opening off by B, and the median root off 
by W, where 1 B I = 3  and I WI = 5 .  The median root was 
obtained by iterating the  median four times. The  bounds 
of Theorem 6 are satisfied, but the difference between the 
median root and the open-closing or clos-opening is very 
small. For  a  1-D signal of L  samples,  the  maximum  num- 
ber of iterations of the  median filter needed  to obtain the 
median root (with respect to  a 2n + 1-point window) is 
equal to  3 (L - 2)/(2n -t 4 )  if  we append  samples  at the 
ends [ 181, and 3L/  (2n + 4) if we  do not append  samples 
(in  Fig. 2, L = 256,  n = 2) .  Further,  for  a  256-sample 
signal, 28 iterations of the median  are  needed [16], at 
most,  to obtain a signal which is a  median root with  a 
confidence of 95 percent. However,  Theorems  6  and 7 tell 
us that the open-closing  and  clos-opening yield in one 
pass median  roots,  which  bound  from  below  and  above, 
respectively (and, as  Fig.  2  shows,  lie  close  to) the me- 
dian root obtained by iterating the median. As an  aside, 
both  open-closing  and  clos-opening  are  idempotent op- 
erations [26], [32], and,  hence, their output stabilizes in 
a single pass. In addition, if we  view  Fig. 2(a) as  a signal 
corrupted with  impulse  noise,  and Fig.  2(b),  (c), and (d) 
as its smoothed versions, then clearly the  open-closing 
(or clos-opening) behave  very similarly to the median. 
Moreover, as in Fig. 1, the  open-closing  can selectively 
eliminate positive or negative noise impulses,  whereas the 
median root cannot discriminate them.  In [34], the statis- 
tical properties of  1-D and  2-D  open-closings (by a  com- 
bination of 4 oriented n + 1-point 1-D sets) and  median 
filters (by the  same  combination of 2n + 1-point win- 
dows)  were  compared; it was  found that these  median fil- 
ters offer more noise suppression, whereas  open-closings 
appear  to  have superior syntactical performance. 

It may be of interest to  compare  the  computational  com- 
plexity involved to obtain the  open-closing (or, equiva- 
lently, the clos-opening)  and  a  median root. Recall that 
I W (  = 2n + 1 and I BI = n + 1. Then  the following 
three quantities 'are involved in measuring the computa- 
tional complexity (per output sample):  the  number of 
passes P ;  the number of exchanges E; and  the  number of 
comparisons C .  For the open-closing by B (two local min 
and  two local max),  we  have P = 4,  E = 0, and C = 4n. 
For  a single median filtering operation by W, using the 

f. 
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Fig. 2. (a) Original 1-D function f. (b) Its open-closing ( f B ) B  by B = 
{ - 1, 0, 1 }. (c) Its clos-opening ( fB)B. (d) Its median root rned"" ( f; 
W )  by W = { -2 ,  -1, 0,  1, 2 ) .  

bubble-sort [35] algorithm for  sorting, we have 1 5 P I 
2n + 1 , 0  I E 5 (2n2 + n ) ,  and2n I C I (2n2 + n ) .  
In addition,  the average number of these three quantities 
required for  the median (i.e.,  for the sorting) is approxi- 0 
mately [35] of the following order: O (  M ) for Pa,,; 
O(  M 2 )  for E,,,; and O(  M 2 )  for Cave; where M = 2n + 0 0  0 0  

[35] or specifically for the median (see [6] for  references), rectangular grids. 
Of course, there are Other faster for sorting Fig. 3.  2-D median filtering windows: H for hexagonal grids and R for 

but these  faster algorithms usually come with an increase the window is for hexagonally sampled 2-D signals, 
in sophistication. Thus,  the open-closing (or clos-open- and the window R for rectangularly sampled 2-D  signals. 

computational complexity than a single median. In addi- arranged as on a hexagonal grid. Then the set has the 
tion,  the iterations of the median needed to obtain median 
roots compared to  the  single pass needed for the open- 

ing) requires a and> in many cases, Consider any subset X of a plane 2 2  whose points are 

property that 

closing (or clos-opening) make the  latter more appealing. 
- -  

Z E X H E  IH, fl XI r 4,  (14) 
In summary,  the following orderings and bounds have 

been established between openings,  closings, medians, 
and median roots: 

since z E X ,  iff there is point y such that z E Hy 5 X ,  and 
the  latter implies 1 Hz fl X (  1 4  due to the geometry of 

- H .  Based on (14) we have Theorem 8.  
XB C med ( X B ;  W )  S (XB)D E med"" (X W )  Theorem 8: For any set X or function f defined on a .  

E ( X " )  E med ( X B ;  W )  C X B .  
hexagonal grid: 

(12) 
a) X ,  C medok ( X  H )  5 X,, and f H  5 medok ( f ;  

Similar results hold for functions too: H )  5 f H ,  vk E 2,. 
B b) X = X ,  = X H  * X = med ( X ;  H ) ,  and f = f H  = & I med (f& W )  5 ( f B )  I medom ( x  W )  I ( f B ) ,  f H = f = m e d ( f ; H ) .  

I med(fB;  W )  5 f B .  (13) ProuJ a) From (14), z E X ,  x E med ( X ,  H ), and 
hence X ,  C med ( X ;  H ) .  Then ( X " ) ,  C med ( X " ;  H )  

B. Medians by 2 - 0  Windows 8 ( X H ) "  5 [med ( X  H ) ] "  8 med ( X ;  H )  S X,. By 
Some of the results concerning medians by 1-D convex following the  same procedure as  in  the proof of Theorem 

windows also apply for median filtering of multi-D dis- 3a), we can complete the proof of a) both for sets and 
Crete sequences by certain 2-D windows. Two such win- functions. Finally, b) is a simple corollary of a). Q.E.D. 
dows shaped like  a 7-point hexagon are shown in Fig. 3; Theorem 8b) is true both for finite and infinite signals; 
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the  converse,  even  for finite signals,  is not generally true. 
We prove this through a  counterexample shown in  Fig. 4, 
where we  see  a finite set Y for which Y = med ( Y; H ), 
but Y # Y H .  Further,  Theorem  7 is not valid for 2-D fil- 
tering by H because  neither  the open-closing nor the clos- 
opening by H are  always roots of both the opening and 
closing by H. We prove this through a  counterexample. 
I f Y i s t h e s e t o f F i g . 4 , Y H = ( Y H ) H # [ ( Y H ) H ] H = Y ;  
thus ( Y H )  is not a root of the  opening  and not a median 
root by H .  

Finally, Theorem 8 also  applies  to median filtering of 
rectangularly sampled functionsfor sets X by the window 
R o f F i g . 3 . T h a t i s , f R s m e d o k ( f ; R ) s f R , a n d f =  
f, = f R  =) f = med ( f; R ) ;  the proof proceeds exactly as 
in Theorem 8, and  exploits  the  fact  that z E X, * I R, fl 
X 1 1 4, due to the geometry of R. 

V. REPRESENTATION OF OS FILTERS BY KERNELS AND 
MINIMAL  ELEMENTS 

In this  section  we present the relations between mor- 
phological and OS filters under  the unified framework of 
the theory presented in [25] and [26]. Consider  the SP 
filter *(X) = OSk(X;  W ) ,  where k = 1,  2, * * : , 1 WI 
= n and  X G Zm. Then  the dual SP filter of k with re- 
spect to  complementation, defined by k d (X ) = [ (X") ] ", 
X E Z", is equal  to  the ( n  - k + 1)th OS filter by W. 
For  instance, if k is the  set  erosion, then k is the set 
dilation by W,  and  vice  versa. If n is odd and k = ( n  + 
1)/2,  then both k and k coincide with the SP median 
by W. The filter 9 is translation-invariant (in short, TI ) 
and is defined on 6 (2") (the class of all subsets of Z"), 
which is a  class of sets closed under set translation. The 
kernel of k is defined generally by X (k  ) = { X  E 2"' : 
0 E *(X)}, where 0 is  the zero vector of 2". Thus, 
X (k )  is  a  collection of input sets  that can uniquely char- 
acterize  and reconstruct k by using translations [36]. That 
is, *(X) = ( a  E 2" : X-, E X(*)}, for each X. From 

X(*) = {X E 2": IX fl WI 1 k ) .  (15) 

In [25] and [26], we extended the kernel representation to 
FP filters that  are TI (see Table I1 of Part I) and are de- 
fined on a  class 5 of functions closed under function 
translation. The  FSP filter $ ( f ) = OSk( f; W )  is such a 
case with 5 being,  for  example,  the  class of all real-val- 
ued functions f defined on 2". The kernel of 4, defined 
generally by X($)  = { f ~  S : [ $ ( f ) ] ( O )  2 0}, is a 
collection of input functions that  can uniquely character- 
ize  and.reconstruct $ by using translations and supremum 

(2) 7 

[261. s incexr [$ ( f ) l  = k [ X t ( f ) I  Vt E R , f  E X($)  
* x,=, ( f )  E X(*). 

Since k is TI and increasing, it can be realized as  the 
union of SP erosions by all  its kernel elements [36]. Sim- 
ilarly,  since $ is TI, increasing, and commutes with 
thresholding, it can be realized exactly as  the pointwise 
supremum of FSP erosions by all  the kernel elements of 
k [26].  However,  these  realizations,  except  for  their the- 
oretical interest,  are impractical because they require an 

0 0 0 0 0 0 0 0 0  

0 * * 0 0 * * 0  

0 * * * 0 * * * 0  

0 * . 0 0 * * 0  

0 0 0 0 0 0 0 0 0  

Y 

0 0 0 0 0 0 0 0 0  

0 * * 0 0 * * 0  

o e * * * * * * o  
0 * * 0 0 * * 0  

0 0 0 0 0 0 0 0 0  

Y H  
Fig. 4. Counterexample for relations between 2-D medians and openings- 

closings. ( *  E Y,  0 E Y'.)  

infinite number of kernel elements.  This is why we intro- 
duced the concept of the basis 63 ( k )  of k,  which is de- 
fined as  the  set of minimal elements of X ( !# ). [ The sys- 
tem ( X ( 9 ), C ) is  a partially ordered  set;  an element M 
E X (  k )  is minimal iff, for each A E X(*), A E M * 
A = M .  ] These minimal elements exist  in X ( k ) if \E is 
TI, increasing,  and  upper  semicontinuous (u.s.c.) [26]. 
Next we provide a representation theorem for filters like 
!# based only on their  basis. 

Theorem 9 (Maragos [26, p p .  136-1371): 
a)  Let CP: S -+ 6 ( Z m )  be  a TI, increasing, and U.S.C. 

SP discrete  filter, where S E 6 (2") is closed under 
translation and infinite intersection.  Then 9 is exactly 
represented as  the union of erosions by its basis sets. If 
its dual cpd is u. s .c., 9 can  also  be represented as  the in- 
tersection of dilations by the basis sets of cpd. 

b) Let 4 be  a  TI discrete  FSP filter commuting with 
thresholding, and CP be  its respective SP filter. Then 4 is 
exactly represented as  the pointwise supremum of FSP 
erosions by the basis sets of 9. If the  dual of CP is  u.s.c., 
4 can also be represented as  the infimum of FSP dilations 
by the basis  sets of cpd. 

Note  that in Theorem  9b), 9 and 9d are  TI because 4 
is TI. Further, 9 is increasing and  U.S.C.  because 4 com- 
mutes with thresholding (see Section 11-D of Part I); since 
9 is TI and increasing, ad is  TI and  increasing  too.  Theo- 
rem 9 applies to median and OS filters as  follows. 

Theorem IO:  
a)  Let  the m-D SP filter k be the kth OS of sets by W 

C_ Z", where k = 1, 2, - * , I W (  = n; its dual kd is the 
( n  - k + 1)th OS filter by W. The minimal kernel ele- 
ments of 9 are  all  the ( I )  subsets P of W with 1 P 1 = k, 
and the minimal kernel elements of kd are  all the 
( n - n k + l )  subsets Q of Wwith 1 Ql = n - k + 1. The filter 
!# is equal to  the union of set erosions by all P's and the 
intersection of dilations by all Q7s.  

b) If the m-D FSP filter $ is  the kth OS of functions by 
W, then $ is equal  to  the  pointwise maximum of function 
erosions by all  the P's and to the minimum of dilations 
by all  the Q's.  [See also (7)-(9).] 

Proofi 
a) F r o m ( 1 5 ) , i f P ~   W w i t h I P I   = k , t h e n P ~ X ( k ) .  
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N o w , i f t h e r e i s G ~ X ( ' k ) s u c h t h a t G C  P , k <  IGn 
WI 5 [ G I  5 IPl = k =) G = P. Hence, Pisaminimal 
element in (X ('k), E ). For any other  X E X( 'k), X 2 
F = X n WwithF C Wand IF1 z k. ThenF,  andthus 
X ,  contains a subset P of W with I P I = k. Hence,  the 
subsets P of W with 1 P I = k are  the only minimal ele- 
ments in X ( 'k ). Since the dual filter \Ed  is the ( n  - k + 
1 )th OS by W, the minimal elements of X ( ' E d )  are all 
t h e Q G   W s u c h t h a t I Q I   = n - k + l . T h e f i l t e r s ' k a n d  
' k d ,  defined on 6 ( Z " ) ,  are  TI, increasing,  and U.S.C. 
[26]. Hence, from Theorem 9, \E is  the union of erosions 
by all P's and  the intersection of dilations by all  Q's. 

b)  For the FSP filter $, if the input function isf, and Y 
= X,(  f )  for any t E R,  then 'k( Y )  is the union of all Y 
e Ps and the intersection of all Y @ @. Since 'E ( Y )  = 

X , [ $ ( f ) ] ,  $ ( f )  is the maximum of allf e Ps and the 
minimum of allf @ @. Q.E.D. 

Basically, in Theorem 10  we proved the  same result as 
in Theorem 2 but without using Theorem 1 ; we used in- 
stead the minimal kernel elements of OS filters.  Clearly, 
the  advantage of the minimal elements approach is that it 
unifies the representation of OS filters as well as of many 
other filters [26], e.g., linear filters (see Part I), in terms 
of morphological filters. The basis elements of openings 
and closings are given by Theorem 11. 

Theorem I1 (Maragos [26, pp.  141-1431: Let A E Z" 
with 1 AI = n. Then: 

a)  the basis of the SP opening filter 'k ( X )  = X,, X 
C Z", consists of the n sets A _ ,  where a E A ;  and 

b) the basis of the SP closing filter @ ( X )  = X A  con- 
sists of all minimal subsets M of A @ AS such that 0 E 
M A .  If A is 1-D  and  convex, then the basis of ' k d  consists 
of the  set {0}  and the n ( n  - 1 ) / 2  sets ( a ,  b }  C A 
A" such that 0 E { a ,  b }  '. 

Next we provide some examples to clarify the basis rep- 
resentation of median, opening,  and closing filters. 

Example I (Median): Consider first the  1-D SP median 
*'(X) = med (X, W>,  whereX C Z and W = { -1, 0, 
l ) . T h e k e r n e l o f k i s X ( ' k ) = { X : ( X n W ( 1 2 ] .  
The kernel elements have  the form { * - , - 1 , 0,  * - }, 
o r ( ~ ~ ~ , - 1 , 1 , ~ ~ ~ } , o r { ~ ~ ~ , 0 , 1 , ~ ~ ~ } . C l e a r l y ,  
there is an infinite number of kernel elements. The basis 
of 'k has only 3 elements, which are  the  3  subsets of W 
containing 2 points each: M I  = { - 1 ,  0 ), M, = { - 1, 
1 }, and M3 = { 0,  1 } .  Thus, from Theorem 10,  the  3- 
point median of a function f ( x ) ,  x E Z ,  is equal to 

med { f ( x  - f ( x ) ,  f(. + I ) }  

I min { f ( 4 ,  f(. + 1 ) )  I min { f ( x  - l ) , t I x ) } ,  

= max  min { f ( x  - l ) , f ( x  + l ) } ,  . (16) 

Since  the median operation commutes with set comple- 
mentation, we can interchange min and max in (16). These 
max-min realizations of the median (and any other OS) 
provide geometrical insight for  these nonlinear filters, 

since they involve erosions  and dilations which are geo- 
metrically defined set operations. 

Consider now the  1-D SP opening % (X ) = X, and  its 
dual,  the  closing, filter %'(X) = X B ,  where B = { 0 ,  1 } .  
From Theorem 11, it follows that the basis elements of 9 
are the two sets { - 1 , 0 } and { 0 ,  1 } , and the basis ele- 
ments of ad are  the  two  sets { 0 } and { - 1, 1 }. Thus, 
from Theorem 9b),  the 2-point opening of f ( x )  by B can 
be expressed as: 

f , ( x )  = max { min { f ( x  - l ) , f (x )} ,  

min { f ( x ) , f ( x  + I)}}  (17) 

= min { f ( x ) ,  max { f ( x  - 1> , f (x  + I)}}. 

(18) 
By interchanging min and max in (17) and  (1 8) , we obtain 
the closing f B  (x) because closing is the  dual of the open- 
ing.  Obviously, f" 5 med ( f ;  W )  5 f ' ,  as predicted by 
Theorem' 3. Realization of the opening (closing) by the 
basis of its dual closing (opening) yields faster implemen- 
tations of these filters, as discussed in [26] for  a general 
window'B with I B I 1 2. 

Example 2 (2-0 MaxlMedian): Let W C 2, be the  3 
X 3 symmetric square window, and  let W, , W2,  W,, W, 
be the 3-point subsets of W that lie on the lines passing 
through the center of W at slopes 0, 45, 90,  135 O ,  re- 
spectively. Then the  2-D  max/median (of window size 
3) filter $ is the pointwise maximum of the  four 1-D me- 
dians by w,, w,, w,, and w,. This filter was introduced 
in [37] and was found to preserve edges better than the 
median by W. Obviously, this filter commutes with 
thresholding,  and,  hence, we can focus our  analysis on 
the respective SP max/median filter 'k ( X )  = U != 
q i ( X ) ,  X C Z 2 ,  where 'ki(X) = med ( X ;  w). Each 
filter ' k i  has three minimal elements, i.e., the  sets Bij, j 
= 1, 2, 3, with Bg C Wi and 1 Bel = 2. Thus, $ is the 
maximum of 12 2-point local minima by the sets Bu, as 
also recently observed in  [37], and the minimum of the 
12 respective local  maxima. 

Example 3 (Linear Combination of Order-Statis- 
tics): Let 5 be a class of real-valued sampled m-D func- 
tions closed under function translation. Let W C Z" with 
I W (  = n. Given an input functionf E 5 ,  the output func- 
tion from the  linear combination of order-statistics (LOS) 
filter by W is 

[LOS (f)1(4 
n 

= ak[oSk ( f ;  w)](x),  x E 2". (19) 
k =  1 

The parameters of the LOS filter are the weighting coef- 
ficients ak E R and the  shapelsize of the window W. This 
FP filter was introduced in [2 11 , called "the order-statis- 
tic filter," and used for impulse noise suppression; it was 
also used in [22] for  envelope estimation and called "or- 
der filter. ' ' 

As for  the morphological analysis of linear  shift-in- 
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variant filters in Part I, we henceforth assume that 1) ak 
2 0 v k  E { 1 ,  2, * - , n } ,  and 2) E;=, ak = 1 ,  so that 
the LOS filter is increasing and TI, respectively. Then the 
LOS filter is  also  U.S.C.  because  it is a finite linear  com- 
bination.(with positive a k ’ s )  of U.S.C. filters. If f i k )  = 
OSk( f ( y )  : y E W], k = 1 ,  * * e ,  n, the kernel of the 
LOS filter is  the collection of all input functions f such 
that [LOS ( f ) ] (O)  2 0; i.e., 

be positive rational numbers.  Let W = { - 1 ,  0, 1 } C Z 
and consider the LOS filter [I)( f ) ] ( x )  = x:=, ak[OSk 
( f :  W ) ] ( x ) ,  x E 2, whose basis is 63. If g i 63, let g l  

+ a 3 g ( 3 )  = 0. Without.loss of generality, we  can  assume 
that g ( l )  = 1 [note  that always g ( l )  2 0 and g(v )  5 0 
from (21)] because g ( x )  E 63 * p g ( x )  E (8 for any p E 
N = Z+ U ( 0 ) .  Sinceq  + a2 + a3 = 1 ,  we  must solve 

= g (  - 11, g2 = 8 3  = g (  1 ). Then, alg(1)  + azg(2)  

From X (LOS ) we  can reconstruct the LOS filter exactly 
[26]. Moreover,  we  can find the  set of minimal kernel 
functions in X (LOS ), i.e., the basis of the LOS filter, 
as follows. 

Theorem 12: Let W C Zm with I WJ = n, and consider 

= 1.  Then  the basis of the LOS filter defined in (19) is 
equal to 

a1, a2, * - * , a, E R with ak > 0 for each k and ak 

(8(Los) = g E 5 : 2 akg(k) = 0 [ k l l  

where g ( 2 )  and g ( 3 )  are the integer  unknowns. To each 
solution ( g(l), g ( 2 ) ,   g ( 3 ) )  there corresponds a multitude of 
3-tuples ( g l  , g2,   g3  ), whose  number  is equal to  the  number 
of distinct permutations of the 3-tuple (gel), g c 2 ) ,   g ( 3 ) ) .  
The solutions of (23) can  be obtained  from a search of the 
finite region of Z2 delineated by the constraints (24). For 
example, let a2 = 2/4 and al = a3 = 1/4. Then, the 
solutions are 

= --03 vx $ 1 ’ (21) (&,), g(2), g(3)) ( g ,  = g (  -l), g, = g(O), g, = g(  1)) 

where g(k) = OSk ( g ( y )  : y E W}, k = 1 ,  2, - - a ,  n. (1,0,  -1) (1,0, -I), (0, 1, - I ) ,  ( - l , O ,  l ) ,  (1, - 1 ,  O), 

Moreover, V ~ E  5, vx E Zm, ( - 1 ,  1 3 0 1 ,  (0 ,  -1 ,  1 )  

= gs@(LOS)  SUP pn y€Wx { f ( Y )  - d Y  - 9 * ‘(22) 

Proof: 
a) Let 63 be  the function class of (21). 63 is  nonempty 

because g* E 63, where g* ( x )  = 0 Vx E Wand g* (x) = 
- 00 v x  $ W. Assume that some g E (8. From (20) and 
(21), g E X(L0S). Let h E X (LOS) such that h I g .  
Then h ( x )  = g ( x )  = -00 Vx $ W, and 0 I [LOS 
(h) l (O)  5 [Los ( S I ]  (0)  = 0 E;= 1 ak[ g(k) -,h(k)1 
= 0. Hence, g(k) = h(k) v k ,  because ak > 0 and g(k) L 
h(k) v k ,  since h I g .  Now, h(k) = g(k) V k  and h 5 g * 
h ( x )  = g ( x )  v x  E W * h = g .  Thus, g is a minimal 
kernel function; i.e., g E 312, where 312 denotes the  true 
basis of the LOS filter. Hence, 63 C 3K. 

Let now g E 312. The g must  have a minimal  region  of 
support and  hence g ( x )  = - 03 Vx $ W. Further, [ LOS 
( g ) ] ( O )  = p 2 0. If p > 0,  the function h defined by 
h(x) = --oo v x  $ Wand h ( x )  = g ( x )  - p ,  x E W, is a 
kernel function (because [LOS ( h ) ]  (0)  = 0 )  with h I 
g and k # g ;  this is a contradiction, however,  because g 
is minimal.  Hence p = 0 and thus g 5 63, implying that 
3 K G 6 3 G n Z * n z = 6 3 .  

b) Since the LOS filter is  TI increasing and u. s.c., it 
is equal to the supremum of FP erosions by its basis func- 
tions [26], from  which (22) results. Q.E.D. 

As an illustration of Theorem 12, we  provide  below  an 
example  where  we restrict the  amplitude  range of all func- 
tions in 5 to  be  discrete, say 2, and the coefficients ak to 

Let C be  the  set of the 9 basis functions defined by ( g l ,  
g 2 ,   g 3 )  in the  above table. Then 63 (I)) = { p g ( x )  : p E 
N ,  g ( x )  E 6: }. Thus, 

Finally, it is straightforward to  extend  the  above proce- 
dure  to LOS filters with n > 3.  

VI. RELATIONS  BETWEEN  MORPHOLOGICAL AND STACK 
FILTERS 

Before  we discuss the relations between  morphological 
and stack filters, a few definitions are needed  from  the 
theory of BooEean functions [30], [31]. Any Boolean 
expression of n variables xl, x2, * * - , x, E ( 0, 1 } can  be 
wntten  as  Boolean  sum-of-product (SOP) terms or as 
Boolean  product-of-sum (POS ) terms.  Each  product  or 
sum  term may contain each literal (a  variable xi or its 
complement x [ )  at  most  once and/or the Boolean  con- 
stants 0 or 1 .  To each  Boolean expression there corre- 
sponds a unique  Boolean,function 0 (x)  E ( 0, 1 1, where 
x = (x1, x2, - - - , x v ) .  A  Boolean function is usually de- 
scribed through a truth table. Two  Boolean expressions 
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are called equivalent if they correspond to the  same Bool- 
ean function. A Boolean function y is said to imply P iff 
@(x)  = 1 for each x such that y(x)  = 1. Aprime impli- 
cant ?r of f l  is  a product term which implies 0, such that 
deletion of any literal from ?r results in  a new product 
which does not imply /3. A prime implicate of /3 is  a sum 
term (T implied by 6 ,  such that deletion of any literal from 
(T results in a new sum term which is not implied by 0. 
Any minimal SOP  (respectively, POS) expression for 
is a sum (respectively, product) of prime implicants (re- 
spectively, prime implicates) such that removal of any of 
them makes the remaining expression no longer  equiva- 
lent to 0, and the expression contains the minimum num- 
ber of literals and product (respectively, sum) terms. This 
minimal expression is not necessarily unique. A function 

(x)  is called positive if it can be represented by an  SOP 
or POS expression in which no variable appears in un- 
complemented form.  Each  positive function has  a unique 
minimal SOP expression that is positive and is the sum of 
all its prime  implicants; it also has a unique minimal POS 
expression that is positive  and  is  the product of all its 
prime implicates. 

A. Stack Filters 
Wendt et al. [27], [28] defined the stack filters as fol- 

lows.  Consider  an input function f ( z ) ,  z E Z", with a 
finite number M of amplitude  levels. Threshold f at all 
amplitudes t E { 0, 1 , * , M - 1 }, obtain its cross  sec- 
tions X,( f ), and consider  their respective characteristic 
functions X ~ , ( ~ ) ( Z ) ,  or simply, x r ( z ) .  Filter  all binary 
signals x t  by a TI, discrete,  increasing,  binary filter +'b. 
(In [27] and [28],  the increasing property of is called 
"stacking property.")  Then tl 5 t2 2 x12 =) 

cDPb(xr,) I G b ( x f 2 ) .  Assume that at each:E%', the value 
of the output [ Gb (k)] ( z )  is determined only from the val- 
ues of the input signal k ( z )  inside  a fixed finite window 
W of n points shifted at location z. Since cDPb is  a  TI and 
binary filter, its defining rule can be represented by the 
truth  table of a Boolean function /3(xl, x2, - - 7 X n ) ,  

where the variables xi represent the  n values k( y ), y E W, 
= { z + w : w E W }, of the input signal k(z) inside W,. 
Let x = (x1, x2, , x,) andy = ( y l ,  y2, - , y,) rep- 
resent two vectors in { 0, 1 } ', and define a partial order- 
ing relation _i in { 0, 1 } , through the rule x 1_ y @ xi I 
y j  Vi. The  fact that +b is an increasing filter is equivalent 
t o thecond i t ionx ly  * @(x)  I P ( y ) v x , y ~ { O ,   l } " ,  
which in turn is equivalent to /3 being a positive Boolean 
function [29]. Finally,  the multilevel function 

M- 1 

[ST, ( f ) ] ( z >  = t = O  [ + ) b ( X X l ( f ) ) l ( 4 ,  Z E Z", (25) 

is viewed as an output function for each input f (  z ), and 
thus,  the  stack  Jilter ST, is defined. By varying @, or 
equivalently +Pb, a different stack filter is obtained. 

As an aside,  for input functionsfwhose amplitude range 
is a  continuum, say R ,  we can extend the definition (25) 
as 

B. Morphological Analysis of Stack Filters 
Any stack filter ST,,  by its construction, is a TI discrete 

FSP filter commuting with thresholding; hence it is in- 
creasing and u. s . ~ .  too (due to Theorem 3 of Part I). To 
each binary filter ab, we can uniquely associate an SP 
filter cD, such that whenever + operates on a set A C Z", 
+b operates on the characteristic function x A  of A ,  and 
vice versa. + is  TI  and increasing iff +Pb is TI and increas- 
ing;  further, + is U.S.C. due to thefinite window W. Then + is the respective SP filter of the  FSP filter ST,, and from 
our discussion in Section 11-D of Part I ,  

where V can be  either R or Z and X ,  [ST, ( f ) ] = + [ X ,  ( f ) ]  Vt  E V.  Thus,  the sum-definition of ST, in (25) 
is only a special case of its sup-definition in (27).  For  a 
finite number of amplitude levels t, the supremum be- 
comes a maximum; in [28] and [38],  the usefulness of this 
max-definition of stack filters is recognized for fast VLSI 
implementations. 

For  the  cases when /3 (x1 , , x,) is a  thresholdfunc- 
tion [30], Wendt et al. [28] provided a functional defini- 
tion for ST, as  a generalization of OS filters, in which 
multiple repetitions of the  same element are  allowed. In 
[27], [28], all  the stack filters corresponding to the 20 
positive Boolean functions of n = 3 variables were ex- 
amined.  To  obtain  a functional definition of ST, from a 
threshold function would be inefficient for  large  n because 
of the large number of repetitions of the same elements 
and because deriving the threshold function form a large 
truth table is not a simple task.  In addition, for  n > 3, 
not all  positive Boolean functions are threshold functions. 
For example, in [28] it was observed that, of the 7581 
positive functions with n I 5 ,  only 3287 are threshold 
functions; hence, it was conjectured [28] that there are 
many stack filters whose outputs cannot be expressed as 
simple functions of the input samples. However, by using 
morphological concepts,  we provide below a general al- 
gorithm that obtains from the  SOP or POS positive Bool- 
ean expressions of @ the functional definition of any stack 
filter ST, in terms of max-min operations. 

A) Let W E 2" be the window of n points associated 
with P(xl ,  x2, - - , x,) and let I (  * ) be an index function 
that assigns to each w E W a unique integer I (  w )  in { 1, 
2, - , n}. For  example, let m = 1, n = 3, W = { -1, 
0, 1 }, and Z(w)  = u' + 2, w E W. 

B) Obtain the minimal SOP  and POS expressions for 
P ;  e.g.7 

P(xl, x2, x3) = xlx2 + x2x3 = x2(xI + x3). (28) 

C) Obtain the respective SP filter + operating on an 
input set S by replacing: the Boolean sum/product (logical 
OR/AND) with union/intersection, respectively; and each 
variable xi in 6 by a translation S-, of S, where w E W 
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and I ( w )  = i .  For  example, 

q s )  = (s n s,) u (s n s - ~ )  = s n (s, u s - ~ ) .  
(29) 

D) Obtain  the respective stack filter ST, from 9 by re- 
placing: the set S in C)  with  the cross sections X,( f ) of 
an input function f ( z ) ;  the finite union/intersection of 
cross sections with pointwise max/min, respectively, of 
functions; and cross-section translations [ X , (  f ) ]  --w with, 
function shifts f ( z  + w ) .  For the example of (29), 
ST,( f ) assumes a max-min and a min-max functional 
definition identical to the realizations of the  opening fB, B 
= { 0, 1 }, in (17) and (18). Moreover,  with the hindsight 
obtained, we can  combine steps C) and D) in a single step 
as follows. 

C*) Obtain the functional definition of ST, from /3 by 
replacing: each  Boolean  sum/product  with a max/min, 
respectively; and  each variable xi by a shifted version f ( z  
+ w )  of the input function f (z), where w E Wand I (  w) 

Concluding,  each stack filter can  be expressed  as a fi- 
nite max-min or min-max operation. Conversely, any fi- 
nite max-min or min-max operation is TI and  commutes 
with thresholding [23] ; hence it corresponds to a TI in- 
creasing u. s . ~ .  SP filter, or equivalently to a positive 
Boolean function, which in turn defines a stack filter. 
Therefore, the  stacko filters are the class of all discrete 
FSP filters that are TI, commute with  thresholding, and 
can  be expressed as a finite maximum of local minima or 
as a minimum of local maxima. Thus, discrete FSP ero- 
sions,  dilations,  closings,  openings, open-closings, me- 
dians,  and OS filters, as well as any finite cascade or par- 
allel (using pointwise min-max) combination of these 
filters, are all special cases of stack filters. However, the 
general FP  erosion,  dilation,  opening,  or 'closing of a 
function f by another nonbinary structuring function g 
(defined  in Part I), as well as  any finite cascade or parallel 
combination of these  FP filters do not commute  with 
thresholding and,  hence, they are not stack filters. More- 
over, these latter  morphological filters include the stack 
filters as a special case because they become stack filters 
whenever all the structuring functions involved in their 
definition become binary. Finally,  the original definition 
of stack filters in (25) via Boolean functions -allows only 
for discrete filters, whereas  our definition in (27) via TI 
increasing U.S.C. SP filters allows for both discrete and 
analog filters. 

- - 1 .  

C. Minimal Elements of Stack Filters 

Theorem 9 applies to any stack filter ST, and its re- 
spective SP filter 9. That is, ST, can  be represented as a 
supremum of FSP erosions by all the basis sets of 9 and 
also as an  infimum  of FSP dilations by all the basis sets 
of its dual SP filter @. Next we will establish some  con- 
nections between these ideas and  the representation of the 
positive Boolean function /3 by a minimal SOP and POS 
expression. 
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In { 0, 1 } ,, a vector x = ( x 1 ,   x 2 ,  - , x , )  is called a 
minimal true vector of @ iff (?(x) = 1 and x is not pre- 
ceded (with respect to the vector ordering I_) by  any other 
vector v with @ ( v )  = 1 .  A vectory E ( 0 ,  1 1 "  is called 
a maximal false  vector of f l  iff p ( y)  = 0 and y is not 
followed (with respect to A) by  any other  vector u with 
p ( u )  = 0. The Boolean function f l d ( x )  = p ' ( x ' ) ,  x' = 
( x ; ,  x i ,  * * * , x: ) ,  is called the dual function of 0. Since 
/3 is positive, pd is positive too.  Hence,  to pd there cor- 
responds a unique TI increasing U.S.C. SP filter which is 
the dual cpd of 9. In addition, we  have the following. 

Theorem 13: Let ST, be  an m-D stack filter, whose de- 
fining rule is associated with a fixed window W of n points. 
Let CP be its respective SP filter, whose dual SP filter is 
CPd. Consider the positive Boolean function (x1, x2, , 
x,) corresponding to 9 and its dual function pd corre- 
sponding  to Gd. Let I :  W --t { 1, 2, - , n }  be a one-to- 
one  index function. Then the following is true. 

a) The stack filter ST, can be expressed as a finite 
pointwise maximum of moving local minima  and  also  as 
a finite minimum of moving  local  maxima. 

b)  The stack filter ST,d defined by pd can  be obtained 
from ST,  by interchanging max  with  min. 

c) To  each  minimal  true vector a = ( al ,  a2, - - , a,) 
of p, there corresponds a unique  minimal kernel element 
G = { w E W : ar(,) = 1 } of 9, and  vice versa. To  each 
SP erosion by G, there corresponds a unique  prime  im- 
plicant of p. 

d) To each  minimal  true vector b = ( b l ,  - * , b,)  of 
pd, and, equivalently, to each  maximal  false  vector of 6, 
there corresponds a unique  minimal kernel element H = 
{ w E W : bI(,,,) = 1 } of CPd, and  vice  versa.  To  each SP 
dilation by H ,  there corresponds a unique  prime implicant 
of pd, and, equivalently, a unique  prime implicate of p. 

Proof: 
a) It  was  shown in Section VI-B. 
b) The function pd is obtained from /3 by interchanging 

Boolean  sums  with  products  and 1 with 0 (De Morgan's 
laws). The filter STp is obtained  from pd by replacing 
Boolean sum/product  with max/min.  Hence, ST,d can  be 
obtained from ST,  by interchanging max  with  min. 

c) 9 has  at least one basis set because CP is  TI increas- 
ing and U.S.C. [26]. The subset G of W belongs  to the 
kernel of 9, because P ( a )  = 1 0 E 9(Gx) for somex 
E Z", and since 9 is  TI we  can  assume  without loss of 
generality that x = 0. Since I (  * ) is one-to-one, the cor- 
respondence a ++ G is one-to-one. Hence, G is  minimal 
with respect to set inclusion since a is minimal  with re- 
spect to vector ordering x. From  the vector a we  can 
obtain the  product p = xi ,x j2  - * xik where i ,  E { 1, - * , 
n } for r = 1 , * * , k 5 n ,  and p contains the variable xj 
iff ai = 1 .  The  correspondence a * p is  one-to-one be- 
cause p contains no  complemented variables. Since a is a 
minimal  true vector of p, p is a prime implicant of 6. The 
positive Boolean function p can be expressed  as  the  sum 
of all its prime  implicants,  which  are all positive. Equiv- 
alently, the TI increasing u. s .c. SP filter CP can  be ex- 
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pressed as the  union of SP erosions by all its basis sets 
[26]. Thus, all the correspondences p f) a * G * P ( X  ) 
= X e GS = n X - ,  are one-to-one. Hence, the prime 
implicant p corresponds  to  the SP erosion by G by replac- 
ing each xi in p with X-,, where I (  w) = j ,  and the Bool- 
ean  product  with f l  . 

d) From the proof of part c), the correspondences be- 
tween the minimal  true vectors b of the positive Boolean 
function pd, the basis sets of 9' (which exist for the same 
reasons as  for a), and the prime implicants of Bd are all 
one-to-one. The vector b is the dual of a  maximal  false 
vector of /3 because Dd( b )  = 1 e p(  b' )  = 0. Equiva- 
lently,  each  prime implicant of pd is the dual of a  prime 
implicate of 6, and the minimal SOP expression for /3' is 
the dual of the minimal  POS expression for 0. Thus, the 
subset H of W corresponds to the prime implicate s = xi, 

k I n,  and s contains the variable xi iff bj = 1. Hence, s 
yields an SP dilation filter * ( X )  = X Q H s  = U w e H  
X - ,  by replacing each xj in s with X-,, where I (  w )  = j ,  
and  the  Boolean  sum  with UwaH. Q.E.D. 

The following example clarifies Theorem  13  and its 
proof. 

Example 4: Consider the 1-D FSP  opening 4 ( f ) = fA 
whereA = { - l , O ,  l}. Thus,fA(x) = max { g(x - l ) ,  

f ( x  + 1)  1, x E 2. Its respective SP filter is + ( X )  = X,, 
X E 2, and its dual SP filter is the closing + ' ( X )  = X , .  
From  Theorem 9a), V X  C 2, 

+ . . .  +xikof~,whereir~(l,~~~,n)forr=l;.., 

g(x), g(x + 111, where g ( x )  = min { f(n: - l ) , f ( x ) ,  

where  the basis of 9 and Gd can  be  found  from  Theorem 
11. That is, a(+)= { { -2, -1, 01, { -1, 0, 11, (0, 

2 } 1. From  Theorem 9b) we obtain a functional definition 
forq5as  [Seth = f ( x  - 3 + i), i = 1, 2, 3,  4, 51 

1 , 2 } ) , a n d ~ 3 ( ~ d ) = ( ( 0 ) , ( - 2 , 1 ) , ( - 1 , 1 } , { - 1 ,  

Since 4 is  a stack filter, we can  also obtain the  above 
max-min and min-max definitions for 4 from its respec- 
tive Boolean function. That is,  let p and its dual pd be  the 
positive Boolean functions corresponding to the increas- 
ing SP filters 9 and Gd, respectively. The  window asso- 
ciated with 4,  9, ad is W = A AS = ( -2,  -1, 0, 1, 
2 }. Thus, /3 and pd will be functions of 5 variables xl, x2, 
x3, x,, xj, where  the  index function is I (  w )  = w + 3, w 
E W. Next  we  summarize how to obtain f l  and pd from 
the basis of 9 and ad, by using Theorem 13c) and  d). 

Basis Sets of 0 I Basis  Sets of @d 

prime implicants of p prime implicants of p d  
XlX2X3, XZX3X43 x3x4x5 x3, x2x4? x2x5 

prime implicates of p d  prime implicates of p 
x, + x2 + x3, x.2 + x3 + x,, x3, XI + x4, x2 + x43 x2 + x5 

Each of the positive Boolean functions ,!3 and pd can  be 
expressed now in minimal  SOP  (POS)  form  as the sum 
(product) of its prime implicants (implicates). For  ex- 
ample, 

By replacing Boolean sum with max and product with min, 
we obtain from (33) the max-min definition of the FSP 
opening in (31),  and  from (34) its min-max definition in 

Note that if we  exchange in all o f  the discussion of  Ex- 
ample  4 the roles of 9 and 9d or, equivalently, the roles 
of 0 and /3', we obtain the max-min and min-max  defi- 
nitions of the dual stack filter of 4,  i.e., the closing f --f 
f", by replacing the roles of max  and  min in (3 1) and  (32). 

The 3-point opening fA and closing f" are comparable 
to the 5-point median med ( f ; W ) ,  as Section IV ex- 
plains. From  Theorem 10, the SP median by W has 10 
basis sets,  i.e., all the 3-point subsets of W, and  is iden- 
tical to its dual filter. Hence, its respective positive Bool- 
ean function has a  unique  minimal expression as the sum 
of the 10 prime implicants xjxjxk, where i, j ,  k E ( 1, 2, 
3, 4, 5 } and i # j # k .  

Concluding,  the  two  approaches of representing stack 
filters either by their basis (minimal kernel elements) or 
by their Boolean functions in minimal  SOP  or  POS  forms 
have many analogies,  which are summarized by Theorem 
13. In addition, the following comparisons  are evident. 1) 
For small windows, e.g., of 3  points,  both  approaches  are 
relatively simple  to apply. 2) For large windows, e.g., 
with number o f  points 15, to find minimal  SOP or POS 
expressions for  Boolean functions is a computationally 
complex task and has become the objective of extensive 
research in the field  of switching theory. By contrast, for 
stack filters  (of  any window size) that are parallel or cas- 
cade  combinations of median, OS filters, erosions, dila- 
tions, openings, or  closings, we can find their basis im- 
mediately from  Theorems 10 and  11 and hence their max- 
min definition from  Theorem  9. In addition,  from the 
basis we obtain the Boolean functions in minimal  SOP  or 
POS expressions as a byproduct. 3) For large windows 
and arbitrary stack filters whose definition does not allow 

(32). 
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easily to find their  basis,  the Boolean function seems at 
first more helpful  since  there  are standard algorithms [30] , 
[31] to  find its minimal SOP  or POS forms. In these  cases, 
the Boolean function  approach  can  also  be seen as  an  al- 
gorithm (together with Theorem  13)  to find the  basis. 

VII. CONCLUSIONS 
We  have extended the theory of median, OS, and stack 

filters by introducing the use of mathematical morphology 
to analyze them and to  relate  them with morphological 
filters. OS filters are both function- and set-processing 
(FSP). Using morphological concepts,  we showed that OS 
filters commute with thresholding.  This  fact  allows us to 
analyze OS filters by focusing only on OS of sets. OS  of 
sets are  easier to analyze  and implement because their def- 
inition involves counting of points, in contrast to the  sort- 
ing of numbers required for OS of functions. 

We have shown that each kth OS filter by a window W 
of n points is  equal  to  the maximum of the  local minima 
(erosions) by all k-point subsets of W ,  and to  the mini- 
mum  of the  local maxima (dilations) by all ( n  - k + 1 )- 
point subsets of W, this representation is given by a closed 
formula which does not involve  sorting.  We proved this 
max-min representation of OS filters by using first a com- 
binatorial proof and second their kernel and basis (mini- 
mal kernel elements) representation.  The minimal kernel 
elements of the kth OS filter by Ware all  the k-point sub- 
sets of W .  The minimal elements approach allows us to 
unify OS filters together with a  large class of linear  and 
nonlinear filters which can be expressed as  a supremum 
or union of erosions. 

We have found that  medians,  openings, and closings 
are closely related. If W is a 1-D convex symmetric (2n 
+ 1 )-point window and B is a 1-D convex (n + 1 )-point 
set,  the median (and its iterations) of any signal by W is 
bounded below by the opening and  above by the closing 
by B. If a signal is  a root of both the  opening and closing 
by B,  then it is a root of the median by W .  (The converse 
is  true only for  signals of finite extent.)  Hence, median 
roots with respect to W can be obtained by finding signals 
that are roots of both the opening and the closing by B. 
For  example,  the open-closing or clos-opening by B pro- 
vide roots of the median by Win  a  single  pass.  Moreover, 
the median root obtained through iterating the median fil- 
ter by W on a  finite  extent signal is bounded from below 
and above,  respectively, by the open-closing and clos- 
opening by B;  it was also experimentally observed that 
this median root  lies  close to the open-closing and clos- 
opening. These results combined with the  fact  that open- 
closing requires  comparable or less computational com- 
plexity than a  single  median,  (and,  hence, much less  com- 
plexity than iterating the  median,) makes the open-clos- 
ing (or clos-opening) more  appealing.  For suppressing 
impulse noise in  signals,  the open-closing behaves very 
similarly to the  median;  in  addition, it can discriminate 
between positive and negative noise spikes,  whereas the 

median cannot.  Some  similar results were obtained for 2- 
D filtering. 

Finally, we have  shown  that  the stack filters, whose 
original definition [27], [28] was based on  positive Bool- 
ean  functions,  are actually the dlass of all finite maxima 
of local minima and minima of local maxima filters. As 
such,  they. contain all median and OS filters, and only 
those FSP morphological filters that  commute with 
thresholding. Stack filters can  be  expressed  as minimal 
forms of max-min operations based either on irreducible 
forms of their Boolean functions or on their minimal ker- 
nel elements. We  have established the theoretical equiv- 
alence of both of these approaches and provided a system- 
atic algorithm to find the max-min expression of any stack 
filter from its Boolean function. 

Thus,, FSP erosion and dilation  are  the prototypes for 
representing any median, OS, or stack filter. Since  all 
these filters commute with thresholding and  set  erosion/ 
dilation can be implemented using an  intersectionhnion 
of shifted versions of the input set,  the  erosion/dilation 
(min/max) representation of OS and  stack filters sug- 
gests simple methods for  their parallel implementation. 

In  short, mathematical morphology combined with the 
minimal elements representation provides a self-con- 
tained mathematical framework  that, based on  simple 
concepts,  facilitates  the theoretical analysis of all  the 
above nonlinear filters, establishes  their interrelation- 
ships, suggests methods for  their  implementation, and 
further relates them to a  large  class of nonlinear filters, 
linear filters, and algorithms for  shape  analysis [26] , [39]. 
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