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ABSTRACT
We develop an unsupervised graph clustering and image segmenta-
tion algorithm based on non-negative matrix factorization. We con-
sider arbitrarily represented visual signals (in 2D or 3D) and use a
graph embedding approach for image or point cloud segmentation.
We extend a Projective Non-negative Matrix Factorization variant
to include local spatial relationships over the image graph. By using
properly defined region features, one can apply our method of
unsupervised graph clustering for object and image segmentation.
To demonstrate this, we apply our ideas on many graph based seg-
mentation tasks such as 2D pixel and super-pixel segmentation and
3D point cloud segmentation. Finally, we show results comparable
to those achieved by the only existing work in pixel based texture
segmentation using Nonnegative Matrix Factorization, deploying a
simple yet effective extension that is parameter free. We provide
a detailed convergence proof of our spatially regularized method
and various demonstrations as supplementary material. This novel
work brings together graph clustering with image segmentation.

I. INTRODUCTION
The complexity and volume of visual information has led

research efforts to efficient methods that can achieve dimensionality
reduction while retaining valuable data properties. Non-negative
matrix factorization (NMF) techniques [1] have emerged as promis-
ing tools for learning parts-based representations of non-negative
data. Many variants of NMF methods have been proposed. Ding et
al. proposed a Convex NMF [2] by restricting the feature basis to a
convex combination of data samples and Cluster NMF as its special
case. Similar to Cluster NMF, Yuan and Oja proposed Projective
NMF (PNMF) [3] which inspired our work and was also used in
[4] to construct global low rank similarity matrices for label prop-
agation. Since the k-nn graph can be sensitive to the neighborhood
size k, the authors of [4] proposed an approximation method to
construct a more robust similarity matrix which essentially uses
the same minimization scheme as PNMF. NMF methods have been
shown to be equivalent to spectral clustering and probabilistic latent
semantic indexing [5], [6]. These methods do not exploit intrinsic
information of the original data or prior label information.

In order to address the lack of intrinsic information, graph
regularization has also been proposed in [7] (GNMF) and in [1]
for document clustering. A random walk approach was proposed in
[8] which can take into account further relationships between data
samples. A neighborhood preserving PNMF was also suggested
in [9] for hyperspectral image classification. Fisher’s criterion
has been used both for NMF [10] and PNMF [11] in order to
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improve classification accuracy through labeled samples. In [12],
a semi-supervised version of PNMF was deployed for cancer
classification. These previous works clearly demonstrate that PNMF
(and NMF) can be used both for supervised and unsupervised tasks.
Despite their extensive use in data mining [13], image classifica-
tion/annotation [14] and other applications, factorization methods
have found little application to image and object segmentation. In
[15], the authors showed image segmentation results applied on a
pixel by pixel basis. To the best of our knowledge, the recent work
of Yuan et al. [16] is perhaps the only fully developed approach that
uses matrix factorization and they focus on the texture segmentation
problem. We develop an unsupervised graph clustering scheme
and extend it to capture spatial relationships by enforcing local
smoothness between nodes. Our method can be readily deployed
as a graph based approach or as a pixel based approach which is
parameter free and that demonstrates improved results. The rest of
this paper is organized as follows. Section II reviews Non-negative
Matrix Factorization and describes the original PNMF method.
Then, Section III describes the proposed method and in Section
IV the pixel and node version of our method is compared to other
methods. Section V concludes and discusses future work.

II. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization methods can be used for pro-
ducing low-rank representations of image data and for clustering.
In this work, we exploit the clustering properties of NMF based
methods to deploy a graph based clustering approach which can
then be used for image and point cloud segmentation. Suppose we
are given a m × n non-negative data matrix X and an integer
c < min(n,m) where n denotes the number of data samples, m
the dimensionality and c is the rank of the desired approximation.
The original NMF method [17] decomposes X into the product
of two lower-rank and non-negative matrices: the m × c basis
matrix W = [Wij ] and the n × c coefficient matrix H = [Hij ]
such that X ≈ WH>. Since W and H have lower rank than
X, the NMF compresses the high dimensional data in X. From
a clustering perspective, W loosely captures the cluster centroids
while H reveals cluster memberships. The standard NMF is based
on minimizing the Euclidean distance between X and X̂ = WH>:

min
W,H

∥∥∥X−WH>
∥∥∥2 , s.t. W ≥ 0,H ≥ 0 (1)

where W ≥ 0 and H ≥ 0 denotes non-negative matrix elements.
Similar optimization problems can be formulated by using other
types of distance measures like the Kullback-Leibler divergence
[18]. Eq. (1) is non-convex for both W and H thus a global solution
is not guaranteed. Lee and Seung [17] proposed the following
multiplicative update rules (MUR) to solve (1):

Hij ← Hij
(X>W)ij

(HW>W)ij
, Wij ←Wij

(XH>)ij
(WHH>)ij

(2)
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A positive random initialization of W and H or other directed
initialization method [19], [2] can be used. After computing the
basis matrix W produced by NMF, compute the coefficient of a
new example X by y = W†X where W† denotes the pseudo-
inverse of W. This operation might then violate the non-negativity
required by NMF, since computing the pseudo-inverse can lead to
non-negative entries in W†. This phenomenon is known as the “out
of sample deficiency” that most NMF-based methods [17], [15] can
be sensitive to. In [3], Yuan et al. introduced the Euclidean PNMF
method which further constrains the original NMF, i.e.

min
W

∥∥∥X−WW>X
∥∥∥2 s.t. W ≥ 0 (3)

For classification, compute the coefficient of a new test sample
X by y = W>X where y is now non-negative and the “out of
sample deficiency” is eliminated. In an unsupervised setting, the
PNMF method is closely related to clustering [3] and is equivalent
to Cluster NMF [2], [1]. The following MUR was proposed:

Wij ←Wij
(XX>W)ij

(WW>XX>W)ij + (XX>WW>W)ij
(4)

where the Wij can be randomly initialized to non-negative values.
After every iteration, the original PNMF normalizes W by its
spectral norm ‖W‖2 in order to stabilize the minimization process
[3], [18]. This update rule was shown to converge empirically
without a theoretical proof. However, even after this normalization,
a monotonic decrease in the objective function is not ensured [20].
In [21] the authors suggested a wide range of related methods
called Quadratic NMF, which use a learning rate parameter η.
A converging MUR using η = 1

3
was proposed for PNMF. The

η exponent value influences the convergence [22], i.e. aggressive
choices of η can improve the convergence speed but might also
endanger the monotonic decrease of the objective function.

III. GRAPH REGULARIZED PROJECTIVE NMF FOR
IMAGE/OBJECT SEGMENTATION

III-A. Proposed method using image-driven graphs
We now describe our formulation which uses the reformulated

PNMF objective as its data term:

Jdata(H) =
∥∥∥X−XHH>

∥∥∥2 (5)

Image regularities are very important in image segmentation ap-
plications, therefore spatial regularity should be enforced. Here,
we add a spatial constraint to the minimization solution so that
neighboring nodes get assigned to the same labels as much as
possible. Therefore, we adopt the following minimization scheme:

min
H

J(H), with J(H) = Jdata(H) + λJreg(H) (6)

with Hij ≥ 0 ∀i, j, Jreg(H) is the spatial regularizing functional
and λ expresses the regularization tradeoff. Large values of λ lead
to oversmoothed results while very small values ignore spatial
regularities. After computing H, the label of node i becomes:

labeli = arg max
j

Hi,j (7)

Let G = (V,E) be the corresponding graph used in our graph
embedding approach. This graph consists of a set of vertices/nodes
υ ∈ V and a set of edges e ∈ E ⊆ V ×V where |V | = n. In addi-
tion, an edge eij denotes an edge spanning two vertices υi and υj .
To model node relationships we use weights encoded in a weight
matrix S = [Sij ] and a degree matrix D = diag(d1, . . . , dn) where
di =

∑
j∼i

Sij . We also assume that G is connected and undirected

hence S is symmetric. We use Jreg(H) = Tr(H>LH) [7], where

L = D − S is the standard Graph Laplacian of size n × n. We
solve (6) using the following MUR:

Hij ← Hij
4

√
[2X>XH + λSH]ij

[HH>X>XH + X>XHH>H + λDH] ij
(8)

When λ = 0 this update rule can be considered as a Projective
NMF variant. For the derivation and convergence of this update rule
see the supplementary material for a complete proof. An outline of
our proof can be found in the Appendix.

Our algorithm can be extended from regular grids (see an
example in Fig. 1 left) to image-driven graphs (see Fig. 1 right).
Similar to [23], we apply a watershed transformation [24] to the
original image to obtain a set of n regions R1, R2, . . . , Rn. Every
region i is associated with a node whose location is the geometric
mean xi of Ri and whose feature vector is gi, e.g. a mean feature
vector for all pixels in Ri using color or texture information.
Another way to produce these super-pixel regions is the SLIC [25]
method. One difference between these two approaches is that SLIC
super-pixels are expected to be larger and more visually consistent
areas whereas the watershed regions tend to be smaller (due to
gradient noise sensitivity) and arbitrarily sized.

Next, we consider only edges between contigent regions, i.e.
we use a Region Adjacency Graph (RAG) for G as shown in
Fig. 1 right. Therefore, S is an adjacency matrix, i.e. Sij = 1
if i ∼ j and Sij = 0 else, where ∼ denotes that nodes i and j
are adjacent. If further knowledge about the problem is available,
other weighting schemes can be considered. For example, prior
knowledge can be integrated using the normalized Graph Laplacian
[26]. Other authors have used a k-nn graph [27] or a locally
optimized neighborhood [28] to create an adjacency map between
nodes by assuming a fixed number of neighbors k. After obtaining
the node labels using (7), we can transform the node solution into a
pixel one, i.e. assign all pixels belonging to Ri to their node’s label.
We deal with boundary pixels by assigning each one to the most
common label present with respect to this pixel’s eight neighbors.

Fig. 1: Left: Example of pixel based result of texture segmentation in the
Prague Dataset [16]. Right: An example of the Region Adjacency Graph.

III-B. Comparison with previous works
In [1], it was suggested that the PNMF scheme cannot exploit the

intrinsic structure of the data, hence a spatially regularized method
was developed for a document clustering task. Different from [1],
we propose a fast and efficient extension of PNMF where we
factorize only H and instead use η = 0.25 to ensure convergence.
By adding spatial constraints on the local neighborhood, we capture
spatial information and smooth noisy features as part of the image
segmentation task. Our theoretical contribution mainly lies in the
proof of the correctness and convergence of our method. This result
strongly supports the empirical observation of [22] that smaller
η values guarantee convergence (using a different mathematical
approach). Further, we demonstrate the flexibility and power of
this approach in a wide set of graph-related applications.

From a pixel-based perspective, the work of [16] is perhaps
the only existing method that uses matrix factorization for pixel
image segmentation. The authors of [16] use a factorization based
approach comprised of two steps. First, they apply singular value
decomposition (SVD) on the data matrix to acquire representative
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features [16], reduce the feature dimensionality and automatically
detect the number of segments. The next step is to impose non-
negativity constraints using NMF by an efficient alternate least
squares (ALS) method to minimize the following:

f(Z,β) = ‖Y − Zβ‖2 + λ1 ‖Z‖2 + λ2 ‖β‖2 (9)

where Y is the feature matrix and Z, β are factor matrices. This
method produced good results on texture segmentation, but did
not generalize well on natural image segmentation since it was
based on texture descriptors. A major drawback of this method is
that it uses two different matrices for the non-negativity constraint
which need to be regularized to avoid large norms in the learned
matrices. To tradeoff between the data term and the regularization
two different regularization parameters λ1 and λ2 were used, which
were manually selected to be 0.1. In the next section, we show that
our pixel based method delivers better results and is parameter free.

IV. EXPERIMENTAL RESULTS
IV-A. Pixel level image segmentation

In order to demonstrate the flexibility of our method we address
a wide range of tasks. First, we consider pixel based texture seg-
mentation. We test our method on the Prague Texture Segmentation
Dataset [16] which consists of computer generated texture mosaics
and allows for benchmarking results. For fairness between the
factorization approach in [16] and our method, we adopt the same
strategy for the features and number of segments. We set λ = 0 in
(6) since the SVD based features already capture texture properties
and exploit the localization property as suggested in [16]. Table
I shows the results using those metrics where the method in [16]
(FSeg) performed best compared to other methods. It can be seen
that our method delivers better results using most of the reported
metrics. We also report results obtained using other possible matrix
factorization schemes that could be used in a similar manner. We
do not compare with NMF since the other NMF variants have been
shown to give better results overall. Using λ = 0 also means that
GNMF [7] is identical to NMF. For all methods 500 iterations
were performed to ensure convergence of all of them. It is obvious
that Convex NMF performed the worst. Further, our method was
insensitive to parameter selection since large matrix norms are
naturally eliminated by the η exponent. We call λ1 and λ2 in (9) the
parameters used for regularizing the norms of the coefficient and
the basis matrix in [16] respectively. Fig. 2 shows the sensitivity of
FSeg to λ1 by varying it over the [0.01 . . . 0.5] interval. We report
the F-measure computed by the dataset’s benchmarking system.
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Fig. 2: F-measure against λ1 values in the Prague Dataset. GRPNMF is
independent of λ1 and outperforms FSeg. This figure is better seen in color.

The benefit of GRPNMF is twofold: the F-measure for GRPNMF
is higher across all possible choices of λ1 without needing such
a free parameter. Similar results can be derived for λ2 although it
affects the final result less than λ1.

IV-B. Node level image segmentation by graph clustering
Despite the strength of our method in the previous section, our

ultimate goal is to apply our algorithm in a graph based approach.

We now describe the results of our node based method on both
texture and color segmentation. We used the perceptually uniform
Lab colorspace as the color features and Gabor filter responses for
texture segmentation [30]. The Gabor filterbank had 5 scales and 8
orientations. For the RAG construction, we applied the watershed
transform [24] on the gradient of the grayscale image. First, we
compare GRPNMF to NMF and study the effect of regularization.
According to Fig. 3, both NMF and GRPNMF with λ = 0 cannot
achieve smooth results. By contrast, using λ > 0, achieves this
spatial regularity and delivers improved results for GNMF and
GRPNMF further improves them. By increasing λ, more spatial
regularity can be achieved as seen in both the node based clustering
and the corresponding pixel image in Fig. 4. Smaller regions are
merged with larger ones and region boundaries become smoother.
If a very large λ is used, the final solution might be overly smooth.

Fig. 3: Left to right: NMF, GRPNMF λ = 0, GNMF λ = 0.25, GRPNMF
λ = 10. This figure is better seen in color and zoomed in.

Fig. 4: Effect of regularization (left to right): GRPNMF using λ = 1,
λ = 20 and pixel texture segmentation with region boundaries in red, 250
iterations. This figure is better seen in color and zoomed in.

We also test our method against other methods for a color
based segmentation. According to Fig. 5, GRPNMF outperforms
NMF, GNMF and the standard K-means algorithm for both test
images. For example, the K-means was prone to the initialization
whereas NMF did not capture the objects as good as GRPNMF
with regularization. The effect of regularization is also visible: the
objects adhere well to their spatial regularities. Fig. 6 also shows
the GRPNMF iterations for a test image.

Fig. 5: Natural image segmentation (left to right): K-means, NMF, GRP-
NMF λ = 0, GNMF λ = 0.15, GRPNMF λ = 500, 2000 iterations for
all methods. GNMF tends to be more sensitive to the initializations than
GRPNMF. This figure is better seen in color and zoomed in.

IV-C. 3D Point Cloud segmentation
This section considers the problem of segmenting a 3D object

given its depth. The Kinect depth camera has made the process
of acquiring depth information easier and more consistent. Here,
we use GRPNMF to weight the different visual and spatial cues
into a common framework which applies graph clustering to object
segmentation. Referring to Fig. 7, the depicted object cannot be
separated without using the spatial regularizer. Using color (notice
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Table I: Pixel Based Texture Segmentation in Prague Dataset. Best result is denoted with bold.
Method CS(↑) ME(↓) NE(↓) O(↓) CA(↑) CO(↑) I.(↓) EA(↑) MS(↑) RM(↓) CI (↑) GCE(↓)

FSeg [16] 69.02 6.28 5.66 10.79 77.50 84.11 15.89 83.99 78.25 4.51 84.71 10.82
CNMF [2] 49.32 5.40 5.11 36.81 60.07 70.48 29.52 66.69 57.25 11.01 67.87 9.88

ONMF [29] 68.33 5.81 6.30 10.13 77.20 83.19 16.81 84.23 78.03 4.54 85.18 11.59
GRPNMF (Our) 69.50 5.74 5.89 10.33 77.92 84.00 16.00 84.39 78.57 4.34 85.24 10.61

Fig. 6: GRPNMF using λ = 500: 2, 450, 500, 600, 700 and 1000 iterations.
Red and blue denote different clusters. For 1000 iterations and 14459 nodes,
GRPNMF took 1.61 sec. on a CPU. This figure is better seen in color.

the shading effect in the floor) or even combining color with space
and normal information as features does not produce satisfying
results. However, by applying regularized GRPNMF the noisy
influence of the normals is smoothed and the object is better
separated from the floor. For the graph embedding, we used a k-nn
graph using k = 8 neighbors.
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Fig. 7: Effect of using different features on GRPNMF for 3D point cloud
segmentation using 2 classes, 5500 iterations (left to right): i) original point
cloud, ii) random initialization, iii) color and λ = 0, iv) space and λ = 0,
v) color, space, normals and λ = 0, vi) color, space, normals and λ = 500.

V. CONCLUSION
We developed a graph clustering algorithm based on the Pro-

jective non-negative matrix factorization called GRPNMF. Our
contributions lie in studying new ways to approach image and
object segmentation via unsupervised graph clustering. We improve
on a recent factorization based approach for pixel based texture
segmentation by proposing a factorization scheme without any
regularization parameters. We then present qualitative results on
color and texture segmentation problems on image-driven graphs
and point cloud segmentation using both color and depth cues,
achieving promising results. We provide a theoretical proof for the
convergence and correctness of GRPNMF which can be thought of
as an extended case of PNMF using η = 1

4
. Our future work will

be directed to finding better region features for our RAG based
graph clustering and further exploitation of matrix factorization
techniques for segmentation and object recognition.

VI. APPENDIX
First, we outline the proof of the correctness for update rule (8).

For any two matrices X, H we have that:∥∥∥X−XHH>
∥∥∥2 = Tr

{
(X−XHH>)>(X−XHH>)

}
(10)

where Tr{.} denotes the trace. For the purposes of this section, set
X← X>. Introduce the Lagrange multipliers by defining a n× c
matrix Φ = [φij ] and then:

min
H

Ĵ(H), with Ĵ(H) = J(H) + Tr(ΦH>) (11)

Taking the gradient with respect to H yields:

∂Ĵ

∂H
= −2(X−HH>X)X>H− 2X(X> −X>HH>)H

+ λ(L + L>)H + Φ

= −4XX>H + 2HH>XX>H + 2XX>HH>H

+ 2λLH + Φ

where we also use that L is symmetric. By replacing L = D− S
and setting the gradient to 0 we get:

4XX>H + 2λSH = 2HH>XX>H

+ 2XX>HH>H + 2λDH + Φ
(12)

Then, we multiply (12) element wise by H4
ij :

4[XX>H]ijH
4
ij + 2λ[SH]ijH

4
ij = 2[HH>XX>H]ijH

4
ij

+ 2[XX>HH>H]ijH
4
ij + 2λ[DH]ijH

4
ij

+ ΦijH
4
ij

Finally, using the KKT conditions ΦijHij = 0, re-arranging and
replacing back X← X> yields the update rule (8). Next, we focus
on the convergence of the update rule where we use the auxiliary
function technique.

Definition: F (Ht+1,Ht) is an auxiliary function of J(Ht) if
the following two conditions hold:

F (Ht+1,Ht) ≥ J(Ht) and F (Ht,Ht) = J(Ht)

Lemma: if F is an auxiliary function then J(H) is non-
increasing under the update rule: Ht+1 = arg min

H
F (Ht+1,Ht).

We can show that:

F (Ht+1,Ht) = ‖X‖2

− 2
∑
ijk

(Ht
ji(XX>)jkH

t
ki(1 + log

Ht+1
ji Ht+1

ki

Ht
jiH

t
ki

)

+
1

2

∑
ji

(HtHt>XX>Ht + XX>HtHt>Ht)ji
H4,t+1

ji

H3,t
ji

is an auxiliary function for Jdata, where Hx,t
ji denotes the element

(j,i) of the matrix H raised to the power of x at the t iteration. The
minimum value is obtained by setting ∂F (Ht+1,Ht)

∂Ht+1
jk

= 0 which

yields (8) when no spatial term is used, i.e. λ = 0. When the
spatial term is added, we can use the same procedure by taking into
account the additional λTr(H>LH) term. Then, we use the same
auxiliary function F (Ht+1,Ht) by adding the following term:

λ

n∑
i=1

c∑
k=1

(LHt)ikH
2,t+1
ik

Ht
ik

(13)

Finally, we derive the correctness and convergence of (8) ∀λ > 0.
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