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ABSTRACT

- Multiscale signal analysis has recently emerged as a useful
{framework for many computer vision and signal processing
tasks. Morphological filters can be used to develop non-
linear multiscale operators which have certain advantages
over linear multiscale approaches in that they preserve im-
portant signal features such as edges. In this paper we
discuss several nonlinear partial differential equations that
model the scale evolution associated with continuous-space
multiscale morphological erosions, dilations, openings, and
closings. These systems relate the infinitesimal evolution
of the multiscale signal ensemble in scale space to a non-
linear operator acting on the space of signals. The type
of this nonlinear operator is determined by the shape and
dimensionality of the structuring element used by the mor-
phological operators, generally taking the form of nonlinear
algebraic functions of certain differential operators.

1. INTRODUCTION

Both in computer vision and video data compression, im-
portant problems such as feature and/or motion detection
and frequency multi-band analysis have recently been ad-
dressed using multiscale smage analysss. In most of the
work 1n this area the multiscale versions of an image have
been obtained by acting on the image with a linear smooth-
ing filter whose impulse response is a Gaussian G,(z) =
(1/+v/47s) exp[—z°/(4s)] with variance proportional to scale
s. For computer vision tasks, Witkin [11] proposed a con-
tinuous (in scale s and signal argument x) multiscale signal
ensemble v(z,s) = f(z) * G4(x), where an original signal f
1s convolved with a multiscale GGaussian, It is well known,
e.g. see [2], that v can be generated from the diffusion
equation dv/0s = 9%+/3x?, starting from the initial con-
dition v(z,0) = f(x). This partial differential equation
(PDE) represents a continuous dynamical system that gen-
erates this multiscale evolution of f. In [7, 3] there are
nonlinear refinements of this 1dea. Despite the mathemat-
ical tractability of the linear multiscale approaches, there
i1s a variety of nonlinear smoothing filters, including the
morphological openings and closings [6, 8, 9, 4] and the
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anisotropic and nonlinear diffusion schemes [7, 3], that can
provide a multiscale image ensemble and have the advan-
tage over the linear Gaussian smoothers that they do not
blur or shift image edges. This attractive property of mor-
phological smoothers 15 illustrated in Figure 1.

In this paper we study multiscale morphological filters.
Multiscale openings and closings of binary 1mages were first
developed by Matheron [6] in his theory of size distributions.
They have been used extensively in image analysis and ap-
plications of mathematical morphology to biology and pet-
rography [8], for multiscale shape description and represen-
tation via skeleton transforms [4], and for signal smooth-
ing/reconstruction in multiresolution morphology [1}. The
use of morphological filters for multiscale sigral analysis
is not limited to operations of a smoothing type. For in-
stance, in fractal image analysis, morphological erosion and
dilation filters can provide multiscale scale distributions of
the shrink-expand type from which the fractal dimension
can be computed [5].

Motivated by the wide apphicability of multiscale morpho-
logical smoothing, as well as by the potential applications
of continuous dynamical systems to analog VLSI and neu-
ral networks, in this paper we develop nonlinear PDEs that
model multiscale morphological filters of the shrink-expand
type (erosions/dilations) and of the smoothing type {open-
ings/closings) as dynamical systems. Since the basic ingre-
dients of multiscale morphology are multiscale erosions and
dilations, the biggest part of our analysis focuses on deriv-
ing the nonlinear PDEs modeling the scale evolution of a
variety of multiscale erosions and dilations. These PDEs are
nonlinear algebraic functions of first-order differential oper-
ators, and their form varies according to the shape and di-
mensionality of the structuring element. Overall, our work
can be viewed as describing a nonlinear scale space based
on min-max operators rather than being an extension of
(Gaussian convolutions.

2. DILATIONS AND EROSIONS

Henceforth, let f: R” — R be a continuous function repre-
senting some v-D signal and let the continuous ‘structuring
function’ ¢ : B — represent some structuring element
with a compact support BC R”. Let also fég and fSg
denote the morphological dilation and erosion of f by g.
We define the multiscale dilations and erosions of f by g at
scale s >> 0 as the functions

a(z,s) =

f @ gs(z) = sup{f(z —v) +sg(v/s) : v € sB}
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Figure 1: (a) Original image. Smoothing (b) via Gaussian convolution and (c) via opening by an octagon at same scales.
A

B(z,s) fEgs(z)=inf{f(z +v) — sg(v/s) : v € sB}

where s > 0 is the continuous scale parameter and g, :
sB — R is a scaled version of g defined as g.(z) = sg(z/s)
for s > 0 with support sB = {sb: b € B}. (If s = 0, then
sB = {0} and go(0) = 0.) The function g, has the same
shape as ¢ but both its domain and range are scaled by a
factor s.

If g(z) = 0 for all z € B, then the dilation and erosion by
gs become a moving sup and inf of the input signal inside
the moving window set sB. We refer to these operations
as multiscale dilations/erosions by a structuring set (B),
because the zero-valued ¢ carries the same information with
its support set B. We dedicate a significant part of this
paper to the analysis of such morphological operators that
use structuring sets, because they are simpler to analyze
and implement than their counterparts that use structuring
functions and have found more applications.

Our primary goal is to attempt to make sense out of the
following evolution equation

da - &y a(z,s+r)— a(z,s)

Js rl0 r

for @ and to interpret its solution in morphological terms.
Toward this goal, we henceforth constrain g to be non-
negative and N-conver; hence, B is convex too. Convexity
of B endows the set family {sB : s > 0} with a semi-
group structure [6, 9]; i.e., sB®rB = (s+r)B and similarly
for g.. Then the serial composition laws of dilation and
erosion cause the multiscale dilation and erosion operators
D.f) = f®gs and £,(f) = fO g, to inherit this semigroup

structure:

'Dﬂ('D,.(f)) - I}$+r(f) ’ gﬁ(gr(f)) -~ c‘:,,+r(f)

It follows from this semigroup structure that

dar . EupuErE{ﬁ(I -, '5) - fg(ﬂ/l")} e H(I! 3)
— = him
0s r10 r

and similarly for § using erosion.

2.1. Dilations/Erosions by 1-D Sets

Given a differentiable function f: R — R, let B = [-1,1],
assume a constant ¢ : B — {0}, and let a(z,s) = fPsB
and B(z,s) = f&sB. Then the following result yields PDEs
for @« and . Although we state these results in local form,

the issues relating to existence of solutions can be thought

of as having been resolved since @ and B are well defined
for all (z, s).

THEOREM 1 . If the partial derivatives da/dz and 95 /0«x
exist at some point £ and scale s, then

Jda do op

ds ey oz (2,9)] s T, 8) ==
Proof: Note that a(z +v,s8) —a(z, s) = azv+ |v|o(v) where
a; = da/dz and o(v) — 0 as v — 0. Thus, by ignoring the
term with o(v) in the limit r | 0, it follows that

d
2L (z,9)

da .. supl{azv:|v|<r} .. |azr do
ds rl0 T rlo0 T or
Similarly for 8 by replacing sup with inf. O

Thus, assuming that the partial derivatives da/dz and
df/0z are continuous, these two nonlinear PDEs can gener-
ate the 1-D multiscale dilations and erosions starting from
the initial conditions a(z,0) = B(z,0) = f(z). However,
even if f is differentiable, as the scale s increases the mul-
tiscale erosions/dilations can create discontinuities in their
derivatives d/0z; then these derivatives and the genera-
tor PDEs have to be interpreted correctly at such points
according to the specific case. To solve this problem we
can replace the conventional derivatives with ‘morpholog-
ical derivatives’. Specifically, we define the morphological
sup-derivative M+ a f at a point z as follows:

M+f(I) g im S]]p{f(fﬂ i H) : |ﬂ| < T} s f(I')

r—0 T

Similarly, the inf-derivative M~ of f is defined as
M~ f(z) = M*(=f)(z) using erosion. Note that [M*(f)+
M~(f)]/2 is equal to Beucher’s morphological gradient [8].
It is simple to establish the following:

THEOREM 2 . Let f : R — R be continuous and let its right
Dt and left derivative D~ exist at some point z. Then (a):

- -1 1D i - -

wir = {meleheh % oS

& B min(|D~|,|D*|) if D~ < D?

M )s) . = {ma.x([D'|,|D+|) if D-> D+
(b) If DY = D~ = df(z)/dz, then MY (f)(z) =

M~(f)(z) = |df (z)/da.



Hence, a more general form of the dilation and erosion
PDEs results from replacing |8a/dz| and |03/0c| with
M7} () and M7 (B) respectively, where M} and M are
the partial morphological sup- and inf-derivatives resulting
from applying the definitions of M+ and M~ in the z di-
rection. These general forms allow the dilation and erosion
PDEs to still hold even if discontinuities are created in the
partial derivatives da/dz and d8/8x as the scale increases,
provided that the equations evolve in such way as to give
solutions that are piecewise differentiable with left and right
limits at each point.

2.2. Dilations/Erosions by 2-D Sets

Given a differentiable function f : Rz_ — R, we can find
similar PDEs (as in the 1-D case) for its multiscale dila-
tions a(r,y,s) = f @ sB(x,y) and erosions #(zx,y,s) =
fesB(z,y) by a 2-D convex compact structuring set B.
The only difference now is that the shape of B affects the
form of the PDE. We present results for three different
shapes of B: (i) unit dmmﬂnd {(u,v) : |v| + |u| < 1},
(i) unit disk {(v,u) : v* + u® < 1}, and (iii) unit square

{(v,u) : |v], [u] < 1}

THEOREM 3 . If the partial derivatives along the r and y
directions of o and 8 exist and are continuous at some pont
(z,y) and scale s, then at the specific (z,y, 8)

*a—ﬂ =~ maXxX &I Jo , B = diamond
Js ﬂy
da da |? dox |° *
a5 - \/ az| tlag| o TEA
do | Oa N dor 3 _
s |0z Jy ’ = RANALE

The PDEs for the multiscale erosions 8 result from to the

above dilation equations by multiplying the right sides with
~1.

Proof: Since a(z + v,y + u,8) — a(x,y,8) = azv + ayu +
H(v, u}|{o(|1(x, v}]|), by ignoring in the limit # | 0 the term
with of), it follows that

Jo . K 7
ke 'ﬂﬂ} ol K = sup{a;v + ayu : (v,u) € rB}

Due to the z, y symmetry of r B, we can replace a,, o, with
their absolute values and search only over v € [0,r]. Also,
due to its linearity, the function ;v +ayu over the compact
domain r £ assumes its maximum value on the boundary of
rB. The boundary function b : [0,r] — [0,7} is equal to
(i) b(v) = r — v if B=diamond, (ii) b(v) = vr2 —o? if
B=disk, and (i) &(v) = r if B=square. Hence,

K = max{|az|lv+jay|blv): 0 < v<r}
r - max(|az|,|ay|) , if B=diamond
= ry/ai + o . if B=disk
r (laz| + |ay]) , if B=square

This completes the proof of the dilation PDEs. Similarly
for 4 by replacing sup with inf. O

Thus, if da/dz, 8ca/dy and 38/0z,38/0y remain con-
tinuous for all scales s, we can use the previous PDEs to
generate the multiscale ensembles o and 73, starting from
the initial condition a(z,y,0) = 8(z,y,0) = f(z,y). Oth-
erwise, if the one-sided z,y partial derivatives of o and B
exist everywhere, then we can use the generalized forms of
these PDEs where the standard derivatives are replaced by
morphological sup- and inf-derivatives, as in the 1-D case.

2.3. Dilations/Erosions by Functions

Let f : R — R be a differentiable function and let ¢ :
[—1,1] — R be a structuring function. Then it is possible
to find PDEs for the multiscale dilations a(z,3) = f® g.(z)
and erosions #(z,8) = fOg.(x), which are more general
than those in the case ¢ = 0. We discuss three different
shapes of ¢: (1) triangular g(z) = ¢(0)(1 - |z|), (ii) circular
g(z) = g(0}4/1 — 22, and (iii} rectangular g(z) = ¢g(0), with
¢(0) > 0 and |z| < 1. See Fig. 2.

THEOREM 4 . If da/dx and 9083 /3z exist at some point
and scale s, then

J
_Q(I: 8) = max {‘—ﬂ‘ ,g(ﬂ)} , g = triangular
\/ 2(0) , g =circular
( 3) = [ +¢(0) , g = rectangular

The PDFEs for the multiscale erosions 8 result from to the
above dilation equations by multiplying the right sides with
=

Proof: The proof 1s very similar to the proof of Theorem 3,
because the graph of g is the (scaled by ¢(0)} top boundary
of one of the three planar sets used as structuring sets in
Theorem 3. O

Note that the PDE for dilation by a set results as a special
case of any of the previous three PDEs for dilations by
functions g by setting g(0) = 0. The PDEs for 1-D dilations
and erosions by functions can be easily extended to the 2-D
case.

3. OPENING AND CLOSING

The multiscale morphological opening ¢ and closing ¢ of f
by g are defined as

e

foys('-ﬂ) = (.fegs)$93($)
f@g.(z) = (fbgs)Og:(x)

The simplest way to generate the above multiscale open-
ings and closings using PDEs evolving in scale-signal space
would be to implement them serially as compositions of
multiscale erosions and dilations. Specifically, ¢¥(z, s) could
be obtained by running the erosion PDE for f(z,r) over
scales r € [0,s] with initial condition B(z,0) = f(z)
and then running the dilation PDE for a(z,r) over scales
r € [0, s] with initial condition a(z,0) = 3(z, s).
Alternatively, for 1-D openings by sets we have derived
the following PDE that directly models the scale evolution
of the opening. Consider a differentiable function f: R —

{1
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Figure 2: A discrete signal (sﬁl.‘id line) and its erosions/dilations {dashed lines) by g, at scales s = 20,40, where g is a
3-sample sequence. (a) Rectangular g with g{0) = 0.01. {b) Triangular g with g(0) = 0.01. (c) Rectangular g with g(0) = 0.

R and let ¢ : B — {0} be constant with B = [—1,1]. As
8 increases the opening ¥(z,s) = fOsB becomes smaller,
because the peaks of f that have width < 2s are cut down.
In the process, flat plateaus of length 2s are created under
the peaks of f. Consider some peak pomnt £ = p where
f has a local maximum, surrounded by two valley points
vy, v2 where f has local minima. Let eq € [v1,p] and e2 =
e1+2s € [p, v2] be the left and right end points of z-intervals
of length 2s such that t(e1,s) = ¥(e2,s) = f(e1). These
intervals are the supports of the flat plateaus created by
the opening. Now let s — s 4+ As and ¥ — 1 + Ay, Then
~24As = Av(|y(e1, 8)/0z|™! + [¥(ez, 8)/0z|™!). Hence, by
letting 0¥ /0s = lima s AY/As, we obtain
-1
ot 2% (e2,9)

7, s oy
£= 2( oT (er, )]+ oz
0, z € (vi,e1)U(ez,v2)

dp

where dv¥ /0z are one-sided derivatives.

Similarly, by replacing in the opening PDE the —2 with
+2 and the peak with valley points, a PDE results for the
multiscale closing ¢. Since the opening PDE acts only on
the signal’s peaks whereas the closing PDE acts only on the
valleys, we can also combine both rules into a single PDE
that models the evolution of the multiscale opening-closing,
the composition of opening and closing which smooths sig-
nals similarly to a median.

Extending the above opening PDE to 2-D signals f and
2-D sets B presents several problems because the geometry
of the 2-D flat plateaus created by the opening are not
refated to the geometry of the 2-D set B as simply as in
the 1-D case.

4. DISCUSSION

‘The analysis presented here suggests a rather natural way
to think about and classify continuous-scale signal opera-
tors. If 7.(f) denotes the output of a multiscale operator
at scale s applied to a signal f, then 7, 1s said to satisfy the
semigroup property if 7.,[7,.(f)] = 7T,4.(f). All the mul-
tiscale erosions and dilations discussed in this paper and
the convolutions with Gaussians satisfy this property. Mul-
tiscale openings and closings, although they do not have
an additive semigroup structure, they can be expressed as
compositions of operators that do satisfy this rule. Consider
next the generator of the semigroup

GIT.(f) = lim Letrtf) = T/}

r—0 T

Ly il
) £ € [EIJEE]

If this hmit exists in some suitable sense, it may happen
that the limit is a differential operator, hnear as in the
case of Gaussian convolutions, or nonlinear as in the case
of dilations/erosions. Alternatively, it may happen that it
1s a combination of differential and difference operators as
we have seen in the case of opening and closing. Ifit 1s a
differential operator of second order, it will smooth f via
diffusion [10]. If it is of first order, the differential equation
is of hyperbolic type and 7,(f) can be expected to evolve
by shifting without smoothing.
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