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Abstract—In this paper, we examine how energy computation
and filterbank design contribute to the overall front-end robust-
ness, especially when the investigated features are applied to
noisy speech signals, in mismatched training-testing conditions.
In prior work (“Auditory Teager energy cepstrum coefficients for
robust speech recognition,” D. Dimitriadis, P. Maragos, and A.
Potamianos, in Proc. Eurospeech’05, Sep. 2005), a novel feature set
called “Teager energy cepstrum coefficients” (TECCs) has been
proposed, employing a dense, smooth filterbank and alternative
energy computation schemes. TECCs were shown to be more
robust to noise and exhibit improved performance compared to
the widely used Mel frequency cepstral coefficients (MFCCs). In
this paper, we attempt to interpret these results using a combined
theoretical and experimental analysis framework. Specifically, we
investigate in detail the connection between the filterbank design,
i.e., the filter shape and bandwidth, the energy estimation scheme
and the automatic speech recognition (ASR) performance under
a variety of additive and/or convolutional noise conditions. For
this purpose: 1) the performance of filterbanks using triangular,
Gabor, and Gammatone filters with various bandwidths and filter
positions are examined under different noisy speech recognition
tasks, and 2) the squared amplitude and Teager–Kaiser energy op-
erators are compared as two alternative approaches of computing
the signal energy. Our end-goal is to understand how to select the
most efficient filterbank and energy computation scheme that are
maximally robust under both clean and noisy recording condi-
tions. Theoretical and experimental results show that: 1) the filter
bandwidth is one of the most important factors affecting speech
recognition performance in noise, while the shape of the filter
is of secondary importance, and 2) the Teager–Kaiser operator
outperforms (on the average and for most noise types) the squared
amplitude energy computation scheme for speech recognition in
noisy conditions, especially, for large filter bandwidths. Experi-
mental results show that selecting the appropriate filterbank and
energy computation scheme can lead to significant error rate
reduction over both MFCC and perceptual linear predicion (PLP)
features for a variety of speech recognition tasks. A relative error
rate reduction of up to 30% for MFCCs and 39% for PLPs is
shown for the Aurora-3 Spanish Task.

Manuscript received February 17, 2010; revised June 05, 2010, September 27,
2010; accepted October 05, 2010. Date of publication November 15, 2010; date
of current version May 25, 2011. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Hui Jiang.

D. Dimitriadis was with the School of Electrical and Computer Engi-
neering, National Technical University of Athens, Greece, Athens GR-15773,
Greece. He is now with AT&T Labs, Florham Park, NJ 07932 USA (e-mail:
ddim@research.att.com).

P. Maragos is with the School of Electrical and Computer Engineering,
National Technical University of Athens, Greece, Athens GR-15773, Greece
(e-mail: maragos@cs.ntua.gr).

A. Potamianos is with the Department of Electronics and Computer Engi-
neering, Technical University of Crete, Chania GR-73100, Greece (e-mail:
potam@telecom.tuc.gr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2010.2092766

Index Terms—Bandpass filters, cepstrum analysis, error anal-
ysis, parameter estimation, robustness, spectral analysis, speech
processing, speech recognition, time–frequency analysis.

I. INTRODUCTION

R OBUST feature extraction is a complex problem much
studied over the years. Despite recent progress in the

domain of robust automatic speech recognition (ASR), many
questions, such as how the energy estimation process and
the filterbank design affect ASR performance under noise,
especially for various levels of additive/convolutional noise
and acoustic model mismatch, remain open. The effect of noise
on the features employed in a speech recognition front-end is
nontrivial and can greatly influence the overall system perfor-
mance. In this context, much work has been done minimizing
this mismatch [2], [3] by using transformations of the noisy
features to a “cleaner” feature domain, and thus improving their
invariability to certain noise types. Other related work includes
speech enhancement [4], normalization of the noisy features
statistical properties [5]–[7], and dynamic feature combina-
tions [8]. In [9]–[11], the effect of environmental noise on the
statistical speech models was investigated and two algorithms
(CDCN and MFCDCN) were proposed for compensating it.
However, the feature robustness problem remains unsolved in a
globally optimal way. Our goal, in this paper, is to analyze both
theoretically and experimentally, how the filterbank design pa-
rameters and energy computation scheme affect the robustness
of speech recognition systems in noisy recording conditions.

The use of filterbanks in ASR front-ends was motivated by
the human hearing process [12]–[14], where the energy across
frequencies of the audio spectrum is resolved by using audi-
tory filters. Although the human hearing process is for the most
part heavily researched, machines have been unable to match
the robustness that human beings exhibit in speech recognition
in noise [15]. Efforts to model the human audio processing to
further improve the robustness of speech recognition front-end
have had limited success, e.g., perceptual linear prediction fea-
tures (PLP) [16], relative spectral transform features (RASTA)
[17], dynamic spectral subband centroids [18], or the auditory-
based features [19]. However, for the past two decades, the Mel
frequency cepstrum coefficients (MFCCs) [20] have remained
the most widely used features for ASR applications mainly be-
cause they combine good discrimination capabilities with low
computational complexity. These features incorporate some as-
pects of the human hearing process, such as the nonlinear filter
placing (mel-scale) and subband energy estimation, and per-
form well in relatively clean and well-matched conditions. On
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the other hand, MFCCs lack robustness in adverse recording or
noise mismatch conditions.

Recently, the Teager energy cepstrum coefficients (TECCs)
have been proposed and shown to outperform the MFCCs, espe-
cially in noisy recognition tasks and under mismatched training/
testing conditions [1]. The TECCs employed an alternative en-
ergy estimation scheme, i.e., use of the Teager–Kaiser instead of
the square amplitude energy operator [21], and human hearing-
inspired filterbanks, i.e., Gammatone filters placed on the equiv-
alent rectangular bandwidth (ERB) curve. The ERB is a mea-
sure used in psychoacoustics, approximating the bandwidths of
the filters in human hearing by rectangular bandpass filters. It
was first introduced for speech processing applications in [22]
and [23].

The main goals of this paper are to: 1) adequately present
the TECC “family” of features, i.e., the TECCs and other front-
ends employing similar design parameters, 2) investigate under
what noise conditions this new family of features outperforms
the MFCCs, 3) provide theoretical and experimental results on
the optimality of the energy computation scheme (squared am-
plitude versus Teager–Kaiser energy operator), and 4) inves-
tigate the optimal design of the filterbank (number of filters,
filter bandwidth, and shape) for noisy speech recognition tasks.
Specifically, we compare the mean Teager–Kaiser (MTE) or
mean square amplitude (MSE) energy schemes for cepstrum-
based feature extraction, when applied to speech signals cor-
rupted by additive and/or convolutional noise. Further, we an-
alyze the performance of the energy computation schemes as
a function of the filterbank design parameters, e.g., bandwidth
in conjunction with the noise spectral characteristics. Overall,
different key parameters of the feature extraction process are
investigated and ASR experiments are undertaken to examine
their impact on the corresponding recognition results. This work
builds upon theoretical results in [21].

The paper is organized in sections as follows. In Section II,
the clean speech and the harmonic noise models are introduced.
Herein, the input signals are bandpass filtered and the respec-
tive filter bandwidths are examined, as well. A unified energy
estimation scheme is presented, where the Teager–Kaiser en-
ergy operator (TEO) and the square amplitude energy operator
(SEO) are only two cases of the general scheme (Section II-C).
It is shown that the energy estimation performance is much de-
pendent on the filter bandwidth. The proposed feature extrac-
tion process is presented in Section III. In Section IV, it is in-
vestigated how additive and convolutional noise types affect the
proposed features. The performance of these features in speech
processing applications is presented in Section V; both energy
estimation and speech recognition in noise are investigated. Fi-
nally, the conclusions and discussion of future work are pro-
vided in Section VI.

II. BACKGROUND

In most speech processing applications, speech signals
are filtered by filterbanks yielding , where

is the impulse response of the th analysis filter and “ ”
stands for convolution. The AM–FM speech model suggests the
decomposition of the speech signal into (resonance inspired)

signals , where the number of deployed filters in the anal-
ysis filterbank [24], [25]

(1)

where are the instantaneous amplitude and
frequency modulating signals and is a phase offset. Herein,
the underlying assumption is that the information-carrying
signals , are slowly varying compared to the carrier
frequencies. Next, we summarize the main theoretical results
from [21].

A. Harmonic Noise Modeling

An approximation of a bandpass noise signal was
first proposed in [26] and [27] and used in [21]. The noise
signal is modeled as a sum of stationary sinusoids

, with fixed amplitudes , phase offsets
that are independent random variables uniformly distributed
over and frequencies placed equidistantly with
spacing

(2)

The number of sinusoid components is given by
, where is the th-filter passband. Thus, we approx-

imate noise with more components when the filter passband
is broader.

B. Noisy Teager–Kaiser Energy Estimation

If we apply the Teager–Kaiser energy (TEO) operator [24]
to the bandpassed noisy signal , its long-
term mean Teager–Kaiser energy (MTE) [21] is a sum of two
components

(3)

where denotes the time-averaging process.
The normalized deviation provides a measure of the ro-

bustness of energy estimation in additive noise and is defined
as the ratio of the difference between the mean noisy and clean
energy estimates over the mean clean estimates

(4)

The normalized deviation is proportional to the squared
product of with the amplitude coefficients , and
inversely proportional to the mean instantaneous frequency

weighted by . Therefore, the estimates de-
pend on the relative spectral energy distribution (within the
frequency band of interest) of the noise and speech signals, as
detailed in [21].
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C. Noisy Squared Amplitude Energy Estimation

The mean squared amplitude energy (MSE) for is given
by

(5)

Similarly, the normalized deviation for the MSE case is

(6)

The estimates are approximately equal to the inverse
signal-to-noise ratio (SNR) values in the filter passband.
Henceforth, the signal arguments, i.e., the signals ,
will be ignored in and for notational simplicity.

The MTE normalized deviation (4) can be formulated as the
ratio of the second-order spectral centroid of the noise over the
clean signal [25], while, the MSE deviation (6) is the ratio of
the zeroth-order spectral centroids [18]. We can express both of
these deviations with a compact notation

(7)

For , whereas for .
Based on the equations above, the spectral energy distribu-

tion ( th-order spectral moments) within the frequency band
of interest determines the relative performance of the MSE and
MTE1 estimates. In general, the MTE values present smaller es-
timation errors (deviations) when compared to the MSE ones
when the high-energy noise components are concentrated over
low frequencies (within the passband), and vice-versa, all due
to the weighting term that affects the overall spectral energy
distribution of the input signal [21]. The MTE and MSE esti-
mates are obviously related, due to this.2

D. Medium and Short-Time Properties of Energy Operators

The analysis above assumes that the duration of the aver-
aging window is long enough to ignore all transient terms.
However, the estimation errors of the MTE and MSE schemes
depend on the window length, as well. In the case when
medium- and short-time windows (less than 15 ms) are con-
sidered, transient terms contribute to the estimation error and
should be taken into further account in the analysis. In this
context, the MTE deviation values are expected smaller than
those of the MSE ones. Finally, all the transient terms are in-
versely proportional to the frequency content, e.g., filter center
frequency . Therefore, these deviation terms are further em-
phasized for smaller frequency values. A more detailed de-
scription can be found in [21].

1The relative performance of MSE versus MTE scheme does not solely de-
pend on the signal-to-noise ratio in the frequency band.

2Higher-order derivatives of the input signal correspond to larger values of �,
[21].

E. Narrowband Signal Analysis

For narrowband signals the signal is approximated by a
two-cosine sum, i.e., the noise has a single frequency component

where is the th filter center frequency. Then,

Assuming that and , the noisy signal MTE
estimate (3) is given by

and the normalized deviation , (4), is given by

(8)

Correspondingly, for the MSE case,

and, the MSE deviation, (6), is

(9)

From (8) and (9), it is concluded that both long-term and
are equal when narrow bandpass filters are used. Consequently,
no significant difference is expected when employing different
energy operators on narrowband signals (this is the case of ap-
proximately monochromatic signals). However, the MSE esti-
mates include time-decaying transient phenomena, as opposed
to the MTE scheme where these phenomena are not present (in
the case of shorter averaging windows). In general, the MTE es-
timates are expected to present smaller deviations than the MSE
ones, as outlined in Section II-D. The experimental verification
of this analysis is presented in Section V.

III. GENERALIZED CEPSTRUM COEFFICIENT FRONT-ENDS

Next, we investigate cepstral features that are computed using
different filterbanks and energy computation schemes, i.e., the
melTeager-energycepstralcoefficientsand theirgeneralizations.

A. ERB and Maximally Smooth Filterbanks

The Equivalent Rectangular Bandwidth (ERB) has been in-
troduced to measure the bandwidth of asymmetrical IIR filters,
such as the Gammatone filters. Given that is the max-
imum gain of a bandpass filter with frequency response ,
reached at frequency , then the filter ERB is defined as

(10)
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In other words, the ERB is the bandwidth of a rectangular
shaped filter when its energy (the integral of its frequency
response magnitude squared) is normalized by the maximum
gain squared, . By normalizing the filter ERBs, their
design parameters have to be modified accordingly.

A Gabor filter impulse response is given by

(11)

where is a parameter controlling the filter bandwidth and is
its center frequency. According to [28], the corresponding ERB
value is .

Further, the impulse response of a Gammatone filter is given
by

(12)

where is a bandwidth controlling parameter and is its center
frequency. Its ERB value is given by [23].

When the filters have equal bandwidth parameters-

or (13)

meaning that for the same design parameter Gabor filters
are narrower than the corresponding Gammatone ones. By
considering (13), the Gabor filter bandwidths should be nor-
malized by a factor of approximately (times) 2.5 to achieve
the same equivalent filtering passband as with the Gammatone
filter passbands. Henceforth, equal ERB values are assumed
when comparing ASR results corresponding to Gabor and
Gammatone filterbanks.

B. Generalized Cepstrum Coefficients

MFCCs are typically computed using a filterbank of 22–25
triangular filters with 50% bandwidth overlap3; the (log) mean
mel energy coefficients are estimated and then transformed to
the Cepstrum domain via the discrete cosine transform (DCT).
The feature sets analyzed in this paper, as proposed in [1], em-
ploy smoother and broader filters. The use of such filters, i.e.,
Gammatone or Gabor filters, for estimating the cepstral coeffi-
cients, is supported by the broader filter approach, as presented
in [29]. In addition to that, different energy estimation schemes
have been investigated, providing additional robustness to the
proposed features (depending though, on the spectral fingerprint
of the clean and noise signals).

The feature extraction algorithm consists of the following
steps. Fig. 1:

1) Filter the speech signal using a mel-spaced filterbank.
The filterbank consists of 25–100 smooth filters and uses
Gabor, Gammatone or Gammachirp filters.4

2) Estimate the MTE or MSE mel-energy coefficients of the
framed bandpassed signals.

3) Transform these energy coefficients into the Cepstrum do-
main. Only the first low-order cepstral coefficients are kept

3The triangular filters present finite passband support therefore, the overlap
is, usually, estimated over them.

4Herein, results only for the first two types of filters are reported.

Fig. 1. Block diagram of the TECC feature extraction process.

for recognition (the de facto standard is to keep the first 13
coefficients, including C0).

4) Estimate their first and second order time derivatives and
perform cepstral mean subtraction (CMS).5

In [14] and [19], it is conjectured that the Gammatone filters
equidistantly placed in the Mel-frequency scale, resemble the
human ear. The first two of the steps substantially differentiate
the proposed algorithm from the typical MFCC algorithm. The
following two steps, i.e., the cepstral coefficient estimation and
the truncation process, remain the same as in [20]. The ASR re-
sults presented in [1] and in Section V below, show significant
improvement, especially for recognition tasks in noise. The ad-
ditional robustness to noise can be attributed to the use of wider
filters and the use of alternative energy estimation schemes, i.e.,
the MTE scheme.

IV. ERROR ANALYSIS FOR CEPSTRUM FEATURES IN NOISE

Until now, the bandpass filters were considered ideal where
their amplitude response was rectangular with fixed amplitude
equal to unity. Herein, the aforementioned analysis is general-
ized for a wider “family” of bandpass filters.

Under the conditions detailed in [30] and [31] for speech and
[32] for image signals, a filtered bandpass AM-FM signal
can be approximated by

(14)

where is the frequency response of the th filter. The ap-
proximation is exact when is monochromatic, i.e.,

. Further, in the case of real, symmetric filters, e.g.,
Gabor filters, and the filtering process affects
only the instantaneous amplitude signal [30]. Similarly to
(14), the noise signal can be rewritten as

(15)

In the case of filtering the speech signals, the instantaneous am-
plitude signals are given by

and

The phase offsets, i.e., and , are averaged
out.6 Only in the cases of short- and medium-term energy aver-
aging, these phase offsets should be considered.

5The experimental results using features without CMS are similar. However,
these results appear more noisy making conclusions less clear.

6Assuming that � ��� is smooth enough, then � �� ���� � constant.
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A. Cepstral Coefficient Error Analysis

As shown above, the noisy speech energy coefficients, (3),
(5), are the sum of the speech and the noise energy coef-
ficients (given sufficient length for the averaging window),
i.e., , where

the number of filters and the total number
of frames. For the case of MTE, and

,7 for th-time frame. Henceforth,
to simplify the notation we shall drop the frame index from
all equations. Note that this analysis holds true for each one of
the frames.

With a unified notation for both energy schemes, similarly to
(7), the cepstral Mel energy coefficients [7], [26] are given by

(16)

where is the
vector of the estimated noisy cepstral coefficients with
length is an discrete cosine transform ma-
trix and and

are the noisy and
clean speech Mel-energy coefficient vectors estimated over
the filter passbands. Depending on the energy estimation
scheme, the parameter or (when , we refer to the
MSE values, and for to the MTE coefficients). To further
simplify the notation, we shall, henceforth, drop the superscript

, as well. The analysis below holds true for either or
.

Equation (16) is rewritten element-wise, as

(17)

where and .
Inspired by the analysis in [10], [11], we introduce the cep-

stral coefficient deviation as the difference of the noisy
and the clean speech cepstral coefficients, i.e., and

(18)

From the analysis in Section II, (18) leads to

where the quantity is the normalized MTE or
MSE Mel energy deviations (7), within the th filter passband.
Therefore,

(19)

where is the estimated energy deviation for
the th filter index, assuming . The deviation

7Herein, only the MTE case is presented. However, the same equation holds
true for the case of MSE, as well.

values provide an indication of how noise (of different spectral
characteristics) corrupts the MTE- and MSE-based cepstral
coefficients. These deviations consist of a linear combination
of the log energy deviations weighted by , across all filters.
Therefore, the energy deviation values corresponding to dif-
ferent frequency bins linearly affect all the cepstral coefficients.
Consequently, smaller energy estimation errors will yield
smaller cepstral feature deviations from the clean ones.8

B. Convolutional Noise Analysis

In the presence of both additive and convolutional noise the
corrupted speech signal equals to . As de-
fined in the previous sections, the normalized Mel-energy coef-
ficient deviation is given by

(20)

where and are the framed ( th time frame) band-
passed clean speech, additive and convolutional noise signals,
respectively. Further,

and

where is the th filter frequency response and its pass-
band, whereas and are, respec-
tively, the periodograms of the clean, additive and convolutional
noise signal frames, and defined as above.

By substitution, we obtain

(21)

The normalized deviations9 consist of two terms accounting
for the two different noise types, i.e., the additive and the con-
volutional noise parts:

(22)

where

8The energy-related errors can be attributed to both the estimation process
and the existence of noise.

9We assume that � is non-negative and in the rare occasions when it takes
negative values we suggest thresholding it.
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and

Assuming that remains almost constant for
a certain time frame and across all frequency bands, then

and

Finally, after substituting the noise model, we obtain

(23)

The assumption of convolutional noise with constant spectral
characteristics for each time frame, adds a constant deviation
term to the total normalized deviation. This constant error
term can be easily removed via an energy normalization post-
processing scheme, e.g., mean value subtraction [6].

In the general case of noisy signals contaminated by both ad-
ditive and convolutional noise, the cepstral deviation (19)
will, now, contain an additional term (22)

(24)

Similar results are presented in [9] and [10] for the case of the
MFCCs. In this context, it should be highlighted the importance
of the weighting term that emphasizes certain parts of the
signal power spectrum (according to the values of ) and thus,
can provide smaller cepstral coefficient deviations when
set accordingly. One of the paper contributions is based on the
introduction of this weight to the feature extraction process.

V. ENERGY ESTIMATION AND SPEECH

RECOGNITION EXPERIMENTS

In this section, various parameters of the feature extraction
process are investigated experimentally in terms of noisy cep-
stral coefficient deviations from the clean case and their respec-
tive speech recognition performance. Specifically, the following
parameters are evaluated: 1) the filter shape: Gabor or Gamma-
tone filterbanks, 2) the number of filters: ranging from 25 to
100 filters,10 3) the filter bandwidth (while keeping the number
of filters fixed), and 4) the energy scheme: MTE or MSE ap-
proaches. In all cases, the filters are equidistantly placed fol-
lowing the mel frequency scale. The bandwidth overlap is esti-
mated by considering the filters' ERB values. The same design
parameters are used for both Gabor and Gammatone filterbanks,
i.e., same number of filters, filter placing and normalized ERB
bandwidths.

A. Experimental Setup

For the experimental part of this paper three speech databases
are used, i.e., the Aurora-3 (Spanish task), Aurora-4 and the

10In this set of experiments, the bandwidth overlap percentage between ad-
jacent filters remains fixed. Consequently, changing the number of filters also
affects the filter bandwidth.

Fig. 2. Mean normalized PSD for the three different Aurora-3 noise conditions:
quiet, low, and high noise levels. The mean PSDs are averaged over all noise
frames of the same noise condition signals.

TIMIT Noise speech databases. The fundamental difference
between these databases is that the first database contains real-
life data, while the second and third databases contain data cor-
rupted by artificially added noises. The Aurora-3 database is
recorded inside the cabin of a moving car using both a close-
talking and a near-field microphone. Thus, the data contain both
convolutional and additive noise. Finally, the Aurora-4 task is a
large-vocabulary speech recognition task (LV-ASR), contrary
to the rest of the tasks that have a limited vocabulary and use
all-pair grammars.

In more detail, the Aurora-3 database contains recordings
of two different microphones and three noise levels with av-
erage SNR levels at 12, 9, and 5 dB, respectively. Three dif-
ferent training-testing scenarios are examined, i.e., the well-
matched (WM), the medium-mismatch (MM) and the high-mis-
match (HM) conditions. In the WM scenario, all microphone
combinations and SNR levels are included in both the training
and the testing sets. In the MM scenario, training and testing is
performed using only the hands-free microphone recordings. In
the HM condition, the close-talking microphone recordings are
used for training, while the hands-free recordings are used for
testing. Typically, car noise is assumed low-pass. However, the
analysis of the mean normalized power spectrum density (PSD),
shown in Fig. 2, does not fully support this assumption. Specif-
ically, a high-pass noise component between 1500–2500 Hz, is
present in the high-noise scenario, and an additional spike-like
noise component around 3 kHz, can be noted for the quiet and
low-noise scenarios. The first high-pass component can be at-
tributed to the wind noise from the open windows while driving
in high speed and/or the car-radio playing music, and the second
one to the engine noise. This analysis is especially relevant for
interpreting the results of the speech recognition task; as ex-
plained in Section II, the spectral shape of the noise determines
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the relative performance of the MTE- versus MSE-based cep-
stral features.

The Aurora-4 database has been created to investigate
LV-ASR tasks in the presence of noise. The database is based
on the WSJ database and the 5 k-words task for training and
testing, respectively [33]. For training, the 16-kHz sampled
noisy set is used. It contains a variety of noises added to the
clean speech, and mixes data from several microphones. The
test set was created by adding seven different noise types, i.e.,
clean, street traffic, train station, car, babble, restaurant, and
airport, to two-microphone recordings yielding 14 different
testing conditions [33]. The language model used is the baseline
model provided by the ETSI configuration.

Finally, the third database TIMIT Noise is created by ar-
tificially adding different types of noise to the TIMIT database.
For this purpose, the NOISEX-92 noise database is used, con-
taining ten typical noise samples, each with different spectral
characteristics [34]. These noise signals are down-sampled to
16 kHz and added to the speech sentences11 from the TIMIT
database, while keeping the global average SNR fixed at SNR

dB.12 The training is performed on the clean TIMIT data while
the test sets consist of the noise-corrupted versions of the orig-
inal TIMIT test set. Further, the clean speech signals are used as
reference for comparing the normalized deviation and log dis-
tortion difference values of the estimated features.

The HMM-based HTK Tools platform is used for all ASR
experiments. The statistical model for the Aurora-3 task con-
sists of 11 context-independent, left-right, word HMMs that are
trained using the ETSI WI007 training scripts. For the TIMIT
Noise tasks, the model consists of 46 phoneme-based, 3-state,
left–right HMMs with 16 Gaussians per state. The grammar
used for both cases is the all-pair, unweighted grammar. The
MFCC, PLP, MSE- and MTE-based feature vectors consist of
39 coefficients, i.e., 13 cepstral coefficients (including C0) and
their first and second time-derivatives.

The principal motivation behind including experiments on
both real and artificial data is twofold: 1) using artificial data al-
lows for the exact computation of the deviations (from the clean
ones) for the ASR features, and 2) using real-life data presents
different unaccounted sources of noises that degradate the ASR
performance, i.e., Aurora-3 data. On the contrary, the under-
lying phenomena in TIMIT Noise task are clearly presented
and anticipated by the theoretical analysis.

B. Speech Signal Energy Deviations

Typically, the estimation of the signal time–frequency energy
distributions is the first step in the feature extraction process.
We compare the MTE and MSE computation schemes across
all filters in the presence of additive noise. The normalized MTE
and MSE energy deviations defined in (4) and (6) are actually
the inverse subband SNRs, where the Mel-energy coefficient

11The noise signals have a duration of approximately 235 s, so a portion of
the noise signal is randomly selected and added to each speech signal. Their
sampling frequency is 19.98 kHz.

12The SNR value is estimated as the mean ratio of the speech over the noise
signal energies per frame. Then, the noise signals are scaled so that the global
mean SNR is 5 dB. Therefore, this value refers to the wide-band speech signal
and suggests that the SNR level is, on the average, 5 dB.

deviation from the clean estimates is the “noise” and the clean-
case estimate is the “desired signal.” Consequently, the SNR
of the MSE scheme is defined13 as SNR ,
and similarly for the MTE case, i.e., SNR .
Energy estimation results are presented in terms of mean SNR
differences (in dBs), or SNR SNR . The differences assume
negative values only when the averaged MTE-based deviations
are smaller than the corresponding MSE ones. In that sense, the
Teager–Kaiser operator provides more robust energy estimates
than those based on MSE.

1000 instances of the phonemes /aa/ and /sh/ are extracted
from the TIMIT Noise database for each of the babble, car,
and white noise types. Two different mel-spaced Gammatone
filterbanks, using 25 or 100 filters (with constant 3-dB-band-
width overlap of 50%) are used [1]. MTE and MSE coeffi-
cients are computed for each bandpassed signal using an anal-
ysis window of 30 ms, updated every 10 ms. The log root-mean-
square (RMS) differences between the true and estimated MTEs
and MSEs are computed and averaged over all frames and 1000
phonemic instances.

In Fig. 3(a)–(c), the mean log RMS error is shown for a
Gammatone filterbank with 25 filters, while in Fig. 3(d)–(f)
the error is shown for 100 filters. Given that for both cases
the filter overlap is fixed at 50%, the bandwidths in the first
case are four times larger than the later ones. As explained
in Section II-E, the differences between the MSE and MTE
estimates are expected to be more prominent for the filterbank
with larger bandwidth filters. Indeed for narrowband filters,
as those employed in a 100-filter filterbank, the deviation
differences become nontrivial only for the first and last few
filter indices [see Fig. 3(d)–(f)]. For filters positioned in low
frequencies, the difference is due to transient phenomena that
are not fully averaged out. For wider filter passbands, the
differences between the MSE and MTE deviations become
significant, depending on the spectral shape of the signal and
on the noise type.

Overall, the MTE estimates are significantly more robust,
i.e., yield smaller deviation values than the MSE ones, when
the major spectral energy content of noise is concentrated in
lower frequencies compared to that of the speech signal, e.g.,
in the case of Volvo noise [see Fig. 3(b)]. Mixed results are ob-
tained for other noise types (babble and white noise) as shown
for the case of phoneme /aa/. In addition, transient phenomena
play a key role, especially for the lower frequencies (or smaller
filter indices) [21]. The MTE estimation scheme outperforms
the MSE one for smaller filter indices, due to these transient
phenomena. The difference in performance is more pronounced
for wider filters and fricative sounds. In the cases detailed above,
the MTE-based estimated deviations (from the clean energy co-
efficients) are presented significantly smaller than the respective
MSE ones.

C. Cepstral Coefficient Deviations

Next, we compare the performance of MSE- and MTE-de-
rived cepstral coefficients. These coefficients are estimated as

13The “�” stands for mean estimates averaged over 1000 phoneme instances.
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Fig. 3. Multiband SNR energy estimation differences for MSE and MTE schemes averaged over 1000 instances for the phonemes: /aa/ and /sh/, extracted from
the TIMIT database, corrupted by babble (a), (d), car (b), (e) and white (c), (f) noises at ��� � � dB (on average). The filterbanks consist of (a)–(c) 25 and
(d)–(f) 100 Mel-spaced, Gammatone filters with fixed overlap of 50%. Positive values mean that the MSE scheme is more robust than the MTE one. Negative
values indicate better performance of the MTE scheme.

discussed in Section III. One possible way to explore the fea-
tures' robustness is to estimate the normalized mean cepstral
feature deviation from the clean case (in dBs) as follows14:

(25)

where , provided by (19), are the RMS differences
between the noisy and the clean cepstral coefficients

, normalized by the RMS values of
the clean ones. These deviations are indicative of how noise of
different spectral characteristics affects the cepstral coefficients.
Similar error analysis is, also, applied to the MFCCs (using
a triangular filterbank) and is used as a baseline. The experi-
mental setup remains the same as in the previous experiment,
i.e., MSE- and MTE-based cepstral coefficients are computed
for 1000 TIMIT instances of the phoneme /aa/ corrupted by
additive noise, when filtered by mel-spaced Gammatone filter-
banks with either 25 or 100 filters and fixed bandwidth overlap
of 50%.

14The normalization scheme ensures that the coefficient magnitude range
cannot affect the overall experimental results (lack of filter magnitude normal-
ization can cause this mismatch across different filterbanks). Equation (25) is
inspired by [10] and [11].

In Fig. 4, the normalized RMS cepstral deviations (in dBs)
are presented as a function of the cepstral coefficient index for
babble [Fig. 4(a) and (d)], car [Fig. 4(b) and (e)], and white
noises [Fig. 4(c) and (f)]. The deviations of the MTE- and
MSE-based features are, on average, smaller, outperforming
the MFCC baseline. Further, MSE-based and MFCC fea-
tures present very similar performance for some of the noise
types. The differences are more pronounced when wider filters
are employed (25-filters), as shown in Table I. As expected,
the MTE-based features present smaller deviations than the
MSE-based features for volvo noise, as shown in Fig. 4(e)
and, especially, in Fig. 4(b). For babble and white noise, all
three front-ends perform similarly. This is consistent with the
Mel-energy coefficient deviations presented in the previous
section. Similar results are also reached in the case of the
MTE/MSE cepstral coefficient scheme for other phonemes.
Concluding, we observe that the MTE-based features out-
perform, on average, all other studied features, i.e., MFCCs
and MSE-based cepstral coefficients, for most phonemes and
types of noise, see Table I. These differences are especially
pronounced for low-pass noises, e.g., car (Volvo) noise. Finally,
the proposed features present significantly smaller deviations
w.r.t. the clean feature version, compared to the MFCC-based
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Fig. 4. Normalized RMS cepstral deviations (in dBs) computed over 1000 instances of the phoneme /aa/ extracted from the TIMIT database. Results shown as a
function of coefficient index for babble [in (a) and (d)], car [in (b) and (e)], and white [in (c) and (f)] noise at an average ��� � � dB. The filterbank consists of
(a)–(c) 25 and (d)–(f) 100 Mel-spaced, Gammatone filters with fixed overlap of 50%. Smaller values indicate enhanced robustness in noise.

TABLE I
MEAN NORMALIZED DEVIATIONS (IN dB) FOR THREE FEATURE SETS:
MFCC, MTE- AND MSE-BASED CEPSTRAL COEFFICIENTS FOR THREE

NOISE SCENARIOS: BABBLE, CAR, AND WHITE NOISE. CEPSTRAL

DEVIATIONS ARE ESTIMATED USING 25- AND 100-FILTER FILTERBANKS

FOR 1000 INSTANCES OF THE PHONEMES /aa/ AND /sh/. SMALLER

VALUES INDICATE ENHANCED ROBUSTNESS TO NOISE

deviation values, according to Table I, providing additional
robustness to the feature extraction process.

D. Speech Recognition Experiments

Next, speech recognition performance is evaluated when
the following parameters vary: filter shape, energy scheme,
number and bandwidth of the filters. Word and phone error
rates are estimated for various types and levels of noise, i.e.,
the Aurora-3 (Spanish Task), Aurora-4, and the TIMIT Noise
databases, respectively. The results are presented as a function
of the first filter ERB value and the total number of filters
(the filter bandwidth overlap percent is a dependent param-
eter taking values between 30%–85%). For example, for the
left-most Fig. 6(a), the first filter ERB takes values between
22–44 Hz that correspond to ERB overlap (with the adjacent
filters) percent of 30%–85%. The ERB overlap percent is
fixed across all filters of the filterbank. In the case of the
100-filter filterbanks in Figs. 5, 6(c), the filter ERB values are
set proportional to those of the 25- and 50-filter filterbanks
(when examining their first filters and the ERB overlap percent
ranges in 30%–85%). Results (word accuracy) for the Aurora-3
database are shown in Fig. 5 for Gammatone filterbanks and for
MSE/MTE estimation.15 Further, results (phone accuracy) for

15The results for the word-level LV-ASR task (Aurora-4) appear to be similar
to those of the Aurora-3 task and are omitted due to lack of space.
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Fig. 5. Word accuracy for the cepstral MTE and MSE-based features (using
CMS) for 100 Gammatone filters, in the Aurora-3 Spanish database. The hori-
zontal axis displays the ERB Values of the first filter. These values are equalized
(sequentially) to the first filter ERB values of the 25- and 50-filter filterbanks
(when the filter overlap percent ranges in 30%–85%). Results for three training/
testing mismatched scenarios are shown: (a) High mismatch (HM), (b) Medium
mismatch (MM), and (c) Well matched (WM). The baseline MFCC and PLP
results are shown as dashed lines.

the TIMIT Noise database are shown in Fig. 6 for Gabor and
Gammatone filterbanks, and MSE/MTE estimation. Finally, the
PLP [16] and MFCC [20] features (extracted using the HTK
platform [35]) provide the baseline performance. All features
are normalized after removing their long-term cepstral means
(CMS). Plots in Fig. 5 have different -axis ranges to further
enhance their readability.

According to the experimental results, moderate filter band-
widths, i.e., the middle-part of the graphs in Fig. 5 and the

TABLE II
WORD ACCURACY (%) ON THE AURORA-3 (SPANISH TASK) DATABASE USING

HTK. THE FILTERBANKS CONSIST OF 25- OR 100-FILTER GAMMATONE

FILTERS. RESULTS FOR FOUR FEATURE SETS ARE PRESENTED: MFCC
(BASELINE), PLP, MTE- AND MSE-BASED CEPSTRAL COEFS. IMPROVEMENT

RELATIVE TO MFCC (WITH CMS) BASELINE

middle column in Fig. 6 seem to be more robust to different
training/testing mismatches and yield the higher recognition
rates across all noise scenarios. For the case of low and
medium mismatch between training and testing conditions,
i.e., the WM and MM scenarios, the MTE- and MSE-based
features appear to always outperform the baseline MFCC
features, providing enhanced immunity to noise. Both fea-
tures perform similarly for reasonable values of the filter
bandwidths. However, for the high mismatch task (HM), the
performance of the MSE and MTE front-ends diverge sig-
nificantly, especially when wider filters are employed (the
right-most part of the plots or when 25-filter filterbanks are
employed, Table II). The MSE-based features present an ad-
ditional 12% relative improvement (for moderate filter band-
widths) compared to the MTE-based features and 30% im-
provement when compared to the baseline results (obtained
by the ETSI WI007 front-end) Table II. These improvements
are reached when the filter bandwidths assume reasonable
values, i.e., the bandwidth of the first filter is less than 130
Hz. As detailed above, increased filter bandwidths lead to
differences between the two energy estimation schemes. In
the case where the filter bandwidths (as in the right-most part
of the plots) take very large values,16 the MSE-based features
outperform the MTE-based ones due to the presence of the
high-frequency noise components in the low SNR conditions,
as shown in Fig. 2. On the other hand, ASR performance for
both features (MTE- and MSE-based features) is similar, on
average, for the case of narrow filters (the case of 100-filter
filterbanks; see Table II).

Next, in Fig. 6, the performance of MSE/MTE is investigated
as a function of both the number of employed filters and their
shapes in the TIMIT Noise task. The filter shape does not
significantly affect the ASR performance, provided that the
corresponding ERB bandwidths are normalized, comparing the
plots in Fig. 6(a)–(b). It, also, appears that the number of filters
employed is not an important factor, as well; similar results
are obtained for different filterbanks employing 25–100 filters,

16The first filter bandwidth in the filterbank takes values greater than
140 Hz.
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Fig. 6. Phone accuracy for cepstral features based on MTE/MSE schemes tested on the TIMIT � Noise database (with CMS). Three different scenarios are
investigated: (a) Gabor Mel-Filterbank and (b) Gammatone Mel-Filterbank (for both cases the number of filters is 100, 50, or 25 for each of the three columns,
respectively). The horizontal axis displays the ERB Value of the first filter, for ERB overlap ranging in 30%–85%. (c) Mel-spaced, 100-Filter Gammatone filterbank
and ERB values proportional to those of the 25- and 50-filter Filterbanks (when the ERB percent ranges in 30%–85%). Results are shown for three noise types:
babble, white, and Volvo (car).

when the corresponding filter bandwidths are equalized,17

Fig. 6(b)–(c). Examining the relative performance of the MSE-
and MTE-based features, the MTE clearly outperforms the
other features for the case of Volvo (car) noise, especially when
filters present large ERB bandwidths. For other noise types, the

17The overlap percentage has been altered accordingly to ensure wider filters
in the case of the 100-filter filterbank. The first filter ERB values are equalized
(sequentially) to the first filter ERB values of the 25- and 50-filter filterbanks
(when the filter overlap percent ranges in 30%–85%), and the rest of the ERB
values are increased proportionally.

MSE- and MTE-based features display similar performance,
Table III. The differences in performance are more pronounced
in the case of wide filters, e.g., when using a 25-filter filterbank.

Overall, if we fix the energy estimation scheme, the param-
eter that mainly affects ASR performance is the filter bandwidth,
rather than the bandwidth overlap percentage18 or the shape of
the filters (as long as their ERBs are normalized). There is also

18Note that the range of overlap remains the same for the 25, 50, 100 filter
experiments, ranging from 35%–85%; see Fig. 6.
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TABLE III
PHONE ACCURACIES (%) ON THE TIMIT� Noise (ADDITIVE BABBLE, WHITE

OR CAR NOISES) DATABASE. THE FILTERBANKS CONSIST OF 25- OR 100-FILTER

GAMMATONE FILTERS. IMPROVEMENT IS SHOWN RELATIVE TO THE MFCC
(WITH CMS) BASELINE

a relatively wide range of filter ERBs (from approx. 50 Hz to
120 Hz) where good ASR performance is achieved. Thus, the
word error rates seem to mostly depend on the ERB values, ex-
hibiting a stable performance for a wide range of ERB values.
Similar results were obtained when additive noise was added to
the noise-corrupted TIMIT database.

VI. CONCLUSION—DISCUSSION

We have investigated four key parameters in the feature
extraction process, namely: filter bandwidth, filter bandwidth
overlap, number of filters, and the energy computation scheme.
We have also examined their impact on ASR performance
for three different recognition experiments. The presented
results are supported by a theoretical analysis of the cepstral
coefficients estimation error in noise. Overall, the equivalent
rectangular filter bandwidths and the energy estimation scheme
appear to be two of the most significant parameters determining
ASR performance. According to the presented findings, ASR
performance can be predicted for a particular choice of filter
bandwidth range and energy estimation scheme when the
relative spectral energy distributions of signal and noise are
considered.

In more detail, the performance of the averaged energy esti-
mation scheme is mainly a function of the relative spectral en-
ergy content of the noise versus the speech input signal, when
examined within the filter passbands. The proposed generalized
cepstral features are directly related to these energy distribu-
tions. Therefore, it is of great importance to ensure a robust
and efficient energy computation process. Energy estimation er-
rors propagate to the cepstral coefficients, as well. The proposed
noisy cepstral coefficient deviations (deviations from the clean
case) are, on average (RMS values), smaller than those of the
MFCCs. This is due to the energy scheme and the wider filters
employed.

In this context, it is shown that features using filters of dif-
ferent spectral shape present similar performance when their ef-
fective filter bandwidths are kept equal, regardless of their de-
sign parameters, for low and medium mismatch training/testing
scenarios. For high mismatch, the energy computation scheme
is usually the most important factor affecting performance; the
signal versus noise spectral content should be first analyzed, se-
lecting the most appropriate energy computation scheme.

Finally, similar trends and conclusions can be drawn when
advanced signal denoising and feature equalization techniques
are applied in combination with the feature extraction scheme,
as shown in [36]. There, the performance improvements appear
to be additive on top of the signal and feature enhancement
techniques, such as Wiener filtering and parameter equalization
(PEQ). This is particularly important in building robust ASR
systems.

In future work, we plan to extend our work to the design
of filterbanks that optimize ASR performance under adverse
recording conditions and under time-varying noise.
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