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Abstract

In this paper, we develop improved schemes for si-
multaneous speech interpolation and demodulation based on
continuous-time models. This leads to robust algorithms to
estimate the instantaneous amplitudes and frequencies of the
speech resonances and extract novel acoustic features for ASR.
The continous-time models retain the excellent time resolution
of the ESAs based on discrete energy operators and perform
better in the presence of noise. We also introduce a robust al-
gorithm based on the ESAs for amplitude compensation of the
filtered signals. Furthermore, we use robust nonlinear modula-
tion features to enhance the classic cepstrum-based features and
use the augmented feature set for ASR applications. ASR ex-
periments show promising evidence that the robust modulation
features improve recognition.

1. Introduction
There is significant evidence for the existence of amplitude and
frequency modulations (AM-FM) in speech resonance signals,
which make their amplitudes and frequencies vary instanta-
neously within every pitch period. Motivated by this evidence,
Maragos et al. [1] proposed the modeling of each speech reso-
nance with an AM-FM signal,
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and of the total speech signal as a superposition of a few of
such AM-FM signals, one for each formant. The estimation of
their instantaneous frequencies ����� and amplitude envelopes
������, is referred to as the ‘Demodulation Problem’. Differ-
ent approaches exist concerning the solution of this problem,
such as Hilbert Transform (HT) or the Energy Separation Al-
gorithm (ESA) [1], where the Teager-Kaiser Energy Operator
(TEO) 	��� � 
�� � ��� is used.

One problem of the discrete-time ESA (DESA) is the
approximation of the time-derivatives by one-sample differ-
ences. This approximation introduces significant modeling
noise in the corresponding derivatives, especially for noisy sig-
nals. Recently we have used, [4], continuous-time expansions
of discrete-time signals, such as sampled speech, to numerically
implement the required differentiation with closed formulae.
This process provides smooth estimates of the signals’ deriva-
tives and adds robustness to the ESA.

Our motivations for the present research work include the
following: (i) Finding continuous-time models for simultane-
ous interpolation and demodulation of energy-differential of
discrete-time signals. (ii) Providing robustness to noisy speech

processing applications. (iii) Adding new information to the
ASR feature set, such as instantaneous bandwidths, which can
better model various nonlinear and time-varying aspects of
speech dynamics with corresponding improvement in ASR.

The paper is structured as follows: In Section 2, novel
continuous-time modulation models for speech resonances are
introduced. Also, an amplitude compensation algorithm is de-
scribed to correct artifact modulations introduced by the band-
pass filtering. Section 3 discusses the extraction of novel short-
time feature vectors from speech signals and the estimation of
an augmented set of acoustic features for improving HMM-
based phonemic recognition. The improved ASR results for
clean and noisy speech data are presented.

2. Continuous-Time Demodulation Models
2.1. Smoothing Splines

The problem of smooth differentiation of signals, especially of
the noisy ones, led us to interpolate the signal samples using
smoothing splines, whose main advantage (compared to exact
splines) is that the interpolating polynomial does not pass ‘pre-
cisely’ through the signal samples but ‘close enough’ so as to
give smooth derivatives. The smoothing spline interpolating
function is defined as the function �� that minimizes the mean
square error criterion
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where �� is the data fitting error and �� quantifies the rough-
ness of the interpolant by the mean square value of its derivative.

The application of smoothing splines to interpolating
discrete-time signals is thoroughly described in [3, 5]. The
interpolating curve of the smoothing splines is given by:
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where 
���� is the B-spline of order �, and ��	� are the spline
coefficients depending only on the data ��	�, the parameter 

and the analytic expression of the corresponding B-spline.

The sequence ��	� can be determined uniquely by using the
signal sequence ��	� as input of an IIR filter. This IIR filter
has a symmetric impulse response, and all its poles are inside
the unit circle. Thus, the spline coefficients ��	� can be stably
determined via a few recursive equations [3, 4]. The Spline filter
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frequency response is
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where ����� is the z-transform of the ��	-order B-spline and

 is a parameter that regulates the amount of smoothness of
the interpolation curves. The positive design parameter 
 con-
trols the trade-off between how smooth the interpolating curves
are and how small the close-to-the-data fitting distances will be.
The bandwidth of the Spline filter is a function of parameter

, where larger values of this parameter give narrower band-
width filters (consequently smoother interpolant curves) and
vice-versa.

Smoothing splines are first used to interpolate the discrete-
time signals ��	� and then they are differentiated using closed
formulae. When these spline-based derivatives of the signal are
used to compute first the TEO and then in turn the ESA demod-
ulation estimates of amplitude and frequencies, the resulting al-
gorithm is called ‘Spline ESA’.

2.2. Combination of Gabor Filtering and CT-ESA

ESAs cannot handle wideband signals, such as speech signals,
due to inherent limitations of the algorithm. An efficient way
to deal with such limitations is the bandpass filtering. For this
process, the Gabor filters are chosen for several reasons, well
explained in [1].

The continuous TEO 	, combined with bandpass filtering
and sampled at time instances � � 	� , is given by:

	������ � 
������ �������������
 (4)

where ���� � ���������, ���� is the continuous-time signal and
���� is the Gabor filter impulse response:
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where � and �� are the filter parameters.
Since, convolution commutes with time-differentiation, we

have,
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The Gabor time derivatives are given by closed formulae:
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Using the above equations in Eq. (4), the output of 	 acting
on the bandpass filtered signal ����, is given by:
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Through this approach, the necessary processes of bandpass fil-
tering and the subsequent differentiations are combined into a
single convolution with derivatives of the Gabor response.

Since the output of the continuous-time TEO 	 is being
sampled at time instances � � 	� , we convolve the discrete-
time speech signal ��	� with the discrete-time Gabor derivative
filters,
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In the sequel, we use the continuous-time ESA formulae for
demodulation. This whole algorithm, called ‘Gabor ESA’, ex-
hibits some advantages compared to the Spline ESA or to the
original discrete demodulation algorithm DESA. At first, band-
pass filtering of noisy signals increases the SNR of the filtered
signals. Then, the model’s parameters are reduced by one com-
pared to the corresponding ones of the Spline ESA where the

-parameter is introduced. Finally, the differentiation is intro-
duced on the filters and not on the speech signal itself. This fact
leads to smooth time-derivatives of the filtered signal. The use
of Gabor filter, as well its derivatives, supports this claim, too.

The Gabor ESA is computationally more intensive than
the original DESA or the Spline ESA, when applied to band-
pass filtered signals. On the other hand as shown in Fig. 1,
Gabor ESA provides smoother estimates of the instantaneous
frequency compared to the corresponding ones of the Smooth
DESA [6], as expected, especially in noisy signals.
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Figure 1: Instantaneous Frequency Signals of Phoneme /aa/ Us-
ing Gabor ESA and Smooth DESA.

In Fig. 1, a phoneme /aa/, taken from the TIMIT database,
is bandpass-filtered with a Gabor filter placed at a center fre-
quency �� � 

�� Hz and with bandwidth parameter � � ���
Hz. The filter is manually placed, taking under consideration
the spectrum of the phoneme, so that a single resonance is being
filtered. Also, white gaussian noise with SNR value equal to 10
dB is added in order to show the algorithms’ robustness to noise.
Even though, Gabor ESA and Smooth DESA are very robust for
noise and give smooth estimates of ���	�, the Gabor ESA algo-
rithm yields somewhat smoother estimates as expected (smaller
spikes).

2.3. Amplitude Compensation

The filtering of an AM-FM signal ��	� � ��	� ��� ���	�� using
a Gabor filter with frequency responce ���� has a great impact
on the amplitude of that signal. In [2], Bovik et al. proposed
that the filtered signal ��	� � ��	� � ��	� can be approximated
by:

��	� � ��	� �� ����	��� ��� ���	� � ��	�� (7)

where ��	� � �� ����	�� and ���	� is the instantaneous angu-
lar frequency given by ���	� � �
�� ����	���	 (where � is
the sampling period).
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The instantaneous angular frequency of the filtered signal
is not altered when the real-valued Gabor filter is used because
��	� � �. Thus, we propose the following filter compensation
algorithm. At first, using any one of the demodulation algo-
rithms (DESA, Spline ESA or Gabor ESA) the instantaneous
frequency is estimated. Then, if ���	� is the ESA amplitude esti-
mate of the filtered signal, the compensated estimate of the true
amplitude ��	� is given by

��	� �
���	�

�� ����	���
(8)

So, by using the ESA frequency estimate ���	�, we are able to
estimate the original instantaneous amplitude ��	� using Eq. (8)
and the ESA amplitude estimate ���	�.

2.4. Comparison of Demodulation Algorithms

The testing AM-FM signals used for the experiments, are the
same as in [1]:
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where ��	� is the added white Gaussian noise of different SNR
levels and � � 
� � � � � 
�, � � 
� � � � � 
�. The test signals
are filtered by a Gabor filter with a center frequency �� � ���
and bandwidth parameter � � ��
���. The mean absolute er-
ror rates of the instantaneous estimates are calculated over 100
different AM, FM modulation depths and for different SNR val-
ues. The demodulation algorithms being tested are the Smooth
DESA, Gabor ESA, Spline ESA and Prony ESA. It must be
noted that even though the Smooth DESA appeared to have the
best performance for the test signals, in total, the Gabor ESA
gives the smoother estimates especially when speech signals are
used as inputs. As shown in Section 2.2, this can be explained
by the fact that time-derivation is introduced on the filters and
not on the input speech signals.
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Figure 2: Instantaneous Amplitude-Compensated Signals for
Different ESAs.

In Fig. 2 it is shown that the amplitude compensation al-
gorithm is very robust for noisy signals (the error rates are not
larger than ���� of the original amplitude signal even for small
SNR values i.e. (5-15 dB). Also, the algorithm’s performance
seems to be very good as the estimation errors of the amplitude
signals are significantly small. The estimates of the amplitude-
compensated filtered signals are very close to the original input
signals.

3. Applications to Speech Recognition
The algorithms described above are applied to speech recog-
nition applications. The proposed feature set consists of the
FM-Modulation Depths of the AM-FM signals; for details see
[5]. The feature vectors are computed over a 30 ms window
and are updated every 10 ms. The novel feature set and its first
and second time derivatives are concatenated with the, almost
standardized, feature set of MFCCs (Mel Frequency Cepstrum
Coefficients), which consists of the first twelve cepstrum coef-
ficients, the mean-square amplitude (i.e. energy) of the signal
and their corresponding time-derivatives.

We augment the ‘standard’ feature vector and thus create
a hybrid feature vector by incorporating information from the
nonlinear structure of speech of the modulation type as addi-
tional features. We use feature vectors that contain informa-
tion both from the smoothed cepstrum of the linear model and
from the speech modulations. Analytically, the FM-Modulation
depths model the formant track bandwidths between successive
pitch pulses. The linear part provides information for the plac-
ing of the formant tracks and the corresponding non-linear one
for their modulations and oscillations.

We have automated the extraction of modulation features
from speech signals in the following way:
First, we use a parallel filterbank of 6 overlapping Gabor band-
pass filters, whose center frequencies are spaced in the mel-
frequency scale, spanning the whole frequency range ���� ����
Hz, where  � the sampling frequency. Second, the output sig-
nals from each Gabor bandpass filter are demodulated via the
Spline ESA or the Gabor ESA into their instantaneous ampli-
tude ����� and frequency ����� component signals. Third, the
filtered signals are framed. For each such short-time analysis
frame and for each band, the amplitude-weighted mean  
 and
standard deviation �
 of the instantaneous frequency signal are
estimated as in [7]. Pitch pulses introduce spikes in the instan-
taneous frequency signals. In order to avoid them, a clipping
process is introduced, where a maximum and minimum devia-
tion of the weighted mean frequency estimate is set. Finally, we
compute the frequency modulation depth (FMD) in each band
as the ratio ! � �
� 
 , for each analysis frame. The modu-
lation feature vectors consist of the sequence of the FM percent-
ages !�, " � 
� ���� � and their first and second time derivatives,
a total of 18 numbers per vector.

We have used the hybrid feature vector with size of 57 fea-
ture vector elements (39 samples for the MFCCs and 18 for
the FMD) as input to a hidden Markov model (HMM)–based
speech recognizer. The HMM back-end recognizer used is the
HTK system (version 3.2). For the experiments presented be-
low, context-independent, 3-state, left-right HMMs were used.
The input vectors are split into two different data streams, one
for the standard features (MFCC) and the other for the mod-
ulation features. The two streams are assumed independent.
Each one of these streams has independent probability distri-
butions which are modeled by 16 Gaussian mixture probabil-
ity densities. Finally, the grammar being used is the all-pair
unweighted grammar where every pair of phonemes has the
same probability to appear. The stream-weights, even though
they affect directly the recognition process, they are kept fixed
in order to study the recognition results for the novel feature
sets. So, stream weights ��� �� for the two different data-
streams, MFCCs and FMD correspondingly, are set equal to
�� � 
 and �� � ����.

1The percentage number of phonemes correctly recognized is given
by the ratio of the number of correct labels minus the insertions to the
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Percentage of Phoneme Accuracy 1

1 stream (FMD+1st +2nd Time Derivatives)

Spline ESA with 
 � ���� 21.59%
Gabor ESA 21.18%

Table 1: Phone Recognition Results of FMD Alone

Percentage of Phoneme Accuracy 1

Baseline - MFCCs 53.41%

2 streams (MFCCs+FMD)
Spline ESA (
 � ����) 53.71%

Gabor ESA 53.70%

Table 2: Phone Recognition Results of FMD Concatenated with
the MFCC

As stated in Table 1 the recognition results concerning the
non-linear feature set alone are significantly low as the informa-
tion introduced by them is of minor importance and should be
added to the information about the placing of the formants. For-
mant tracks (linear feature set) is a much more important infor-
mation set, than the formant variations and oscillations. Also,
the results shown in Table 2 indicate that the nonlinear feature
set offers additional information, complementary to the linear
one, as the recognition results of the two-stream features are
better than the baseline results.

It should be noted also that the recognition results using
different demodulation algorithms, Gabor or Spline ESA, show
small variations, which are not significant. The differences ap-
pearing in the estimated instantaneous signals have no signifi-
cant impact in the recognition tasks.

Another recognition experiment has been held with noisy
data. The database used was the Aurora3 Spanish Database.
The experiments are well described in [8]. The recognition re-
sults for this task are presented in Table 3. The front-end algo-
rithm (using Spline ESA or Gabor ESA) for the estimation of
the feature set of FMD is the same as the one described above.
The main differences with the TIMIT recognition task are the
different backend program being used (for the Aurora task the
BLasr program is used, [8]) and the different linear features
(Auditory feature set, [8]).

Percentage of Word Accuracy (%)1

Recognition Tasks WM MM HM %

Baseline - Auditory Features 95.4 89.2 84.7

Augmented Feature Set (Auditory+FMD)
FMD 95.2 88.7 87.2

Table 3: Word Recognition Results of FMD Concatenated with
the Auditory Features

In Table 3, it is shown that the FMD feature vectors ex-
hibit robustness in different noise scenarios and this is the main
reason for the great improvement of the recognition rates for
the HM case, where about a 16.3% relative improvement is ob-
tained. Note that the baseline rates (using solely the auditory
feature set for the recognition task) and the recognition rates
using the augmented feature set (Auditory+FMD), are obtained

total number of phonemes in the transcription files.

using the same training and testing conditions. This is done in
order to compare the contribution of the novel feature set to the
recognition tasks.

4. Conclusions-Discussion
In this paper, continuous-time models for speech signals have
been proposed. These models exhibit a very good performance
in the estimation process of AM-FM testing signals. Especially,
the Gabor ESA gives very smooth estimates when applied to
speech signals. We have also introduced an algorithm for fil-
ter compensation which uses the ESA instantaneous estimates
of the frequency and amplitude signals in order to estimate the
original amplitude of the input signal. The filter compensation
allows us to further investigate the true modulations appearing
in the speech signals, which are due to the formants’ movements
and not to the artifacts created by the filtering process.

Further we have used the above improvements in speech
demodulation for feature extraction in ASR applications. The
ASR results seem to be promising since the multiband FMD
features have been found to improve the recognition rates. The
proposed continuous-time models and related algorithms are
efficient, especially in noisy signals, because of the bandpass
filtering and/or the use of smoothing splines. The novel fea-
ture set seems to be robust for noisy signals as shown for the
AURORA database recognition task (High-Mismatch case), Ta-
ble 3, where the noise mismatch of the training and testing sets
is efficiently overcome.
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