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Abstract—Time-frequency distributions that evaluate the
signal’s energy content both in the time and frequency domains are
indispensable signal processing tools, especially, for nonstationary
signals. Various short-time energy computation schemes are used in
practice, including the mean squared amplitude and Teager-Kaiser
energy approaches. Herein, we focus primarily on the short- and
medium-term properties of these two energy estimation schemes,
as well as, on their performance in the presence of additive noise. To
facilitate this analysis and generalize the approach, we use a har-
monic noise model to approximate the noise component. The error
analysis is conducted both in the continuous- and discrete-time
domains, deriving similar conclusions. The estimation errors are
measured in terms of normalized deviations from the expected
signal energy and are shown to greatly depend on both the signals’
spectral content and the analysis window length. When medium-
and long-term analysis windows are employed, the Teager-Kaiser
energy operator is proven superior to the common squared energy
operator, provided that the spectral content of the noise is more
lowpass than the corresponding signal content, and vice versa.
However, for shorter window lengths, the Teager-Kaiser operator
always outperforms the squared energy operator. The theoretical
results are experimentally verified for synthetic signals. Finally,
the performance of the proposed energy operators is evaluated for
short-term analysis of noisy speech signals and the implications
for speech processing applications are outlined.

Index Terms—Time-frequency analysis, robustness, harmonic
analysis, noise, spectral analysis, bandlimited signals, feature
extraction, signal detection, estimation.

I. INTRODUCTION

IME-FREQUENCY distributions estimating the signal
T energy content in time and frequency bins are considered
indispensable for the study of nonstationary signals. Such sig-
nals frequently appear in many applications, including speech,
radar, geophysical, biological, and transient signal analysis and
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processing. In this context, various time-frequency distribu-
tions have been studied and implemented [5], [9], with some
generalizations found in [1].

In signal processing applications, signals are often corrupted
by noise, attributed to the environment, sensor or channel. Thus,
the computation of such time-frequency distributions can be gen-
eralized as an energy estimation problem in the presence of noise.
Robust energy estimation is a complex problem, much studied
over the years. Despite these intensive research efforts, certain
aspects still remain under-researched. Moreover, the extension
of these ideas to the discrete-time domain is neither clear nor
straightforward. The most widely used energy estimation scheme
is based on the Squared Energy Operator (SEO) S| - |, where the
squared signal is the desired instantaneous energy term [25]

Sla(t)] & 2%(1). M

An alternative scheme is based on the Teager-Kaiser Energy
Operator (TEO) [15], [20], [21]

Wla(t)] £ 47 () — w(t)i(t) )

where 4(t) = dx(t)/dt. This latter nonlinear operator approach
has been mainly used for the energy estimation of AM-FM rep-
resentations of the original signal.

The TEO approach was first proposed by Teager [32] and
further investigated by Kaiser [15]. Significant research on the
theory and applications of the TEO operator has been conducted
during the past 15 years. Its long-term properties have been
studied in detail in [20], [21], and [26] and for noisy signals in [2]
and [3]. Its AM-FM demodulation capabilities have been com-
pared in [26] with those of the classic linear integral approach
of the Hilbert transform or of TEO-inspired instantaneous FM
tracking schemes based on adaptive linear prediction [11], [31].
The applications of TEO include speech analysis [6], [21], [27],
robust feature extraction for speech recognition [7], [8], com-
munications [30], and image texture analysis [16], [18]. So far,
the majority of the analysis in this area has mainly dealt with the
properties of TEO-based demodulation algorithms and not with
the operator itself. Additionally, the short-and medium-term
properties of the TEO have not been formally investigated. In
this paper, we investigate the properties of the TEO as a function
of the window length. Furthermore, we compare the TEO’s
performance with that of the SEO for the problem of short-term
energy estimation in additive noise. However, the effects of
bandpass filtering! on the short-time energy estimation process
is not addressed here, for more information see [9].

IThe TEO gives meaningful results only if applied to narrowband signals [20].
Henceforth, both clean and noise signals are considered either as narrowband or
as preprocessed via narrowband filtering.
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The main contributions of this paper include:

i) The TEO and SEO performance is investigated for short
and medium-length analysis windows. It is shown that
performance is a function of the window length. It also
depends on the signal and noise spectral characteristics.

ii) The approximation of the noise with a discrete harmonic
model is proposed, significantly simplifying the noisy
signal energy analysis and offering insight into the op-
erators’ behavior.

iii) The relationship between signal differentiation and en-
ergy estimation is presented. Under certain conditions,
the energy operators’ performance is improved when they
are applied to the signal’s time-derivatives.

iv) The effect of discrete-time sampling on the performance
of the energy operator is investigated. This effect becomes
significant when the signal has high frequency content
and the sampling frequency is comparable to the Nyquist
rate.

The proposed analysis provides some general guidelines on se-
lecting the appropriate energy operator with respect to the mini-
mization of the short-term energy estimation error. This error is
primarily based on the spectral characteristics of the signal and
noise, as well as, on the analysis window length.

This paper is organized as follows: In Section II, the clean
AM-FM and the harmonic noise models are introduced. In this
context, the long-term average properties of the TEO and SEO
are presented. Then, the short- and medium-term average en-
ergy estimates and their performance are studied in Section III.
In Section V, a similar analysis is performed for discrete-time
signals. The application of the energy operators to the signal
derivatives is investigated in Section IV. The effects of dis-
crete-time sampling on the energy estimation scheme are exam-
ined in Section VI. Finally, experimental results for short-term
energy computation of synthetic and real speech signals are pre-
sented in Sections VII and VIII. The overall conclusions are pro-
vided in Section IX.

II. PERFORMANCE OF ENERGY OPERATORS IN NOISE
A. Signal and Noise Model
Consider the narrowband input noisy signal
y(t) = x(t) +v(t) 3)

where z(t) are the desired clean and v(t) the uncorrelated noise
signal, respectively. Herein, we use a narrowband amplitude-
frequency modulation (AM-FM) model for the clean signal

(t) = a(t) cos(ha(t)) @)
where ¢,.(t) = fot w,(T)dT + 0,

wa(y = 0

and a(t) are the instantaneous frequency and amplitude sig-
nals, and 6, is a phase offset. The underlying assumption of the
AM-FM model is that both information signals a(t),w.(t) do
not vary too fast or too greatly compared to the carrier frequency.
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The noise signal v(t) is approximated by a sum of K sta-
tionary sinusoids v; (t) with fixed amplitudes b;, frequencies w;
and random phase offsets 6;

K
o(t) = Z bicos(di(t)),  bi(t) = wit + 0 5)

where each random phase offset 6; is uniformly distributed over
[—m, 7], and the component frequencies are assumed distinct,
i.e., w; # wj fori # j. An assumption for independent, identi-
cally distributed (i.i.d.) phase offsets is only necessary for the re-
sults presented in Section III and Appendix II; i.e., all the major
theoretical results hold true for arbitrary phase values. In gen-
eral, the proposed model (5) can approximate a wide range of
known noise models when the amplitude and phase parameters
are appropriately chosen [24].

B. TEO-Based Noisy Energy Estimation

By applying the TEO to the noisy signal y(¢) and ignoring,
henceforth, the time index ¢ for notational simplicity, we obtain
(see also [3])

Uly] = Ulz] + Yv] + 240 — Fv — 9. (6)
—_——
Cross—Terms

Thus, the TEO output of the noisy signal is the sum of the indi-
vidual signal and noise Teager energies plus some cross-terms.
Applying ¥ to the AM-FM signal yields

U[z] = (@ cos(pz) — aw, Sin(¢z))2 — acos(¢s)
. (d cos(¢y) — 2aw,, sin(Ps )

—aw, sin(¢,) — aw? cos(¢z)) -

Assuming that a(t) varies slowly so that ¥[a] = 0, (as shown
in [20])

Ulz] ~ (awy)? + %a%ﬁ}z c0s(2¢). (7

According to [3] and [20], the long-term time-average (¥[z])
is given by?

(U[z]) = (a®w?) ®)

where the quantity (f(¢)) for an arbitrary signal f(¢) is defined
as the signal time-average

ey 5 [ ro ©

and 7T is the duration of the analysis window. In the case of
window lengths 7" smaller than the smallest signal period (with
respect to its spectral content), this equation provides the short-
term average. When 1" exceeds the largest signal period (or
equivalently 7' — +o00), the () shall imply long-term aver-
ages. Henceforth, if it is not otherwise stated, we shall assume
that the long-term averages are estimated.

2In [20], the instantaneous frequency signal is modeled as w,, (t) = w.+¢(t),
where w. is its center frequency and ¢(t) a zero-mean signal fluctuating around
the center frequency. By considering all assumptions about ¢(t) presented in
[20], it follows that the long-term time-average {cos(2¢,(t))) is approximately
zero.
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By applying the TEO to the noise (5), we obtain

Ty] = Z(biwi)“’
+ % Z Z bibjwi(w; + w;) cos(¢i — ;)

i i
1
+ 5 20 Y bibjwi(ws — wy)cos(i + ¢;)  (10)
i ji
where 7,7 = 0, ..., K — 1. Its time-average is
(Tlo]) = ) b}, (11)

i

The rest of the cross-terms (of U[v]) consist of sums of cosines
with different amplitude and frequency values, thus, their long-
term time-averages equal to zero [3]. Denoting the cross-terms
of U[y(t)], (6), as

U eross|T, V] = 220 — 20 — dv (12)

and substituting the signal representations of (4) and (5) yields

\I’cross[x v]
== Z aw + an —a— 2awzwl)
COS(% + ¢:)

(aw + aw —a+ 2awmwl) cos(¢z — ;)
b (24w, + aw, — 2aw;) - sin(¢p, + ¢;)
b; (20w, + aw, + 2aw;) - sin(d — ¢;)] .
For a slowly varying a(t), the W ,oss[2, v] is approximated by
\Ilcross [.T, ’U]

=~ % Zabi[(wm — wi)2

+ (we + w;)” cos(Be — ¢;)
+ w, (sin(ps + ¢i) + sin(¢, —

cos(¢z + i)

¢i))l-

By similar reasoning as above, (U oss[x, v]) = 0 (it is shown
analytically in Appendix I for the case of a sinusoid signal z(t)).
Thus, the average Teager energy of the noisy signal is given by

(Ul ~ (0%2) + 3 07

(13)

(14)

The normalized TEO deviation Dt is defined as the ratio of the
difference between the noisy and clean energy estimates over
the clean estimate

Zb22

T (aPw?)

5)

The difference (¥[y]) — (V[z]) always takes nonnegative values
for long-term analysis of narrowband signals. However, no such
guarantees exist for wideband signals, where the approximation
in (14) is not applicable. In such cases, one might choose, in-
stead, to compute the absolute value of the normalized TEO
deviation.

2571
C. SEO-Based Noisy Energy Estimation
Applying the SEO to the noisy signal
Sly] = 2% + v* + 22v = S[z] + S[v] + Scross[z,v]  (16)

where Scross|®,v] are the SEO cross-terms. Substituting the
clean and noise signals

Slz] = Salz] + Se[z] = %az + %az cos(2¢,) (17)
S[v] = % D b7 (1+ cos(26)) (18)
Seross|z, v] = Z ab; (cos(¢a + ¢i) + cos(da — i)
£33 > ibleos( + )
=
+ cos(¢i — ¢;)) (19)

where Sy[r] = a?/2 and S.[z] = a®cos(2¢,)/2 are the de-
sired and error components of S[z], respectively.

For the reasons stated in the analysis of W ,oss[2, v], it holds
that (Secross[T, v]) & 0, (cos(2¢.)) =~ 0, (cos(2¢;)) ~ 0. Thus,
the long-term averaged SEO estimate (S [y]) is given by

(S[yl) ~ Z b (20)
and the normalized SEO deviation Dg is given by3
STy —
Daly) = (S = (Sule) | Fb o

(Salz]) <a2> '
Henceforth, the signal index will be ignored in D7 and Dg, for
notational simplicity.

Using Parseval’s theorem# [22], the normalized SEO devia-
tion Ds can be expressed as

2
e Tl
J5 | X (w)]2dw
where X (w) is the Fourier Transform of the clean signal and
the integral is evaluated within the frequency band of interest
B. Similarly, using relations presented in [5] and [29], the nor-
malized TEO deviation Dy can be expressed in the frequency
domain as

2,2
DT — 2:1 b/L 1 .
S w?| X (w)]?dw

The TEO deviation can be seen as the ratio of the second-order
spectral centroid of noise over the signal [23], [29], while, the
SEO deviation is the ratio of the zeroth-order spectral centroids.
The SEO and TEO deviations are approximately equal, i.e.,
Ds ~ Dy, when i) the signal and noise occupy the same very
narrow frequency band, or ii) the signal and noise have very
similar spectral profiles (ideally scaled version of each other).

3Note that {S[x]) can be used instead of (S,[z]) in (21) because (S, [2]) ~
0 for long-term averaging. For (very) short-time averages, however, the term
(Sc[z]) becomes relevant as detailed in Section ITI-B.

4The equations dictated by the Parseval Theorem are theoretically valid only
when infinite time has elapsed, otherwise a finite-length window should be in-
troduced. Herein, we assume that the window length is long enough to enable
the omission of such windows from the equations.
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In general, when the noise is concentrated in frequencies lower
than those of the signal, the TEO outperforms the SEO and
vice-versa. Examples elucidating these phenomena and the per-
formance of the energy operators are presented in Section VII.

III. MEDIUM-TERM AND SHORT-TIME PROPERTIES OF
ENERGY OPERATORS

The analysis presented in the previous section assumes that
the duration of the averaging window is long enough to ignore
all transient deviation terms. Next, the performance of the
energy operators is analyzed for different window lengths,
namely: i) Medium-term analysis: The highpass transient terms
can be ignored but not the lowpass terms that have not been
fully averaged out and, thus, contribute to the estimation error,
and ii) Short-term analysis: All transient terms (both highpass
and lowpass) contribute to the estimation error and should be
taken into account in the analysis. The terms “medium-term”
and “short-term” do not correspond to a fixed range of window
duration T'. The actual short-term and medium-term range is
determined by the spectral content of the signal (and noise). For
example, for a 100 Hz sinusoid, the short-term range would be
approximately from O to 10 ms (one period of the signal), and
the midrange from 10 to 100 ms.

In general, the normalized TEO and SEO deviations can be
separated into three components: i) the long term deviation, as in
(6) and (19), ii) the lowpass deviation component that consists
of sinusoidal terms corresponding to differences of frequencies,
henceforth referred to as Dy~ and Ds™, respectively, and iii)
the highpass deviation component consisting of sinusoids with
angular frequencies equal to the sums of the individual compo-
nent frequencies, henceforth referred to as D+t and D5+

b w;? _
DT:%T+DT +D’T+ (22)
b’ _
Ds = Z<;2> +Ds™ +Dst (23)

Next, we analyze the behavior of the lowpass and highpass tran-
sient terms assuming that «() is a sinusoid, i.e., a(t) = a =
constant, and w,,(t) = w, = constant. The following analysis
is based on the results derived in Appendices I and II.

A. Medium-Term Time Average Properties
The lowpass transient terms are given by

biDyi
al(w, — w;)

D™ = Z (wo + ‘Ui)2

2
2wz

w; (w; —1— wj)  bib;D;j;
24
I
1 JF£
2b; D bib; D;
Do — 1 ] 25
s ZaT(wm—wZ Zzasz—wJ) (25)
where D;; contains sinusoids with frequencies w; — wj, as de-

fined in Appendix I. A direct correspondence exists between
the two terms in D7~ and Ds ™ . Based on the assumption that
w;, w; are in the vicinity of w,, then (w, +w;)?/(2w?) ~ 2 and
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wi(wi + w;)/(2w2) =~
gives

1. Thus, the first-order approximation

DT_ ~ DS_ (26)
and the TEO and SEO performance is similar for medium-
length windows. When the spectral content of the noise is
symmetrically distributed around w, then® Dy~ = Dgs .
However, when the spectral content of the noise is mostly
concentrated over frequencies lower than w,, the medium-term
performance of the TEO is better than that of the SEO (and vice
versa for noise at frequencies higher than w,,). Thus, the relative
medium-term TEO and SEO performance appears quite similar
to the corresponding long-term performance of these operators.

B. Short-Time Average Properties

The highpass transient terms equal to

—w:)? b:S .
Dot (We — wy) iSui
4 ; 2w?2 aT(wm + w;)
wi(w; — w; bib;Si;
+ i\ Wi ] 05045 (27)
ZZ:; o a?T(wi +w))
2b; S bib;S;
Dt = i A s
s ZaT(wm—l—wL 21:; a?T(w; + wj)

+ 2T w, + 21: 2a2Tw;

where S;; contains sinusoids with frequencies w; + wj, as de-
fined in Appendix I. There is a direct correspondence between
the first two terms of D1 and D5+; however, D5+ contains
two additional terms. Given that w;,w; are in the vicinity of w,,,
as above, it follows that (w, — w;)?/(2w?) < 1 and w;|w; —
wj|/(2w?) < 1. Thus, the values of D71 are much smaller
than those of Dg™, on average. Formally, for small values of T',
it holds that

E{(Ds™)*} > E{(Dr")*} (29)
where E(-) denotes expectation over the random phases of
signal and noise. The mean square normalized deviation values
are analytically estimated in Appendix II, assuming that the
noise component phases are i.i.d. uniformly distributed. For all
the reasons stated above, the short-term TEO performance is
expected to be better than that of the SEO. It is, also, important
to note that all terms in D7 and Ds™ are inversely propor-
tional to the frequency content, i.e., the frequency w,. Conse-
quently, for smaller frequency values, the deviation terms are
further emphasized.

In the general case of AM-FM signals, conclusions similar
to the above can be derived, since the deviation terms share
the same form. However, the time-varying nature of the signals
increases the complexity of the analysis and the mathematical
simplicity of the results cannot be reached.

5A fine detail to be noted here is that for w; = w, + d the TEO deviation
is larger, while the opposite is true for w; = w, — d. When the sum of these
deviations is computed, the TEO deviation will be slightly higher than that of
the SEO because the TEO deviation relation is quadratic with frequency. The
result is most noticeable for large bandwidths, both for medium- and long-term.
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IV. APPLYING ENERGY OPERATORS TO SIGNAL DERIVATIVES

In this section, the performance of the energy operators ap-
plied to signal derivatives is evaluated, and interesting analogies
are drawn between the long-term behavior of the TEO and SEO.
The /th-order time derivative x:() () of the AM-FM signal z(t)
defined in (4) can be approximated by [3]

fawm#éﬂsza@ﬁﬁp@(%@mwg) (30)
By applying the TEO on z(9)(t), we get

v [x([)} R a

as shown in Appendix III. Following the same steps outlined in
(6)—(15) for the Oth derivative case, the averaged TEO output of
the /th-order time derivative of the noisy signal is

<\I/ [y([)]> ~ <a2w§(i+1)> + Z bizwz'z(“l)

and the normalized TEO deviation defined as in (15) can be
approximated by
Z‘ b2 2(l+1)

Dt (y(f)) ~ <a2w ([+1)>
Similarly, the long-term average SEO energy of y(*) () is
<S [y(/)D 1 ( 2,26) 4 Zb2wiy> (34)
and the normalized SEO deviation

Ds (ym) o Ll

(a?wif)

2,241 (31)

(32)

(33)

(35)

Comparing the long-term performance of the TEO and SEO
in terms of normalized deviation, shown in (33) and (35), re-
spectively, it is clear that the TEO applied to the (¢ — 1)th signal
derivative y(‘~1)(t) performs equivalently to the SEO applied
to the /th signal derivative y(e)(t). This is experimentally veri-
fied in Section VII-B. However, for very short-term averaging,
the performance of the TEO remains superior to that of the SEO
as discussed in Section III-B.

To better understand the behavior of the TEO (or SEO) ap-
plied to high-order time derivatives of a noisy signal, note the
w2(*+1) frequency weighting term in the numerator and denom-
inator of (33). The normalized TEO deviation according to (33)
is equal to the ratio of the 2(¢ + 1)-order noise spectral cen-
troid over that of the signal. Thus, for noise that is spectrally
concentrated at frequencies well below those of the signal, the
normalized TEO deviation decreases® with £. Overall, the short-,
medium-, and long-term qualitative behavior of TEO (and SEO)
outlined in Sections II and III holds also for the signal deriva-
tives, although, the effects are amplified by additional frequency
weighting.

6Although the TEO deviation decreases with ¢, the desired term {a2w?2(¢+1))
also becomes increasingly frequency weighted, a potentially undesired effect.
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V. PERFORMANCE OF DISCRETE-TIME ENERGY
OPERATORS IN NOISE

The discrete-time signals are derived by sampling the corre-
sponding continuous-time ones for ¢ = nT

z[n] = Aln] cos(®[n]) (36)
K K
[n] & > wiln] = Bicos(®;i[n])
=1 =1
where T is the sampling period and A[n] = a(nTs), B; = b; =

constant, ®,.[n] = ¢.(nTs), P;[n] = ¢:(nTs). As proposed in
[20] and [21] for the time-differentiation operation d®,.[n]/dn,
the integer time index n is symbolically treated as a continuous
variable. That is

Qe[n] 2 we(nTy) - Ty and Q[n] 2 w; - Ts.  (37)

Finally, the noise-corrupted discrete-time signal is represented
by y[n] = z[n] + v[n].

Complementary to the continuous-time domain anal-
ysis of Sections II and III, a noisy energy analysis for the
corresponding discrete-time signals is presented next. The
discrete-time squared energy operator (DSEQ) is defined,
following (1), as S[z[n]] £ z2[n]. Further, the discrete-time
Teager-Kaiser energy operator (DTEO) is given, when the TEO
time-derivatives are approximated by one-sample differences
[21], b

Vfz[n]] 2 (2°[0] = a[n +1] - afn = 1))/T2. (38)
Applying the DTEO to the noisy discrete signal gives
W lyn]] = W[z [n]] + VO [oln]] + U cross[z[n], v[n]] (39)

where the DTEO cross-terms are

cross [37 [n]7 'U[n]]
= (2z[nlv[n] — z[n + v[n — 1] — z[n — 1Jv[n + 1])/TS2

= Z 2A[n]B; cos(P[n]) - cos(P;[n])

- A[n + 1]B; cos(®.[n + 1]) - cos
— Aln — 1]B; cos(®,[n — 1]) - cos

(®i[n —1])
(®:[n +1]))/TZ. (40)

The U ;55 [[n], v[n]] terms consist of products of cosines with
phases ®,, ®,;. Therefore, their long-term averages approxi-
mately equal zero, similarly to the results obtained for the con-
tinuous-time case in Section II. So

(Uy]) ~ (W7[]) +

where (U4[z]), (¥?[v]) are the averaged clean and noise dis-
crete-time TEO energies, respectively. The first term is approx-
imated [20], [21] by

(W) (41)

A2[n]sin?(Q..[n]) A%[n]Q2[n]
@eipfal = LITLD)  LEATEED )
The average noise DTEO output is approximated by
(T[[n]]) ~ e ZBW (43)
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By combining (41)—(43), we obtain’
1
(W ylnll) ~ 75 (<A2[n]ﬂi[n]> + ZBEQ?) C

Thus, the discrete-time DTEO deviation D1 is given by

>, B0

Dr(y[n]) = (A2[n]2[n])

(45)

similarly to the continuous-time case.
The discrete-time analysis concerning the squared energy op-
erator (DSEO) is straightforward,

Sly[nl] = Slz[n]] + S[v[n]] + Scross[z[nl, v[nl]
where
Slefnl] = 3 A%[0] (1 + cos(20,n])

Slolal] = 5 37 B2 (1+ cos(28i[a])

(46)
(47)

and
Seross|z[n], v[n]] = 2 Z A[n]B; cos(®.[n]) cos(P;[n])

+ Z Z B; B; cos(®;[n]) cos(®;[n]).
i i
(48)

The long-term averages of all DSEO cross-term can be approx-
imated by (Scross[z[n], v[n]]) = 0, as stated above. Thus, the
long-term averaged DSEO output is given by

1
(Slylnll) ~ 5 (<A2[n]> + ZB?) (49)
and the discrete-time DSEO deviation Ds® is
B2
D5 (yln]) = 2 (50)

(A%[n])’

D7 and Ds? can be considered as the discrete-time approxi-
mations of the continuous-time deviations, (45) and (50) (this
holds true for the case of short- and medium-length analysis
windows too, however, these results are not further elaborated
here due to lack of space). The sampling process greatly af-
fects the DTEO energy estimation process via the approxima-
tions made. In this context, the underlying phenomena hereby
described are independent of the sampling period T only under
certain conditions, detailed in Section VI. Finally, equations
similar to those in Section IV can be obtained for the DTEO
and DSEO when applied to high-order derivatives of the dis-
crete-time signal (approximated as differences).

TThe approximation is exact when 7', — 0. In general, the approximation
error is small under certain conditions detailed in Section VI.
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VI. DISCRETE TIME TEO APPROXIMATION ERROR

The discretization of the TEO introduces an approximation
error due to the use of one-sample differences. The DTEO ap-
proximation error A evaluated at t = nT5 is

A £ (at)ws(1))’ le=nz, — A*[n] sin® (Qu[n]) /T =
A = a®(nTy) [w3(nTy) = sin® (wa(nTy) - Ty) /T7]

The quality of the approximation depends on the product
wy(nTs) - Ts. In the limiting case, where w,(nT}) tends to 0
the approximation error also tends to 0, because
lim sin(w,(nTs) - Ts) = we(nTs) - Ts.

Assuming that w, () = w. + ¢(t), where w, is the center fre-
quency and ¢(t) a slow-varying signal, the product w. T deter-
mines the quality of the approximation. Thus, when processing
a signal though a filterbank, the approximation will be better for
low frequency bands than for the high frequency ones. In addi-
tion, the approximation error can be reduced by increasing the
sampling frequency.

The quality of the discrete-time approximation is also af-
fected by the input signal’s derivative order. Consider the Taylor
series expansion for a sinusoid
w?(t)

6
where the first term is the desired one and the second term is a
rough estimate of the approximation error. The discretization of
the TEO is based on the assumption that

sin(w(t)) ~ w(t) — (1)

w2(nT,) ~ sin®(Q,[n])/T2.

Similarly, when the TEO is applied on time-derivatives of the
signal the discrete-time approximation is8

WD (nTy) & sin® D (Q, [n]) /T2,

Thus, the normalized approximation error D](DZ)TEO approx. Of
the DTEQO applied to the /th derivative of the signal is

(wr 3 %)Z(ZJrl) B wg(/_i_l)
w%("+1)

(52)

G

DTEO approx- ™

(53)

The normalized approximation error for higher-order deriva-
tives can be also expressed as follows:

[4 0
D](D%‘EO approx- ~ (f + 1) . Dl()%EO approx- (54)

i.e., the normalized approximation error increases linearly with
the derivative order. Overall, for low sampling frequencies, high
signal carrier frequencies and/or high-order signal derivatives
the approximation error of the DTEO becomes large, as exper-
imentally verified in Section VII. Note that better discrete-time
approximations have been proposed in the literature [4], [12]
and can be used to overcome some of the DTEO approximation
errors.

8By considering the DTEO definition and its one-sample differences one may
write

10

g | 20 o] & Ul x[n] — 2x[n — 1]
dm*

This approximation is used here instead of the one proposed in (52); both ap-

proximations yield similar results [2], [3].
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VII. EXPERIMENTS WITH SYNTHETIC SIGNALS

Next, the proposed energy estimation methods are applied
to simple synthetic signals, namely, pure sinusoids in additive
white noise. For pure sinusoids the energy deviation is directly
computable and the validity of the theoretical results can be ex-
perimentally verified.

Consider three sinusoids with center frequencies 100, 150,
and 200 Hz and phase offset /4, corrupted by additive (band-
passed) white noise. The sinusoids were sampled at 2 kHz, re-
sulting in the discrete signals z1[n] = cos(0.10mn + 7/4),
x2[n] = cos(0.15mn 4+ w/4), z3[n] = cos(0.20mn + 7/4).
The white noise signal was bandpass filtered by a finite impulse
response (FIR) filter with 201 coefficients and passband in the
interval [100, 200] Hz. A total of 1000 instances of the band-
passed white noise signal v[n] were randomly generated and
added to the pure sinusoids to create 1000 instances of the noisy
signals y;[n] = z;[n] + v[n],j = 1,2, 3, with signal-to-noise
ratio (SNR) 0 dB.

The noise signal v[n] can be modeled by K = 100 sinu-
soid signals v;[n](¢ = 1,...,100) with frequencies linearly
distributed over the passband and random phases 6; uniformly
distributed over the interval [—, 7], as in (36). The noise ampli-
tude coefficients B; should be equal and normalized to ensure
SNR = 0 dB. The noise signal can then be approximated by

W] T T
v[n] = —— cos <<— + ——> n+ 9i>. (55)
;\/K 10 K10

A. Short-Time Energy of Noisy Sinusoidal Signals

The theoretical long-term values of the normalized deviations
D7 (y;) and D5 (y,) were computed using (45) and (50). The
theoretically computed D ? values were

K T 1 T 2
1y (B +xmn)
K (r/10)

Dr(y1) =

Similarly, the DSEO normalized deviation is
Ds(y;) =1, j=1,2,3

The DTEO and DSEO short-term energy was experimentally
estimated using 1000 instances of y;[n]. The root mean square®
(rms) and standard deviation values (std) of the DTEO and
DSEO normalized deviation were experimentally computed and
compared with their theoretical values. The results are presented
for a 500 ms averaging window in Table I. Good agreement (typ-
ically within one standard deviation of the rms value) is achieved
between the theoretical and experimental results. Small differ-
ences observed between the theoretical and experimental values
can be attributed to i) the approximation of time-derivatives with
one-sample differences, and ii) the approximation of narrow-
band white noise in (55). It is interesting to note that the DSEO
outperforms the DTEO in terms of normalized deviation for
y1[n], and vice versa for ys[n].

9The experimentally computed rms value can be compared with the mean
square deviation analytically derived in Appendix II.
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TABLE I
DTEO AND DSEO RMS NORMALIZED DEVIATIONS (AND STANDARD
DEVIATION OF ESTIMATE) COMPUTED OVER 1000 INSTANCES OF THE RANDOM
SIGNALS ¥1, > AND y3. THE SNR LEVEL IS O dB AND THE ANALYSIS
WINDOW LENGTH Is 500 ms

‘ DTEO and DSEO Normalized Deviation ‘

‘ H y1=a:1+vH y2=$2+vH y3=z3+v‘

‘ H rms| std H rms‘ std H rms‘ std ‘

068 | 0.08
0.58

246 | 027
234

1.14 ] 0.13
1.04

W-Operator

Theoretical Value

| S-Operator | 1| 012 [ rao | oan [ an | o2 |

‘ Theoretical Value H 1.00 H 1.00 “ 1.00 ‘

- [—ore0|
-~ DSEO

o

RMS Normalized Deviation

RMS Normalized Deviation

5 50 500 5 50 500
Analysis Window Length (in ms) Analysis Window Length (in ms)
(a) @
- [—oDteo
--DSEO
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-~ DSEO
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o
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o

?

RMS Normalized Deviation
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Fig. 1. DTEO and DSEO RMS normalized deviations D7 ¢, Ds¢, as a func-
tion of window length T (in ms) for the signals: (a) y1[n]; (b) y2[n]; and (c)
y3|n]. Same for random phase sinusoids in (d)—(f). Deviations shown in all plots
are averaged over 1000 instances of the random signals y;[r]. The SNR level
is 0 dB. Both x and y axis are in log-scale.

The experimentally computed RMS deviations D¢, Dg?
are shown in Fig. 1(a)—(c) as functions of the analysis window
duration 7' that takes values between 0 and 500 ms. In
Fig. 1(d)—(f), the results are shown when the experiment was
repeated with the phases of the sinusoids z;[n] taking random
values (uniformly) in the interval [—, 7]. Again RMS devia-
tions are shown, averaged over 1000 noisy signal instances as a
function of T'. In all plots, transient phenomena fade out as the
window length 7" increases and the normalized deviations DY
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and D’ converge to their long-term values. A detailed analysis
of the transient error terms is presented in Appendices I and II.

Table I and Fig. 1 verify the basic conclusions drawn by
the theoretical analysis. Specifically, the DSEO significantly
outperforms the DTEO for noisy signal yi[n], as shown in
Fig. 1(a) and (d). This is expected because the clean signal
energy is concentrated at 100 Hz, while the noise energy
content is placed at higher frequencies (spread between 100
and 200 Hz with an average approximately at 150 Hz). The
opposite holds true for the case of y3[n], where the signal
energy is now placed at a higher frequency, i.e., 200 Hz, [see
Fig. 1(c) and (f)]. Finally, for y2[n] where the clean and noise
signals present similar average spectral characteristics the
medium- and long-term average performance of the DTEO and
DSEO is comparable, as shown in Fig. 1(b) and (e).

For very-short term analysis (1'<5 ms), the DTEO perfor-
mance is always superior to that of DSEQ, regardless of the sig-
nals’ spectral content, due to the transient effects outlined in
Section III-B. Also, the medium-term behavior (up to 100 ms
approximately) of the DTEO and DSEO is similar to their long-
term behavior, as predicted in Section III-A. Finally, the DTEO
and DSEO performance is not affected much by the phase of
the signal and noise, as can be seen by a direct comparison of

Fig. 1(a), (d), (b), (e), and (c), ().

B. Short-Time Energy of Signal Derivatives

Herein, we investigate the DTEO and DSEO performance
when higher-order derivatives yy) [n] of the input signals are
employed, where j = 1,2, 3 are the indices of the noisy sinu-
soids, as defined in the previous section, and £ = 1,2, 3 are the
first, second and third-order derivatives of those signals. Our
goal is to verify the theoretical results in (32) and (34), and to
compare with the experimentally computed DTEO and DSEO
deviations. In the following experiments, first-order derivatives
are approximated by one-sample differences. Higher-order
derivatives of order ¢ are iteratively estimated using one-sample
differences of the (¢ — 1)-order derivative.

The experimental setup and result presentation is identical to
that of Section VII-A, but here signal derivatives are used. The
DTEO and DSEO normalized deviations are computed first the-
oretically using (32), (34), and then experimentally by averaging
over 1000 instances of the noisy input signals. The root mean
square (rms) and standard deviation (std) of these deviations
(along with the theoretical values) are shown in Table II for a
T = 500 ms window length. Overall, there is a good agreement
between the theoretical and experimental results.

The RMS normalized deviations of the DSEO and the DTEO
applied to the signal derivatives yj(-ﬂ) [n] are shown in Fig. 2, as
a function of the averaging window length 7'. Again, all results
are in agreement with the theory. The performance of the DSEO
applied to the /th signal derivative and that of the DTEO applied
to the (¢ — 1)th derivative are very similar for both medium-
term!0 and, especially, long-term, as predicted by theory (see
also Table II). For the case of yée) [n] shown in Fig. 2(c), lower
normalized deviations are achieved when high-order derivatives

10The very short-term performance of the DTEO and DSEO is not shown in
the figure to avoid clutter. As expected, the DTEO significantly outperforms the
DSEO for T' < 5 ms.
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TABLE II
DTEO AND DSEO RMS NORMALIZED DEVIATIONS (AND
STANDARD DEVIATION OF ESTIMATE) COMPUTED OVER 1000
INSTANCES OF THE FIRST, SECOND- AND THIRD-ORDER DERIVATIVES
OF THE RANDOM SIGNALS ¥1, Y2 AND y3. THE SNR LEVEL
IS 0 dB AND THE ANALYSIS WINDOW LENGTH IS 500 ms

[ @+ [[@ro© | @+n©

| DTEO and DSEO Normalized Deviation |
|
|

H rms ‘ std H rms ‘ std H rms ‘ std ‘

| e=1
U-Operator 628 | 0.68 || 131 | 0.14 || 044 | 0.05
Theoretical Value 6.22 1.23 0.38

| -Operator | 256 | 028 || 115 | 013 | 066 | 0.07 |

| Theoretical Value | 234 || 104 | oss |

[¢=2 |
W-Operator 1741 | 192 || 1.63 | 0.18 || 0.32 | 0.04
Theoretical Value 18.29 1.61 0.29

| s-Operator | 653 |02 ] 132 ] 015 | 043 | 005 |

| Theoretical Value | 622 || 123 | o3 |

= |
W-Operator 5214 | 575 || 2.19 [ 025 | 024 | 0.03
Theoretical Value 57.50 2.24 0.22

| s-Operator [ 1842 203 | 1.67 [ 019 | 031 | 0.04 |

‘ Theoretical Value H 18.29 H 1.61 H 0.29 ‘

are used, because the signal energy content is concentrated at
higher frequencies than the corresponding noise content. The
opposite is true for signal ygz) [r] shown in Fig. 2(a). In general,
the normalized deviation of DTEO and DSEO applied to signal
derivatives is governed by the amount of frequency weighting
as theoretically predicted by (32) and (34).

VIII. EXPERIMENTS WITH SPEECH SIGNALS

Next, the relative performance of the DTEO and DSEO is
evaluated for a realistic speech processing application. The
time-frequency distribution of speech signals, in the presence
of different types of additive noise, is estimated and the cor-
responding energy deviations are computed. The proposed
filterbank analysis and short-term energy estimation is typically
performed by the front-end of a speech recognition system. Our
goal is to verify, via these experiments, the theoretical results
and to provide further insight in the relative performance of
DTEO and DSEO for speech processing applications.

The RMS DTEO and DSEO deviations, defined in (45) and
(50), can be interpreted as the inverse signal-to-noise ratio
(SNR) where the estimation error is considered as the “noise”
and the desired energy term as the “signal”. Specifically, we
define SNRs £ —10log(Ds?) as the SNR in dBs for the
DSEO and similarly SNRy £ —10log(D7?) for DTEO.
Herein, all results are presented in terms of the log distortion
difference between the DSEO and DTEO, i.e., SNRs — SNR+
in dBs. Negative distortion difference values indicate better
DTEO performance, and vice versa for DSEO.
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Fig. 2. DTEO and DSEO RMS normalized deviations D1 ?, Ds?, as a func-
tion of window length T' (in ms) for the signals: (a) y{”[n]; (b) y$”[n]; and
(c) yy)[n], for ¢ = 1,2, 3. Deviations shown in all plots are averaged over
1000 instances of the random signals y;[n]. The SNR level is 0 dB. Both x and
y axis are in log-scale [y axis range is different in (a)-(c) to enhance readability].

The DTEO and DSEO values are estimated over speech
signals corrupted by various types of additive noise. For this
purpose, the NOISEX-92 noise database is used, containing
ten typical noise samples, each with different spectral char-
acteristics [33]. These noise signals are down-sampled to
16 kHz and added to the speech samples!! extracted from the
TIMIT database, while keeping the global average SNR fixed at

I'The noise signals have a duration of approximately 235 s, so a portion of
the noise signal is randomly selected and added to each speech signal.
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TABLE III
MEDIAN LOG DISTORTION DIFFERENCE BETWEEN THE DSEO AND DTEO
ESTIMATES COMPUTED OVER ALL SPEECH FRAMES AND FREQUENCY BANDS
FOR 1000 INSTANCES (PER PHONEME). RESULTS ARE SHOWN FOR FIVE TYPES
OF NOISE AND FOUR TYPES OF PHONEMES. SNR Is 5 dB

Median Log Distortion Difference Between DSEO and DTEO (in dB)
for Noisy Speech Phonemes
Noise Type

Babble | Buccaneer 1 | Volvo | Factory 1 White
Phoneme
faal -0.06 -0.03 -0.44 -0.06 0.05
fae/ -0.04 -0.02 -0.43 -0.06 0.05
/sh/ -0.17 -0.15 -0.82 -0.18 -0.05
1t/ -0.13 -0.10 -0.81 -0.14 0.001

SNR = 5 dB.12 The clean speech is used as the reference signal
for computing the normalized deviation and the log distortion
difference.

In this experiment, only five, i.e., babble, buccaneer 1, volvo,
factory 1 and white noise types are examined. Specifically: 1)
babble noise is acquired when 100 people are recorded speaking
in a canteen where individual voices are slightly audible [33];
ii) buccaneer noise is mainly a low frequency type of noise with
the addition of a high frequency component; iii) volvo noise
presents mainly a lowpass structure and can be considered sta-
tionary; iv) factory noise was recorded near plate-cutting and
electrical welding equipment [33] and it is nonstationary (e.g.,
contains hammer blows); v) white noise exhibits equal energy
per frequency bin. These noise signals are added to 1000 dif-
ferent instances of the phonemes /aa/, /ae/, /sh/ and /f/, all
extracted from the TIMIT database.

To simulate the filterbanks commonly-used in speech pro-
cessing applications, a linearly spaced, Gabor filterbank with
25 filters and fixed 3 dB-bandwidth overlap percentage of 50%
is used [6], [8], [28]. Short-term DTEO and DSEO energy
estimates are computed for each frequency bin using analysis
frames with duration of 30 ms (updated every 10 ms).

The median!3 log distortion difference between the DTEO
and DSEO time-frequency estimates is presented in Table III
for two voiced (/aa/, /ae/) and two unvoiced phonemes (/sh/,
/f/). The median is computed over 1000 instances of each
phone, both in time (over all frames) and frequency (over all
frequency bins). Overall, the DTEO significantly outperforms
the DSEO for all noise types with the exception of white noise.
The performance gap is larger for lowpass volvo noise and
for the phonemes /sh/, /f/. In general, the DTEO outperforms
the DSEO when the spectral tilt'4 of the noise is smaller
compared to that of the signal, e.g., for lowpass volvo noise

12The SNR value is estimated as the mean ratio of the speech over the noise
signal energies per frame. Then, the noise signals are scaled so that the global
mean SNR is 5 dB. Therefore, this value refers to the wide-band speech signal
and suggests that the SNR level is, on average, 5 dBs.

13We use the median instead of the root mean square estimate here to get rid
of outliers. For certain time-frequency bins, the energy of the signal is too low
resulting in very large normalized deviation values.

14The spectral tilt is defined as the slope of a line that best fits the log power
spectrum of the input signal, more details can be found in [10].
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Fig. 3. Median of the log distortion differences between the DSEO and DTEO
as a function of filter index for different noise types: (a) babble and (b) white.
The global signal SNR is equal to 5 dB. The median is computed over 1000
instances of the phonemes/aa/and/sh/. The filterbank consists of 25 Gabor fil-
ters, linearly spaced with fixed overlap. Negative values indicate better DTEO
performance.

Median Log Distortion Difference (in dB)

or for fricative sounds (where the signal’s spectral tilt is rising
up to approximately 3 kHz). This observation is consistent
with (45) and (50), i.e., DTEO is superior when the noise
energy is concentrated in lower frequencies than those of the
signal. Approximation errors and transient effects also affect
performance, as discussed next.

In Fig. 3, the median log distortion difference is shown as a
function of the filter index (or equivalently the signal’s carrier
frequencies) for phonemes /aa/ and /sh/, and for (a) babble and
(b) white noise. Two additional conclusions about the relative
performance of DTEO and DSEO can be drawn from Fig. 3,
namely: i) The DSEO performs significantly worse than the
DTEO for the first few filters. This is due to additional transient
error terms of DSEO. As discussed in Section III, the magni-
tude of the transient terms is inversely proportional to frequency
and, thus, the transient terms take large values for the first few
filters. ii) The discrete-time approximation error of DTEO be-
comes large at high frequencies, as discussed in Section VI.
This explains the worse performance of DTEO for the last few
filters. Overall, the experimental results are in agreement with
the theory and provide important intuition about the DTEO and
DSEO performance for speech processing applications.

IX. CONCLUSION

In this paper, the properties of the Teager-Kaiser and the
squared energy operators in the presence of additive noise are
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examined as a function of the short-term averaging window
length. This analysis covers both the continuous- and dis-
crete-time domains. Furthermore, the robustness of the energy
estimation process is investigated when the TEO and SEO
are applied to the derivatives (or differences) of the original
signal. Overall, we have concluded that the following factors
affect the TEO and SEO performance as short-term energy
estimators: (i) The relative differences between the spectral
shape of the signal and noise, or more specifically, the ratio
of the second spectral centroid of the noise over that of the
signal. In general, the TEO outperforms the SEO when the
noise is more “lowpass” than the signal, and vice versa. (ii)
The duration of the analysis window: the TEO outperforms
the SEO for short analysis windows (< 5 ms). For all other
cases, the clean and noise spectra must be considered. (iii) The
magnitude of the short- and medium-term transient error terms
is inversely proportional to the signals’ frequency content:
transient phenomena are more prominent for signals with low
frequency components, especially for the SEO that contains
two additional transient terms. (iv) The sampling frequency:
the discrete-time approximation error of the DTEO increases
when the center (average) signal and noise frequencies move
towards the Nyquist frequency. In addition, we have shown that
more robust energy estimates may be obtained by applying the
operators to the high-order derivatives of the signal!5 for noise
with “lowpass” spectral characteristics (compared to those of
the signal). In this context, the long-term properties of the SEO
applied to the /th signal derivative are equivalent to those of the
TEO applied to the (£ — 1)th signal derivative (baring DTEO
approximation errors).

The results are experimentally verified on synthetic and real
speech signals. Based on preliminary results using such signals
we can state that, in general, the TEO appears to be more ro-
bust than the SEO for speech-related applications. The results
in this paper can be exploited for a variety of signal processing
applications where short-term energy estimation in noise is re-
quired, such as, telecommunication and image processing ap-
plications. In general, for applications where the noise spectral
characteristics are known (and differ from those of the signal),
a short-time energy estimator exhibiting optimal performance
can be selected based on the results of this paper.

APPENDIX |
SHORT-TERM TEAGER-KAISER AND SQUARED ENERGY
ESTIMATION FOR SINUSOIDS IN ADDITIVE NOISE

In this section, the short-term average energy of a sinusoid
x(t) = a - cos(w,t + 6,) corrupted by additive noise v(¢) is
computed. The energy of the noisy signal y(t) = z(t) + v(¢) is
estimated using the squared energy and Teager-Kaiser operators
over a time window of duration 7'. The short-time average of the
TEO (P[y]) is

(Vi) = 7 '/OT‘Il[a:]dt—l—'/OT‘Il[v]dt—i—/OT\llcmss[x,v]dt .

15The estimated energy is weighted by the frequency, an unwanted side-effect.
Also, approximation errors creep up in discrete-time implementations.
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Given that (¥[z]) = (aw.)?, and based on (10)

%/0 Wl = o [
/Zzbb‘”z w; + wj) cos(p; — ¢;)dt

(W[o]) =

]
/ D0 bibjwi(wi — w;) cos(gi + ¢;)dt.
i iFE] (56)

Let us define

Sij = sin[(wi + wj)T + (9
D;; = sin[(w; — w;)T + (0; —

9])] — Sin(ei + 9]') 57
91>] — sin(Hi — 93) (58)

then the short-time average of the noise is
1 [T 2
(vl = | il = 3
I

<i WjSij+Wi+WjDij>- 59)
i iFEg J i W)

Similarly, the short-time average of the TEO cross-terms is

<\chross [x, UD

1 T
= T/ \chross[.f??)]dt

= Z < D) (60)

where S,.;, D.; are defined as in (57), (58). The normalized de-
viation D7 defined in (15), is given by
(V[]) + (Veross|T, v])

(Wx])

wi)? g (wstwi)?

Wy + w; Wy — W;

Dr(y) =
Similarly for the SEO

(Slyl) = (Salz]) + (Se[=])

From (17)—(19)

+ <S[U]> + <Scross[x7v]>‘

<5[]>—l/ Loa =@ (61)
awir=mg /) 2" P
Y a?
(5.la)) = ' / Jatcos2)dt = .. (6
o Z b2/ (14 cos(2¢;)) dt
4 b2
= ; 5 + ; T Sis (63)
ab; Sz D,;
<Scross[$'771]> - 21: ? (WT T+ wi + w0, — w,;)
D,
(¥ (¥
+ZZ <wL+wj+wi—wj> ©4)

i jFi
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where S...., Si;, Szi are defined as in (57), and D,; is defined as
in (58).
From (21), the normalized deviation Dg is given by

(Sela]) 4 (S[v]) + (Seross[, v])
(Sal«]) '

The deviations D7 and Dg contain both lowpass and high-
pass terms, e.g., D;; and S;;, correspondingly. There is a di-
rect correspondence between the TEO and SEO error terms,
however, the SEO has two additional highpass error terms con-
taining the quantities S, and S;;. In addition, both the desired
and error terms of TEO are multiplied by additional frequency
squared terms (compared to the SEO), e.g., w?, (w, + w;)2.
The additional highpass terms in SEO result is significantly
higher error compared to the TEO for very short-term energy
estimation.

All TEO and SEO error terms contain the 1/7 multiplicative
term, i.e., the magnitude of both lowpass and highpass transient
phenomena is inversely proportional to the analysis window
length T'. Thus, as the analysis window length T increases,
the RMS normalized deviations D7 and Dg converge to their
long-term averaging values, namely,

> (biwi)?/(aw.)? and Z b? a?

K2

Ds(y) =

respectively.

APPENDIX II
MEAN SQUARE ENERGY ESTIMATION ERROR FOR RANDOM
PHASE SINUSOIDS IN ADDITIVE NOISE

In this section, both z(t) = a - cos(w,t + 6,) and
v(t) = >, bicos(w;t + 6;) are assumed random signals
with 6,,6; being independent random variables uniformly
distributed over the interval [—m, w]. Next, the expected values
of the squared normalized TEO and SEO deviations, i.e.,
E{D7?} and E{Ds?} respectively, are computed.

Given i.i.d random variables §;, 6; uniformly distributed in
[, 7], the random variables 6; + 6;,6; — 6, are also i.i.d.
and follow the symmetric triangular distribution in [—2, 27].
It follows that the random variables S;;, D;; defined in (57),
(58) exhibit the properties shown in

_Jl1—=cos|(wi+w))T], ifi=k,j=1
F{S;:S1)} = )4 ’ 66
{83 St} {0 otherwise (66)
_J1—cos|(w; —w))T], ifti=k,j=1
E{D;;Dy;} = A ’ 67
{Dij Dt} {0 otherwise ©7)
E{S;ijDi} =0 (68)

for any i.i.d. random variables §;,0;,0;,6;, uniformly dis-
tributed in [—m, 7).

Based on (65)—(68), the mean square normalized deviation of
the TEO is computed, ¢

E{(T[])? + (Weross [, v]) 2}
(U[z])?

16The numerator of E{D7*(y)} is the mean square error.

E{Dr*(y)} =
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because the expected value of the mean square error product
term (W [v]) (U cross[x, v]) is zero, and the denominator does not
depend on the (random) phase. The expected value of the first
term is

2 2202
B{(R)?} = (Y- (i) |+
i i g
N2
Wy
wfi- (1 — cos (w;';T))
ij
.+. 2
+ 2 (1 — cos (wq_]T))

and, similarly, for the second term

E{(lIlCIOSS[x7 v]>2}

@ () +
4T2 ) (w;!_L)Q (1 — Cos ( T))
414
Wi
+ Ew-;Z (1 —cos (wy;T))
where we have defined wf] = witwj,w;; = w;—w; to simplify

notation.
The mean square normalized deviation of the SEO is

E{(Se[x)?} + (S[])* + (Scross[z, v])*}
(Sala])?

E{Ds*(y)} =

because the expected value of all product terms is equal to zero,
and the denominator does not depend on the phase. Based on
(65)—(68), the three terms in the numerator are equal to

[21)?}

a4

- v
E{(S[v])*}

_ E:éi

2

2 "
- * Z 16T2w3(1
E{(Scross[w, v])*}
a?b? [1 — cos(w),T)
= Z T2 (W) +

E{(S
(1 — cos(2w,T))

— cos(2w;T))

1 —cos(w,;T)

(wg (wg)?
272 + _
N Z Z b; b;- 1- coi(wi]-T) 1-— cos;(wijT)
i i ar (wi5)? (wi;)?

The expected values of the desired TEO and SEO terms do not
depend on the random phases and are given by

E{(U[z])?} = (V[z])? = (aw,)*
and
!
E{(Sala))*} = (Salz])* =
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The transient error terms of the SEO and TEO can be
grouped in two categories, i.e., those that contain sums of fre-
quencies (1 — cos(2w;T)), (1 — cos(2w,T)), (1 — cos(wj'jT))
and (1 — cos(w};T)), that dominate for very small averaging
windows 7', and those that contain differences of frequen-
cies (1 — cos(w;;1)),(1 — cos(w,;T)) and dominate for
medium-size averaging windows. The two additional terms in
E{Ds*(y)}, namely, (1 — cos(2w;T)), (1 — cos(2w,T)), are
the cause of the poor performance of the SEO for very small
averaging windows 7'. Finally, the transient terms of the mean
square error decrease as 1/7" for both the TEO and the SEO.

APPENDIX III
ESTIMATING DTEO AND DSEO FOR SIGNAL DERIVATIVES

Using the approximation
2 & a(t) (w(1))" cos (gu(t) + )

proposed in [3], where x(¢) is defined in (4) and ¢ = 0,1, ... as
in (30), yields
2
(+*)

~ a’w? 2 sin (qﬁ(t) +€g)
+ a®w? 2 cos ((Z)(t) + Eg) .

W[z = _ (0, (+2)

Thus
U[z0] ~ a2, (69)
Similarly, for the SEO operator we have
S [:c(l)} = a%w? cos® ¢ =
S [a:([)} = ;a%}% + 2(1 w? cos(2¢). (70)
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