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AFFINE MODELS FOR IMAGE MATCHING AND MOTION DETECTION
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ABSTRACT: A model is developed for detecting the
displacement field in spatio-temporal image sequences that al-
lows for affine shape deformations of corresponding spatial re-
gions and for affine transformations of the image intensity range.
This model includes the block matching method as a special case.
A least-squares algorithm is used to find the model parameters.
It is experimentally demonstrated that the affine matching model
performs better than other standard approaches. The resulting
2-D motion estimates are then used by a 3-D affine model and a
least-squares algorithm that recover 3-D rigid body motion and
depth from two perspective views.

1 Introduction

Motion detection is a very important problem both in video im-
age coding and in computer vision. In video coding, motion
detection is a necessary task for motion-compensated predictive
coding and motion-adaptive frame interpolation to reduce the re-
quired channel bandwidth. In computer vision systems, motion
detection can be used to infer the 3-D motion and surface struc-
ture of moving objects with many applications to robot guidance
and remote sensing.

There is a vast literature on motion detection; see [1]{7] for re-
views. The major approaches to computing displacement vectors
for corresponding pixels in two time-consecutive image frames
can be classified as either using gradient-based methods (which
include pixel-recursive algorithms) [2][4][5][8], or correspondence
of motion tokens {3][9], or block matching methods [10]{7].

Let I(z,y,t) be a spatio-temporal intensity image signal due
to a moving object, where p = (z,y) is the (spatial) pixel vec-
tor. A well-known method to estimate 2-D velocities or pixel
displacements on the image plane is the block matching method,
where

B(d) = Y H(p, 1) - 1(p+ d, )
pER
is minimized over a small spatial region R to find the optimum
displacement vector d. Minimizing E(d) is closely related to find-
ing d such that the correlation ¥ g I(p,t1)I(p + d,12) is maxi-
mized; thus, it is sometimes called the area correlation method.
This approach has been negatively criticized because (i) it is
computation-intensive; (ii) it ignores that the region R, which
is the projection of the moving object at time t = #;, will cor-
respond to another region R' at ¢ = ¢ with deformed shape
due to foreshortening of the object surface regions as viewed at
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two different time instances; (iii) the image signals correspond-
ing to regions R and R' do not only differ with respect to their
supports R and R’, but also undergo amplitude transformations
due to the different lighting and viewing geometries at t; and
t2. Nowadays, (i) is not critical any more due to the availability
of very fast hardware or parallel computers, but (ii) and (iii) are
serious drawbacks. Several researchers have adopted other meth-
ods that depend either on (a) constraints among spatio-temporal
image gradients, or on (b) tracking features (e.g., edges, blobs).
However, (a) performs badly for medium- or long-range motion
and is sensitive to noise. (b) is more robust in noise and works
for longer-range motion, but feature extraction and tracking is a
difficult task and gives sparse motion estimates. By comparison,
if problems (ii) and (jii) can be solved, then the block match-
ing method has the advantages of more robustness over (a) and
denser motion estimates over (b).

In this paper, we present an improved model for block match-
ing that solves problems (ii) and (iii) by allowing R to undergo
affine shape deformations (as opposed to just translations that
the block matching method assumes) and by allowing the inten-’
sity signal I to undergo affine amplitude transformations. The
parameters for this affine model are found via a least-squares
algorithm. Several experiments are reported that demonstrate
the superiority of our affine model for image matching and mo-
tion detection over gradient-based, feature-tracking, or standard
block matching methods. Finally, we apply the previous results
to recovering the 3-D rigid body motion parameters and depth
from two perspective views by using a 3-D affine model whose
input 2-D motion correspondences are the displacement vectors
that resulted from our affine matching model.

2 Affine Model for Image Matching

We assume that the region R’ at t = t; has resulted from the
region R at t = t; via an affine shape deformation p — Mp + d,

where

—8y sin 9,,] [z} + [d,]

38y cos @y y dy
The vector d = (d, d,) accounts for spatial translations, whereas
the 2 x 2 real matrix M accounts for rotations and scalings (com-
pressions or expansions). That is, s, s, are the scaling ratios
in the z,y directions, and 6,8, are the corresponding rotation
angles. These kinds of region deformations occur in a moving im-
age sequence. For example, when objects rotate relative to the
camera, the region R also rotates. When objects move closer or
farther from the camera, the region R gets scaled (expanded or
compressed). Displacements by d can be caused by translations

85 €088,

Mp+d= 85 8in 0,
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of objects parallel to the image plane as well as by rotations.
In addition, we allow the image intensities to undergo an affine
transformation I — rF + ¢, where the ratio r adjusts the image
amplitude dynamic range and ¢ is a brightness offset. These in-
tensity changes can be caused by different lighting and viewing
geometries at time £y and t;.

Thus, given I(z, g, t) at ¢ = ty,t7, and at various image loca-
tions, we select a small analysis region R and find the optimal
parameters M, d, 7, ¢ that minimize the error functional

E(M,d,r,c)=Y_ [p,tx} - rI(Mp+d,t2) — cf*
pER

The optimum d provides us with the displacement vector. As

‘by-products, we also obtain the optimal M, r,c which provide
information about rotation, scaling, and intensity changes. We -

call this approach the affine model for image matching. Note
that the standard block matching method is a special case of
our affine model, corresponding to an identity matrix M, r = 1,
¢ = 0. Although d is a displacement vector representative for
the whole region R, we can obtain dense displacement estimates
by repeating this minimization procedure at each pixel, with R
being a small surrounding region. Note that, if R is a square re-
gion, its corresponding region R’ under the map p— Mp+d will -
generally be a rotated and translated parallellogram. More gen-
eral shape/intensity transformations can be modeled by a sum of
affine maps, i.e., F(p, ) v c+ ¥, ruf(M,p+dy, 12}, as developed
in [6].

Finding the optimal M, d, r,cis a nonlinear optimization prob-
lem. While it can be solved jteratively by gradient steepest de-
scent in an 8-D parameter space, this approach cannot guarantee
convergence to a global minimum. Alternatively, in our work we
propose the following algorithm that provides a closed-form so-
‘lution for the optimal 7,c¢ and iteratively searches a quantized
parameter space for the optimal M,d. We find first the optimal
r,e by setting 9B [8r = 0 and @E/8c = 0. This yields two linear
equations in r,¢ which can be easily solved to find the optimal
r* and ¢* as functions of M and d:

#= AT hE-Ca TR A - (CnY
¢ = [ChLB-TrEanlI AT B - (Y
where Iy = I(p,ty), I = Mp+d,12}, ¥ = Tpep, and 4 is the

area of the region R. Replacing the optimal r*.c* into E yields
the error functional

EX(M,d) = B(M,d,v*,¢*) =Y B ~rY hh-c'Y L

_yp_ ACHLF+ THCRY 2SR TAT Ik
' AL - (ChP ,
K(M,d)
Since the term ¥, I7 is independent of M, d, minimizing B*(M,d)
is equivalent to maximizing K (M, d). The function K(f,d) con-
sists of several correlation terms. Now by discretizing the 6-D
parameter space M,d and exhaustively searching a bounded re-
gion we find the optimal M,d that maximize K(M,d). (The 2-D
parameter subspace d is inherently discrete because it represents
integer pixel coordinates.)

In our experiments we assume that M performs a uniform ro-
tation by 8 = 6, =6, and uniform scaling by s = s, = s, and d
is constrained to be within an L x I window around p, where L/2
is the maximum expected displacement in each direction. Thus
we search in a finite discrete 4-D parameter space s,6,d. Figure 1

it

il

reports several motion detection experiments where the motion

is a short- or long-range translation or rotation and the scene
lighting changes. These experiments shiow that our affine match-

ing algorithm performs better than other standard approaches

such as block matching, gradient methods [4] or feature-tracking

methods [3]. However, the superior performance of our affine

model comes at a higher computational complexity.

Although the affine matching algorithm usually yields robust.
displacement. estimates, there may be a few mismatches which
we, view as moise. In this case additional improvement can be
achieved by smoothing the displacement vector field. We ex-
clude the use of linear filtering (e.g., local averaging) because
linear smoothing filters have the well-known tendency to- blur
and shift sharp discontinuities in signals. Sharp discontinuities
in the displacement field may indicate object boundaries and,
hence, must be preserved. Instead we choose spatio-temporal
vector median filtering because the scalar median filter can. elim-
inate outliers while preserving abrupt edges. Vector median fil-
tering is defined to be the z,y componentwise median filtering;
med{d;} = (med{d,;}, med{d,;}), where di, i = 1,2, ...,n, are
the displacement, vectors. in: a spatio-temporal cube surrounding
the center of region R and time t;. We have found this vector
median to perform well in smoothing velocity fields.

Qur affine matching algorithm performs well not only on rigid
objects but alse.on nonrigid objects, such as moving clouds where
the interframe changes of object shapes could be very large; Fig-
ure 2 shows an example. v

3 Recovery of 3-D Motion and Dvepth

The displacement vectors from the affine matching algorithm can
be applied to recover the rigid body motion parameters (including
3-D rotations and translations) and surface structure (the depth
of the objects with respect to:the camera) from two perspective
views. Let (X, Y, Z}and (X", Y", 2"} be the coordinates of a point
on a rigid ébject before and after rotation (6, 6,,6.) and trans-
lation (T3, Ty, T;) and (2, y) and (z°, ') be the coordinates of the
projection of the point on the image plane before and after rigid
motion. Similarly, we can assume: the objects in the scene are
stationary and the camera undergoes translation and rotation.
Assume a perspective projection where the origin is the center
of projection and the image plane is the z = I plane. So all the
distance units are expressed in terms of the distance from pro-
jection center to image plane. Thus we have z = %,y = % and
2= %:,,y’ = %} Rigid body motions can always be represented
by a rotation followed by a translation. (Here the rotation is in
the order 0, 4,, 0, but other orders can be solved similarly.} The
following abbreviations are used: € = cos8,,5: = sind;,C, =
cosly, Sy = sinby,C, = cosb,, S, = sinf,.

and denominators by Z yields
o= C.Cyx 4 (SoSy — C2Cy Sy + (CoSy + 5:C, 5 + Tr[Z)
~5,€,3 + (Cy Sz + €845 )y + (CoCy — S25,5. + Tx/%)‘]

. S22 4 CoCiy — $:C. + T, /2
V= 5,62 +(C,5, +C.5,5.)y + (CoCy — 5.5,5. + T./Z)
(2)
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Figure 1: (a) “Poster” image sequence (
rotation and under much brighter light
(c) the affine matching algorithm. (g) «
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6] 3
frame 1) under dim light sources (242x242 pixels, 8-bit/ pixdl). (d) “Poster” (frame 2) with small
sources. Displacement vectors between images 1a and 1d using (b) standard block matching and
Poster” (frame 3) after camera moved closer to the object. Displacement vectors between images

1d and 1g using (e) standard block matching and (f) the affine matching algorithm. (§) “Poster” (frame 4) after a 23° counterclockwise
rotation. Displacement vectors between images 1g and 1j using: (h) standard block matching, (i) the affine matching algorithm, (k) a
feature-based correspondence algorithm [3], and (£) a gradient-based optical flow algorithm {4].
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Assuming Ty, = T,,, = (&, T, #0 @p:ther cases for nonzero transla-

-tion in only one axis can be solved similarly) and canceling T, /Z
gives §:C.3"~ S 33" + €, Cony +(5:5y — C2C, 8. Jyy + (T Sy +
§:C 8, Yy — CxCyz" = 0. We. can write this as

gz’ = Az" + Bzz"+ Dzy + Eyy’ + Fy'
where 4 = S, fC., B = -85, /C:C,, D= C,[C,,
Sy — €2y S C.8y + 56,5
C:C, > CC ’
Now we set up an overdetermined system of equations Yo = §
where n is the number of cmreapondtence pa“mz“fY ‘Iﬁnxs and Brxt

consists. of n rows of (z},z.27, 2
respectively and asyy = (4,

E = S F =

E F). By usmg the ;éeuzn-

inverse approach, we can ﬁnd a least-squares solution of Yo = §
and thus obtain the parameters A, B, D, E, F. Then we can find
the rotation angles by 6, = tan"Y 4,8, = tan~'(~ BC, ),

-1, FCC,

— tan™¥( _5;3, .

z

€%+ 52

Depth up to a scaling factor £ can be computed by substituting
rotation angles back into (2) or 1)) thus
Z

T.

= ¥/S3 + CoCoy — $:Cx

+8,C.ay’ — (CpSa + €28, S )yy ~ (CoCy — 5:5,5: )"
We next. present. the results from this approach to 3-D motion
recovery for a simulated example of § object: points.

ob;sct promt,s XYZ“j (”92 18,84}, (41,64,48),(9,9,50),
(s ~ 5,49), (32, 7, 10),(62, 16, 36)
~1.0°,6,

8, =

ap ',hed rotation:

2.0°,8, = —-3.6°
applied translatien: 7, =T, = 0.0,T, = 6.0
—recovered paramieters—
(4.B.D.EFY - (—0.01746,0.05242, 0.99954,0.05177,0.03586 )
rotation: 6, = —1.00%,6, = 2.00°,6, = ~3.00°
depth af— ( 14.@@5%5.00«,8.334,,1*mm,,1.5@0,‘8,.«167, 1.667,6.001)
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