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Abstract 

This paper presents a study of the morphological slope transform in the complete lattice framework. It discusses in detail the 

interrelationships between the slope transform at one hand and the (Young-Fenchel) conjugate and Legendre transform, two 
well-known concepts from convex analysis, at the other. The operators and transforms of importance here (hull operations, 
slope transform, support function, polar, gauge, etc.) are complete lattice operators with interesting properties also known 
from theoretical morphology. For example, the slope transform and its ‘inverse’ form an adjunction. It is shown that the 

slope transform for sets (binary signals) coincides with the notion of support Function, known from the theory of convex 

sets. Two applications are considered: the first application concerns an alternative approach to the distance transform. The 
second application deals with evolution equations for multiscale morphology using the theory of Hamilton-Jacobi equations. 
0 1997 Elsevier Science B.V. 

Zusammenfassung 

In diesem Beitrag wird eine Untersuchung der morphologischen Steigungstransformation (morphological slope transform) 
im Rahmen der vollsttidigen lattice-Theorie prisentiert. Dabei werden die Zusarnmenhtige zwischen der Steigungstransfor- 
mation einerseits und der (Young-Fenchel) konjugierten Transformation sowie der Legendre Transformation andererseits, die 
zwei wohlbekannte Verfahren aus der konvexen Analyse darstellen, diskutiert. Die Operatoren und Transformationen, die hier 

von Bedeutung sind (hull-Operationen, Steigungstransformation, support-Fur&ion, polar, gauge, etc.) stellen vollstiindige 
lattice-Operatoren mit interessanten Eigenschaften dar, die ebenfalls aus der theoretischen Morphologie bekannt sind. Die 

Steigungstransformation beispielsweise bildet zusammen mit ihrer Inversen ein adjungiertes Paar. Es wird gezeigt, dalj die 

Steigungstransformation fiir Mengen (bintie Signale) mit der Kenntnis der support-Funktion einhergeht, die aus der Theo- 

rie konvexer Mengen bekannt ist. Es werden zwei Anwendungen betrachtet: die erstc betrifft einen altemativen Ansatz zur 
Distanz-Transformation. Bei der zweiten geht es um Evolutionsgleichungen in der multiscale-Morphologie unter Ausnutzung 
der Theorie der Hamilton-Jacobi Gleichungen. 0 1997 Elsevier Science B.V. 

RCsumt! 

Cet article prksente une Ctude de la transformation de pente morphologique dans un cadre de structure en treillis. I1 discute 

en d&tail les inter-relations entre la transformation de pente d’un c8tC et les transformations conjuguCe (de Young-Fenchel) et 

de Legendre, deux concepts bien connus en analyse complexe, de l’autre. Les optrateurs et les transformations d’importance 
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ici (opkrateurs d’enveloppe convexe, transformation de pente, fonction de support, polaire, jauge, etc.) sont des opkrateurs 
de treillis complets avec des propriktks inGressantes conrmes aussi par le biais de la morphologie thhorique. Par exemple, 

la transformation de pente et son ‘inverse’ forment une adjonction. 11 est montrk que la transformation de pente pour des 
ensembles (signaux binaires) coincide avec la notion de fonction de support, provenant de la thtorie des ensembles convexes. 
Deux applications sont considtrkes: la premiere est relative k une approche alternative de la transformation de distance. La 

deuxikme a trait aux Cquations d’kvolution pour la morphologie multi-Bchelle par le biais de la thkorie des Cquations de 

Hamilton-Jacobi. 0 1997 Elsevier Science B.V. 

Keywords: Morphological systems for signal analysis; Adjunctions; Convex sets; Supremal and infimal convolution; Upper 

and lower slope transform; Lipschitz continuous functions; Upper semi-continuous (u.s.c.) and lower semi-continuous (1.s.c.) 
functions; Convex functions; Conjugation; Distance transform; Morphological evolution equation 

1. Introduction 

Morphological signal analysis is becoming an im- 

portant area of nonlinear functional analysis that has 

found many applications in image processing and non- 
linear filtering. The morphological signal operators are 

parallel or serial interconnections of morphological di- 
lations and erosions, respectively, defined as 

(f@ g)(x) = v ./Xx - Y) + 6!(Y), (1.1) 
YEW 

cf.0 g)(x) = A f(x + v) - 9(Y)> (1.2) 
YElWd 

where v denotes supremum and r\ denotes infimum. 

The theory of deterministic morphological operators 

is quite rich and has been based on set and lattice 

theory [l 1,19,25,26]. In spite of their wide applica- 
bility, so far their analysis has been done only in the 

time (or spatial) domain because of lack of transforms 

which enable us to also describe them in a transform 
domain. However, recently some nonlinear signal 
transformations have been introduced in [7,17,18], 

called ‘slope transforms’, which endow morphological 

systems with eigenfunctions and a related transfer 

function in a slope domain. It turns out that the 
morphological slope transforms, restricted on the 
class of concave or convex functions, are closely re- 
lated to the conjugate functions of convex analysis 

[8, 13,14,21,22]. 
Therefore, there are many interesting ideas in 

the overlapping among the areas of morphological 
systems, slope transforms, and convex analysis. In 
this paper, we show that an efficient methodology 
and mathematically elegant framework to study and 

fiu?her advance these interrelationships is lattice the- 
ory as applied to mathematical morphology. Thus, 

although the slope transforms are intended for anal- 
ysis of morphological systems, they can benefit from 

the already developed theory of conjugate functions 
in convex analysis. Thus one of the contributions of 

this paper is to use convex analysis to enrich the un- 

derstanding of slope transforms. Further, both areas 
can benefit from using the framework of complete 

lattices for studying the signal classes and operations 

involved. Thus another contribution of the paper is 

to study slope transforms in the context of complete 

lattices. Further, a rich class of signals used in mor- 
phological image analysis is that of binary signals, 
which are viewed as indicator functions of sets. A 

goal of this paper is to study the slope transforms 

of binary signals, which turn out to be the support 

functions of the corresponding sets, a concept very 

frequently used in convex analysis. Finally, in con- 
vex analysis, the use of conjugate functions for both 

multilevel and binary signals is constrained to the 
cases of convex or concave signals. In this paper we 
apply slope transforms to arbitrary signals, even if 
the information in the original signal is not always 

completely recoverable from its slope transform. Un- 

less stated otherwise, the propositions and corollaries 
in this paper are new (to the best of out knowledge). 

We begin in Section 2 with some basic notions from 
the theory of morphological signal processing. First, 
we briefly describe the complete lattice framework 

of mathematical morphology. Next, we remind the 
reader of the classical linear theory of signal process- 
ing and the corresponding Fourier approach. We show 
that there exist several analogies between the linear 
and the morphological approach. The emphasis is laid 
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upon the slope transform which may be considered 
as the morphological counterpart of the Fourier trans- 

form. In Section 3 we study the morphological slope 

transform within the framework of complete lattices. 

Since the slope transform is closely related to conjuga- 

tion, we can use concepts from convex analysis here. 

Section 4 focuses on the slope transform of the in- 
dicator function of a set and its relationships to the 

set’s support function, again viewed in the context 

of complete lattices. In Section 5 we discuss some 
applications of the ideas in this paper. Our first ex- 

ample concerns the distance transform, the second 

example discusses nonlinear partial differential equa- 

tions that describe multiscale morphological opera- 
tions [6,20,29]. We show that the resulting PDEs can 

be reformulated as Hamilton-Jacobi equations which 

have been thoroughly studied in the literature. We end 

with some conclusions in Section 6. 

2. Morphological signal processing 

2.1. Morphology on complete lattices with appli- 
cations to convex sets 

A set _I? with a partial ordering < is called a com- 
plete lattice if every subset Z 2 2 has a supremum 
(least upper bound) v 2 and infimum (greatest lower 

bound) AZ; refer e.g. to [4]. The opposite of 9, 
denoted by -4a’, is the complete lattice with partial or- 

dering X < ‘Y iff X 2 Y. A comprehensive discussion 
of the theory of morphological operators on complete 

lattices can be found in [1 11. 
Let 2, _&’ be complete lattices. A pair of opera- 

tors (a, S), where E : 52 + A? and 6 : A’ ---f 9, which 
obeys 

&Y)<X ti Y<E(X), XEz, YEA, (2.1) 

is called an adjunction between y and _&?. In that 

case, E and 6 distribute over infima and suprema, re- 
spectively, 

& Ax; = 
i ) iEl 

/j EGG), (2.2) 
iE1 

(2.3) 

for arbitrary collections {Xi ) i E I} C 9 and { 5 ) j E 
J} C A%‘. An operator F which satisfies (2.2) is called 

an erosion. An operator 6 which satisfies (2.3) is called 

a dilation. Erosions and dilations are increasing map- 
pings: a mapping $ : 2 ---f A? is called increasing if 

X1 <X2 implies that $(X1 ) <$(X1), for XI, X2 E Y. 

The range of $ is Ran($) = {$(X) ( X E L?}. 
With every erosion t: : 2 -+ A?’ there corresponds 

a unique dilation 6: A?’ -+ 2 such that (a, 6) con- 

stitutes an adjunction. Vice versa, with every dila- 
tion 6 : A -+ 6p there corresponds a unique erosion 

E : 2 + A such that (E, S) constitutes an adjunction. 

We say that 6 is the adjoint dilation of a, and also that 

E is the adjoint erosion of 6. 

If (E, S) is an adjunction between Y and A, then 

E& = E and de6 = 6. 

Also 

~d>id.~ and 6E didyip; 

here id2,id.d represent the identity mappings on -C? 

and .,z?, respectively. 

An operator $ : 2’ t 2’ is called an opening if it 

is increasing, idempotent (i.e., $2 = $), and anti- 

extensive (i.e., $ did). It is called a closing if it is 

increasing, idempotent, and extensive (i.e., $ > id). If 

(E, 6) is an adjunction between 2 and 4, then BE is 
an opening on zZ’ and EB is a closing on 4. Openings 

will be denoted by a and closings by p. 
The following result will be used later on in this 

paper. 

Proposition 2.1. Let (E, S) be an adjunction between 
8 and A. 
(a) rf& E Ran(G) for i E I, then 

(b)IfqERan(E)forjEJ, then 

Proof. We prove only (a), for then (b) follows 
by duality. Let Xi = 8(K), then, using that 6~6 = 6, 
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This concludes the proof. •i 

Remark 2.2. This result can be restated as follows. 
The subset 9 = Ran(G) of .9 is a complete lattice 
with the same supremum as 8 but with infimum 
&(VjE,Xi). The subset J%” =Ran(s) of &’ is also a 
complete lattice with the same infimum as &’ but with 
supremum E~(V~,_~ 5). The pair (s,6) yields an ad- 
junction between 9’ and JZ’, and for this restriction, 
s and 6 are each other’s inverses. 

The invariance domain of an operator $ : 22’ -+ 9 
is defined by 

Inv(ll/)={XE~~~(X)=X}. (2.4) 

The invariance domain of an opening (respectively 
closing) is closed under the formation of suprema (re- 
spectively infima), that is, ifXi E Inv($) for i E I, then 
ViE_& (respectively A,,,X’) lies in Inv($) as well. 
Conversely, if X G 9’ is closed under suprema, then 
there is a unique opening c1 on Y with Inv(a) = 2. 
Dually, if X C 9 is closed under infima, then there 
exists a unique closing p on 8 with Inv(,Q = X. Re- 
fer to [ 1 l] for a proof of these results. 

Proposition 2.3. 
(a) Let a, a’ be openings on _9? such that a’aa’ = aa’, 

then au’ is an opening with inuariance domain 
Inv( a) n Inv( a’). 

(b) Let p, j? be closings on 2 such that /?‘p/?’ = /?/?I, 
then /I/3’ is a closing with invariance domain 
Inv( p) U Inv( fi’ ). 

Proof. To see that au’ is an opening, we only have 
to show that au’ is idempotent. But this is obvious 
since aa’aa’ = aaa’ = au’. Furthermore, one sees im- 
mediately that aa’ = a’aa’ maps into Inv(a) n Inv(a’). 
On the other hand, if X E Inv(a) n Inv(a’), then X = 
a(Y) = a’(Y’) for some Y, Y’ E 9. Thus, au’(X) = 

aa’a’(Y’)=aa’(Y’)=a(X)=aa(Y)=a(Y)=X. 
This proves the result. 0 

We illustrate these abstract concepts by means of 
some concrete examples. Denote by 9(l@) the set 
of all subsets of IWd; the empty set will be denoted 
by 0. Then 9(lRd) is a complete lattice if we take set 
inclusion as partial ordering. Supremum and i&mum 
are given by set union and intersection, respectively. 

Recall that Minkowski sum and di,ference of two 
sets X, A C Rd are defined as 

X@A={x+aIxEX, aEA}=UX,, 
&A 

XeA= nX+ 
REA 

The pair (&A, aA>, where s,(x) =x $ A and 
&A(x) =X 6 A, defines an adjunction on 9(!@). The 
set A is called structuring element. 

The mapping X H int(X) which maps a set X to 
its interior is an opening. Dually, the mapping PC 
given by PC(X) =x, where z is the closure of X, is a 
closing. 

Recall that a set X c IWd is convex if rx + (1 - 
r)y~X forx,yEX and O,<r<l. A setX is called 
a cone if rx E X for x E X and r > 0. A cone which is 
convex is called a comex cone. See Fig. 1 for some 
illustrations. 

The collection of convex sets in [Wd is denoted by 
9’*(rWd). This is a complete lattice under the inclu- 
sion relation with set intersection as infimum, but 
with a different supremum, an expression for which 
is given below. If X, Y G [Wd then X $ Y is convex, 
too. The convex hull co(X) of a set X is the inter- 
section of all convex sets which contain X. Since 
an intersection of convex sets is convex, co(X) is a 
convex set, the smallest convex set which contains 
X. Now the supremum of the collection {Xi ) i E I} 
in 9,,(tRd) is given by co(l_liEr&). The map /?* on 
9(cWd) given by p,,(X) = co(X) is a closing with 
invariance domain L?*( rWd). 

It is a well-known fact [28] that the closure of 
a convex set is convex. In operator notation, 

Pr\BcBA = BCPk (2.5) 

Now Proposition 2.3(b) gives that pcp~ is a closing 
with invariance domain Inv(P', ) I? Inv&), the closed 
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convex set cone convexcone 

Fig. I. From left to right: a convex set, a cone, and a convex cone. 

X co(X) 

Fig. 2. A closed set X for which co(X) is not closed. 

convex sets. The set j&/?/,(X) = co(X) is called the 

closed convex hull of X, also sometimes denoted by 

E?(X). 
The example in Fig. 2 shows that the convex hull 

of a closed set need not be closed, i.e., 

The mapping 6 : P(l@) + !?(I@) given by 

J(Y)= u rY 

is a dilation. The corresponding erosion is given 

by 

0, O@x, 
E(X) = 

f-l r>O rx, 0 EX. 

Both E(X) and 6(X) are cones, for every X C Rd. 
The set E(X) is called asymptotic cone or reces- 
sion cone if X is convex [13, Section 111.2.21. Note 
that 6 is also a closing, and, dually, that E is an 
opening. 

2.2. Linear signal processing and Fourier analysis 

A signal operator Y : f H Y(f ), defined on the 

space of complex-valued signals with domain Rd, is 

called a linear shift-invariant (LSI) system if Y obeys 
the linear superposition principle, i.e., 

where {f;} is a finite signal collection and ci are con- 
stants, and if Y is horizontally shift-invariant: 

Y(&) = W(f )l,v, 

where f, denotes the horizontal translate of the func- 
tion f over the vector y, i.e., 

h(x) := f(x - Y). 

The output from Y can be found via the linear con- 
volution 

Y(f)(x)=(f*h)(x) := J' f(y)&-y)dy 
R" 

of the input signal f(x) and the impulse response 
h(x), which is the system’s output due to a Dirac delta 
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input. The exponential signals exp(j(x, 0)) are eigen- 
functions of Y, because 

VexpUk a) )) = H(w) exp(jk, w)), 

where (x, o) denotes the inner product of the vectors 
x=(x,,..., xd) and w=(wt,...,od) in Rd: 

(.X9 0) := k,iWi. 
i=l 

Note that we use the ‘loose notation’ Y (exp( j (x, w) )) 
instead of !P(exp(j(., a))). 

The eigenvalue H(w), called the system’s fre- 
quency response, is the Fourier transform of h(x): 

H(o) = 
I 

h(x) exp(-j(x, 0)) dx. 
W 

The frequency response provides a simple way to find 
the system’s output when the input is a weighted sum 
of sinusoids, because the output will also be a weighted 
sum of sinusoids with same frequencies and with am- 
plitudes and phase offsets determined by H(w). In ad- 
dition, the frequency response may often be a simpler 
description of the system, especially in the case of 
a frequency-selective (e.g., low pass or band pass) fil- 
ter, because signal convolution becomes multiplica- 
tion of their Fourier transforms; thus, 

g=f *h w G=FH, 

where F, G are the Fourier transforms off, g. 

2.3. Morphological systems and supremal/injimal 
convolution 

In convex analysis and optimization [2, 13, 
14, 21, 22, 301, the nonlinear signal operation CB 
given by (1.1) is usually called supremal convolution. 
A dual operation is the so-called injmal convolution 
given by 

U-Q)(x) = /j f(x - Y) + S(Y)- 
YEW 

Note that Cl is closely related to the morphological 
erosion 8, given by (1.2), because 

fes=fU-a> 

where 4 is the reflection of g given by 

B(x) = d-x). 

Henceforth, we shall refer to $ and 0 as the 
supremal and infimal convolution, respectively, to 
distinguish them from the concept of a dilation and 
erosion operator on a lattice. 

A mapping A which sends a signal f to a trans- 
formed signal A(f) is called a dilation translation- 
invariant (DTI) system if it is a dilation, i.e., 
A(V, fi) = Vi A(h), and if it is translation-invariant, 
i.e., A( fy + c) = A(f )v + c for any shift y and any 
real constant c. It is easy to verify that a system is 
DTI if it is horizontally shift-invariant and obeys the 
morphological supremum superposition principle 

A 
[ 1 
V fi(x) + ci = V[A(fi>(x) + cil, 
iEI iEI 

where {J;:} is any signal collection and ci E R. 
Many important aspects of a DTI system can be 

determined in the time or spatial domain solely from 
knowledge of its output signal due to an elementary in- 
put signal, the morphological lower impulse qA given 

by 

q/1(x):= O7 
{ 

x = 0, 
-o;), x#O. 

The corresponding output of the DTI system A when 
the input is the lower impulse is henceforth defined as 
its lower impulse response 

g := A(q, ). 

This uniquely characterizes a DTI system in the time 
domain, because any DTI system is equivalent to a 
supremal convolution (also called ‘morphological di- 
lation’) by its lower impulse response: 

A(f)=f@g. (2.7) 

Similarly, a signal operator 6’ : f H S(f) is called 
an erosion translation invariant (ETI) system if it is 
horizontally shift-invariant and obeys the morpholog- 
ical injimum superposition principle 

8 
[ 1 A f;(x) + Ci = /j[KfiNxl + CiI3 iEI iEI 
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where ci E R. If we define the upper impulse response 
h of an ET1 systems & as its response 

h := W(qv) 

to the upper impulse 

q”(x):= O, 
{ 

x=0, 

f% -u#O, 

then it follows that 

&(f)=fclh. (2.8) 

When the ET1 and DTI systems are related via an 

adjunction, then there is also a close relationship be- 

tween their impulse responses. Namely, let & be an 
ET1 system, and let A be its adjoint dilation. It is easy 

to show that A is a DTI system [l I], and therefore 

A(.f) = f $ g, where g is the lower impulse response. 

Now 

U)=fes. (2.9) 

Note that (2.9) and (2.8) become identical if one puts 

h=-8. 

Remark 2.4. Since we are dealing with functions 
mapping into the extended reals, we have to provide 

some rules for addition and multiplication of such 

numbers; see also [ 13, Appendix 21. Such rules have 
to be in correspondence with certain properties of dila- 

tions and erosions on the complete lattice &. From the 
fact that a dilation d : l!! + R satisfies d( -co) = -cc 
(see[ll,Chapterll])wegetthat-co+(+oo)=-cc 

if it occurs in an expression like f @ g. However, in 
f 8 g we have to put -cc - (-co) = $-co. In many 
cases, however, y will be finite everywhere. Finally, 

wewillputO.-co=O.+co=O. 

2.4. Upper and lower slope transfbrm 

To analyze morphological systems in a transform 

domain, the following two signal transforms were in- 
troduced in [ 17, 181. Given a signal f, its upper slope 
tran?form is defined as 

px4.f )(u):= v f(x) - (44, UE @, 
XEW” 

and its lower slope transform is 

r~%(j”)(z.) := /\ ,f(x) - (x, U), 1: E Rd. 
XER” 

These slope transforms provide information about 

the slope content of signals and a description of 

morphological systems in a ‘slope domain’, with 

functionality similar to the use of Fourier or Laplace 

transforms in linear systems. Specifically, the hyper- 

planes x M (x, K) + b (or lines x H ox + b for one- 

dimensional systems) are eigenfunctions of any DTI 

system A because 

A((x,c)+b)=(x,u)+b+g”(v), (2.10) 

if A is given by (2.7) and gv =,5$(g). We call g” 

the upper slope response of the DTI system A. It 

measures the amount of shift in the intercept of the 

input lines with slope v. It is also conceptually sim- 

ilar to the frequency response of LTI systems which 
is their multiplicative eigenvalue for input exponen- 

tials, whereas g’(v) is the additive eigenvalue of DTI 

systems for input lines with slope v. Further, as the 
frequency response of an LTI system is equal to the 

Fourier transform of the system’s impulse response, 

in a similar way the slope response of a DTI system 
is the upper slope transform of the system’s lower 

impulse response. 

Perhaps the most important property of Fourier 
transforms in analyzing LTI systems is their ability to 

map a linear convolution of signals in the time/spatial 

domain to multiplication of their Fourier transforms. 

Similarly, supremal convolution of two signals be- 
comes addition of their upper slope transforms: 

%(f @g)=f” fg”. (2.11) 

Similar ideas apply to ET1 systems. Specifically, the 

above hyperplanes are also eigenfunctions of any ET1 
system given by (2.8): 

~((~,v)+b)=(x,u)+b+h”(v), (2.12) 

where h’ = 5%(h). In the special case where the ET1 

system Q and the DTI system A form an adjunction, 
their slope responses are closely related since 

h*(c) = - y”(v). (2.13) 

In general, we note that 

%(.f )(u) = -%(-.f)(-0). (2.14) 
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-1.51 1 

0 0.2 0.4 0.6 0.8 1 
TIME 

Fig. 3. Slope-limiting (i.e., Lipschitz regularization) of a function 

via its supremal convolution with a cone. The dashed line shows 

the original signal j(x) = [ 1 + 0.5 cos(2rvr)l cos( lOlvr), x E [0, I]. 

The solid line is the supremal convolution off with K,(x) = -a(xj 
where a = -5. 

From (2.10)-(2.13) one observes that the closing 64 

and the opening db leave the hyperplanes x H (x, V) + 
b invariant. For further properties as well as graphical 

illustrations, the reader may refer to Section 3. 

2.5. Slope-limited functions, Lipschitz regulariza- 
tion, and slope filtering 

Define, for every a > 0, the concave conical function 

Here /lx// denotes the length (or Euclidean norm) of 

the vector x, i.e., ]]xJ( = (1x1 I2 +. . . + Ix~]~)‘/~. Define, 
for a function f : R” -+ 52 the mapping 

YAf) = f @ K,, 

depending on the slope parameter a. See Fig. 3 for 
an illustration of a one-dimensional signal f and its 
transformation lu,( f ). 

The family { ‘y, ) a > 0) has the semigroup property 

% Iv, = yayb = YaAb, a,b>O. 

This follows easily from K, Cl3 Kb = KaAb. This latter 
identity becomes obvious by using (2.11) and the ex- 
pression for K,” given below. 

Every Ya is a dilation and a closing at the same 

time. Since the slope transform of the conical function 
assumes only 0 and fco values, 

and supremal convolution becomes addition in the 
slope domain, 

%(Wf))=f” +K,v, 

it follows that Y=(f)“(v)=+oo for /o(>a. Hence 

it is ‘upper slope-limited’, where we call a function 
f : Iw + R upper slope-limited if there exists some 

a>0 such that f”(u)=+co for 1~1 >a. The constant 

a may then be called the upper slope bandwidth of 
f. The above discussion implies that a function f be- 
comes upper slope-limited with bandwidth a after its 

supremal convolution with the cone K,. 
Slope-limited functions are related to Lipschitz 

continuous functions. Consider functions f : Rd -+ R. 
Recall that f is Lipschitz if there exists a con- 

stant c>O such that If(x) - f(y)l<cllx - yJ(, for 
X, y E IWd. If a function f is Lipschitz continuous 

with constant a, then lu,(f) = f, hence f is an up- 

per slope-limited function with bandwidth a. The 
converse is not true in general. For example, the 

quadratic function f(x) = l/x/12 has upper slope trans- 

form which is identically +oo, but f is obviously 

not Lipschitz continuous. However, as shown in [22, 

p.1161, a proper concave function f is Lipschitz with 
constant a if and only if it is upper slope-limited with 
bandwidth a. Note the similarity with Fourier analy- 

sis where a real-valued function f(x) is band-limited 
(i.e., frequency-limited) with bandwidth 00 if its 
Fourier transform is zero for frequencies lo/> WQ. If a 

function is not originally band-limited, it can become 
so by linearly convolving it with the sine-function 

h(x) = sin(wox)/nx. Band-limiting causes a regular- 
ization to the original function because it eliminates 
higher frequencies in the input. Thus, slope-limiting 
can be seen as a ‘Lipschitz regularization’; see also 

[14, Example 3.4.41. 
Frequency band-limiting can be seen as frequency- 

selective filtering in the frequency domain, where the 
input signal components whose frequencies are within 
the filter’s pass band pass unchanged, whereas other 
frequency components are rejected. Similarly, slope 
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transforms have been used for designing and analyzing 
DTI or ET1 systems that act as slope-selective filters 

[ 17,181. For example, the above supremal convolu- 
tions with the conical functions K, can be seen as sym- 

metric low-pass slope-selective filtering because if the 

input signal f’ contains any segments with slopes ab- 

solutely greater than a, they will be rejected, whereas 

slopes absolutely smaller than a will pass unchanged. 
For a more general (asymmetric bandpass) slope filter, 

imagine a one-dimensional DTI system that passes 

all line components with slopes in the band [ui, 021 

unchanged, and rejects all the rest. Then its slope re- 

sponse would be 

g”(v) = 
i 

0, VI dvdv2, 

+cq else. 

This is a general ideal-cutoff slope band-pass filter. In 

the spatial domain, it acts as a supremal convolution 

by the impulse response 

The points on and below the graph of this function g, 

the so-called umbra (see Section 3.1), form a concave 

cone. Such a dilation by an infinite cone produces 
upper envelopes of the input signal, as shown in Fig. 3 

for the symmetric case vz = -vi = a > 0. 
Lipschitz functions, and more generally, equicon- 

tinuousfimctions play an important role in morpho- 

logical sampling schemes for grey-scale images [27]. 

Readers who are interested in an abstract treatment of 
Lipschitz functions in the complete lattice framework 

for morphology should refer to [23]. In this paper one 

find various results related to the ones above. 

3. The slope transform 

3.1. Complete lattice theory for functions 

We denote by Fun(l@) the functions mapping 
lRd into the extended reals fi = Iw U {-eq +co}. It 

is evident that this defines a complete lattice under 
the partial ordering given by pointwise inequality: 
fi df2 iffi(X)<f2(X) foreveryxEll@. By f EC, 
where c E [w, we mean that f(x) = c, for every x E IWd. 
The function which equals c everywhere is denoted 
by ‘= c’. 

The upper and lower domain of a function f are 
defined as 

domv( f) = {x E lRd 1 f(x) > - CXI}, 

dom,,(f)={xEiWd( f(x)< +co}, 

respectively. It is easy to show that 

(3.1) 

(3.2) 

for an arbitrary collection {fi / i E Z} in Fun([Wd). In 

other words, domv(.) (respectively domA( is a dila- 

tion (respectively erosion) from Fun([Wd) into P(rWd). 

Furthermore, we define the epigraph and hypograph 
of a function as 

u,(f>={(x,t)ERd xRIt<f(x>}. 

In mathematical morphology, the set U,,(f) is usually 
called the umbra off. Note that Uv (respectively U,) 

defines a dilation (respectively erosion) from Fun( IWd) 

into P([Wd x Iw). For an illustration of these concepts 
we refer to Fig. 4. 

A function of the form x H (x, v) + b, where v E [Wd 

and b E & is called an afine function. If b = k 00 
then this function is identically &cc, and it is called a 

degenerate a$ine function. 

Definition 3.1. Let f be an element of Fun(lWd). 

(4 

(b) 

The function f is U.S.C. (upper semi-continuous) 
if, for every t E ii and x E If@, f(x) < t implies 
that f(y) < t, for every y in some neighborhood 
ofx. 

The function f is I.s.c. (lower semi-continuous) 
if, for every t E ii and x E IWd, f(x) > t implies 

that f(y) > t, for every y in some neighborhood 
ofx. 

The collections of U.S.C. and 1.s.c. functions are 
denoted by Fun,( rWd) and Funl( rWd), respectively. 
The following result is well-known; see e.g. 
[22, Section 71. 



26 H.J. A.M. Heijmans. P. Maragos/ Signal Processing 59 (1997) 17-42 

t 

(a) (b) 

Fig. 4. (a) Upper domain and epigraph of a function; (b) lower domain and hypograph (or umbra) of a function. 

Proposition 3.2. 
(a) A function f is U.S.C. iffits hypograph U,.,(f) is 

closed. 
(b) A function f is 1,s.~. ifs its epigraph U”(f) is 

closed. 

The infimum of an arbitrary collection of u.s.c. func- 

tions is U.S.C. One can use a direct argument to prove 

this, but one can also exploit the fact that U, is an 
erosion. Assume that fj is U.S.C. for every i in some 

index set Z, then U,,(/jjCrJ)= nj,, U,,(h), which, 
being an intersection of closed sets, is closed. Now 

Proposition 3.2(a) yields that /jjEI J; is U.S.C. Dually, 

it follows that the supremum of a given collection of 

1.s.c. functions is 1.s.c. 
Let f be an arbitrary function. Define the upper 

closed hull P,,(f) = f of f as the infimum of all U.S.C. 

functions which lie above f. Then 7 is u.s.c.; it is the 
smallest U.S.C. function above f. One can easily show 

that f(x) = lim supY ~ x f(y), and that 

K0) = UA(f ). 

Dually, we define the lower closed hull at(f) = f of 
f as the supremum of all 1.s.c. functions below f. 
The function f is the largest 1.s.c. function below f, 
f(x) = lim infY _, X f( y ), and 

Wf) = Uv(f ). 

Now the following result is obvious. 

Proposition 3.3. 
(a) The mapping p,, defines a closing on Fun(Rd) 

with invariance domain FunU(Rd). 
(b) The mapping al defines an opening on Fun( Rd ) 

with invariance domain Fun@Rd). 

The next result is a straightforward consequence of 

the previous observations; cf. [l 1, Theorem 10.131. 

Proposition 3.4. 

(a) The set Fun,,(Rd) is a complete lattice under 
thepointwisepartial ordering with thepointwise 
infimum AjEt fj, and with supremum given by 

BU(Vi,, 5)’ 
The set FunI is a complete lattice under 
thepointwisepartial ordering with thepointwise 
supremum VjGI fi, and with infimum given by 

at(Aj,, fil 

(b) 

3.2. Convex and concave functions 

A function f is concave if its hypograph U,,(f) is 
convex, i.e., 

f(a + (1 - r)y) 2 rf(x) + (1 - r)f(y), 

for x,yERd such that f(x), f (y) > --oo and 
0 < r < 1. The function f is convex if its epigraph 
U,(f) is convex, i.e., 

f (rx + (1 - r)y) G rf(x) + (1 - r)f(y), 
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concave function convex function 

Fig. 5. A concave and a convex function. 

for x,yEI@ such that f(x),f(y) < + 00 and 
0 < r ,< 1. See Fig. 5 for an illustration. 

The concave and convex functions are denoted by 
FunA and Funv(ll@), respectively. Note that the 

subscript ‘A’ characterizes the shape of a concave 

function. The next two results are easy to prove. 

Proposition 3.5. 
(a) If f is concave, then domv( f) is a convex set. 
(b) If f is convex, then domA is a convex set. 

Proposition 3.6. 
(a) f is concave @UA( f) is a convex set in Rd x R. 
(b) f is convex zjj”U”( f) is a convex set in Rd x R. 

Concavity and convexity are dual notions in the 

sense that f is concave iff -f is convex. There is 
a huge literature on convex functions; we refer in 

particular to the monographs of Rockafellar [22] and 
Van Tie1 [30], and the two recent volumes by Hiriart- 

Urruty and Lemarechal [ 13, 141. 
As grey-scale morphology is usually based on the 

notion of the hypograph (or umbra; this is convex if 

the underlying function is concave) we choose to con- 

sider concave rather than convex functions. From the 
duality principle [ 111, it follows that both approaches 

are equivalent. 
The infimum of an arbitrary collection of concave 

functions is concave. This does not hold for the supre- 

mum. Define the concave hull fl,,( f) of an arbitrary 

function f as the infimum of all concave functions 
which lie above f. This is a concave function, the 
smallest concave function above f, Dually, we define 
the convex huZl cIV( f) as the supremum of all convex 
functions below f. In Fig. 6 we give an illustration of 
the concave hull. 

The next two results are very similar to Proposi- 

tions 3.3-3.4. 

Proposition 3.7. 
(a) The mapping /?,, defines a closing on Fun( IWd) 

with invariance domain Fun,,( lRd). 

(b) The mapping aV defines an opening on Fun( lRd ) 
with invariance domain Funv( rWd). 

Proposition 3.8. 
(a) The set Fun,,([Wd) is a complete lattice under the 

pointwise ordering, with the pointwise injimum 
AiEt fi and with supremum /&(ViEI J;:). 

(b) The set Funv(lRd) is a complete lattice under 
thepointwise ordering, with thepointwise supre- 
mum ViEI fi and with injimum aV(Ai,, fi). 

The lower closed hull of a convex function is con- 

vex [22]. This means that 

Now Proposition 2.3(a) gives that afav is an opening 

with invariance domain Fun&Rd) 0 Funv(lRd), the 
1.s.c. convex functions. A dual result holds for the 

upper closed hull of concave functions, i.e. 

Proposition 3.9. 
(a) The operator acav is an opening on Fun(rWd) 

with invariance domain the 1.~. c. convex func- 
tions. 

(b) The operator pUpA is a closing on Fun( rWd) with 
invariance domain the U.S.C. concave functions. 
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(4 (b) 

Fig. 6. (a) A function and (b) its concave hull. 

One can find examples which show that a~c+a~ # 

WQ ad that PubA # /Mu; cf. (2.0 

Remark 3.10. In Fig. 2 we have given an example of a 

closed set X for which co(X) is not closed. Similarly, 

we find that f U.S.C. does not necessarily imply that 

j$,( f) is U.S.C. One can show that, for every function f, 

WUA(f )) = UA(PJA(f )). 

Refer to [ 13, Section IV.2.51 for similar results. 

In the previous section we have introduced some 

operations on functions such as supremal and infimal 
convolution. For these operations, one has to take into 

account the arithmetical conventions for extended re- 

als as explained in Remark 2.4. This means in partic- 

ular that ‘@’ and ‘El’ are not commutative in all cases. 

It is evident that, for every function g, 
(i) f @ g is convex, if f is convex; 

(ii) f 8 g is concave, if f is concave; 

(iii) f q g is concave, if f is concave. 
But, more interestingly, one can also prove the fol- 

lowing result. Refer to [22, Section 91 and [13, Sec- 
tion. IV.2.31 for some closely related results. 

Proposition 3.11. 
(a) If f, g are concave, then f @g is concave. 

(b) If f ,g are convex, then f q g is convex. 

Proof. We prove (a); then (b) follows from a 
duality argument. We use the umbra transform 
discussed in [lo] and [ 11, Section 11.61. Re- 
call that a set U 2 [Wd x IR is called an umbra if 

(x, t) E U + (x, s) E U for s < t; here x E IWd. The set 

U is called a pre-umbra if (x, t) E U implies that 

(x,s)~U for s<t. For a set YS[Wd x Iw we de- 
note by Us(V) the smallest umbra which contains 

V. If V is a pre-umbra, then U,(V) = n,,, VT. Here 

I” = {(x, t + z) 1 (x, t) E V}. It is easy to show (see 

also [ 11, Section 11.61) that 

UA(f @ g)= U&U/l(f) @ U/Y(g))* 

If f,g are concave, then UA(f ), U,,(g) are convex 
sets. Therefore (see Section 2.1) their Minkowski sum 

U,,(f)@UA(g)isconvex,too.Butnow U,(U,,(f)@ 

U,,(g)), being an intersection of convex sets, is con- 

vex. This implies that U,,(f $ g) is convex, in other 

words, that f $ g is concave. 0 

3.3. Legendre transform and conjugation 

Consider a convex function f : EP’ -+ & which is 
continuously differentiable and finite. Refer to [22, 

Section 261 for conditions on f which are slightly 

more general, and under which the derivations below 
are still valid. 

Given a vector v E Rd, we look for a point xo E Rd 
such that the hyperplane in lRd x Iw given by x ++ (x - 
x0, v) + f (x0) is tangent to the graph of f at the 
point x=x0. This amounts to solving the equation 
Vf(x) = v, where Of is the gradient off. If this gradi- 
ent mapping has an inverse (Of )-’ , then the solution 
is given by x=x(v) := (Vf)-l(v). It turns out that 
x( .) is a gradient mapping itself: x(v) = VI(v), where 
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F is given by 

F(u) = (x(v), 4 - f-(x(u)) 

= (w-‘m 0) - f((V”w’(v)). (3.3) 

The function F is called the Legendre transform off. 

It is well-defined if f is convex and differentiable, and 

if Of is invertible. For a function f and its Legendre 

‘arm F, the following inverse relations hold: transf 

Vf(x )=v and VF(v)=x. (3.4) 

Fig. 7. Concave signal f, its tangent with slope= u and a line 

parallel to the tangent. 

SIGNAL 

Note, in particular, that these relations imply that f 
is the Legendre transform of F. If x, ZI are related by 

(3.4), then 

f(x) + F(u) = (x, z‘). (3.5) 

As shown in Fig. 7 for a one-dimensional differen- 

tiable signal f, the quantity vx - f(x) is the negative 

of the intercept of a line that passes from the point 

(x, f(x)) on the graph off and has slope v. This inter- 

cept becomes maximum (and equal to -F(v)) when 

the line with slope v becomes tangent to the graph of 

f. In Fig. 8 we depict an example. 
If f does not have an invertible gradient, its Legen- 

dre transform cannot be defined as above. To treat such 
and other more general cases of non-differentiable 

functions, we now define F as 

F(c)= - A f(x) - (x, u) = v (x, v) - f(x). 

JEW XER” 

The conjugate f * of a function f is defined by 

f *w= v (x9 4 - f(x). (3.6) 
XEW” 

We write A(f) = f *. The operator A is known un- 

der different names, e.g. ‘Fenchel conjugate’, ‘Young- 

Fenchel conjugate’, or ‘Legendre-Fenchel transform’; 

see e.g. [22, 13, 141. 

LEGENDRE TRANSFORM 

.I 
-0.25 (,COStNE 0.25 -1 -0.5 0.5 1 

TIME PERIOD ) SLOPE ( /CO& FREQUENCY ) 

Fig. 8. (a) Signal f(x)= -cos(wox), 1x1 <n/(204). (b) Its Legendre transform F(u)= dw+(v/wo)arcsin(o/oo). 
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The definition in (3.6) is not restricted to convex 
functions but applies to all functions f : Rid --f R. Note 
that f * is identically +oc if f(x) = - 00 for some 
x E IWd. From (3.6) it follows readily that 

f*(u)> (x2 u) - f(x), (3.7) 

for every x E U@ and v E &. This inequality is known 
as Fenchel’s inequality, and is usually written as 
f(x) + f*(u) 2 (x, u). However, this latter inequality 
may differ from (3.7) if f (x) or f*(u) equal &co. 

The next result can be found in [22] for the case 
where f is a convex function. 

Proposition 3.12. For every f E Fun(&), the conju- 
gate f * is 1.s.c. and conuex. 

Proof. Formula (3.6) shows that f * is the supremum 
of afhne functions XH (x, u) - f(x). From Proposi- 
tion 3.4(b) we find that f * is l.s.c., and from Propo- 
sition 3.8(b) we conclude that f * is convex. 0 

At this point we might give a list of properties of 
the conjugation. However, this operation is closely 
related to the slope transforms discussed later. As we 
are primarily concerned with the slope transforms, we 
rather discuss properties of the latter. We mention only 
the property that conjugation transforms an infimal 

convolution into an addition: 

(f q g)*=f* +g*, 

for f, g E Fun( I@). 

3.4. Upper slope transform 

(3.8) 

Recall the following definition of the upper slope 
transform from Section 2.4: 

f”(u)=%(f)(u)= v f(x)- (x,4, 
x&!d 

(3.9) 

for f EFun( Wd). See Fig. 9 for examples of slope 
transforms of differentiable and non-differentiable sig- 
nals. 

There exists a simple relationship between this 
transform and the Young-Fenchel conjugate, namely, 

f “(u)=(-f )*(-u). (3.10) 

This relation, in combination with Proposition 3.12 
yields the following result. 

Proposition 3.13. For every f E Fun(U@), its upper 
slope transform f” is 1.~. c. and conuex. 

We list a number of properties of the upper slope 
transform; see also [ 181. Define for f E Fun( II@ ) and 

SLOPE TRANSFORM 

Fig. 9. (a) Original parabola signal f(x)= -x2/2 (in dashed line) and its morphological opening (in solid line) by a flat structuring 

element [-5,5]. (b) Upper slope transform ofthe parabola (in dashed line) and of its opening (in solid line). 
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w E P, 

frl&)=f(x) + (x94. 

The notation f(~.), where r E [w, stands for the fimc- 
tion n H f(m). 

Proposition 3.14. (Properties of 5%). For f,g E 

Fur@@), YE lWd, we IWd, r>O, andc E @: 

(a> CfJ” =(f%+ 

(b) (frwl)” = (f” )w, 
(c) (f + c)” =f” + c, 

(d) (rf)” =rf”(+.), 

(e) f(r.)” =f”(.b), 

(9 f(-*)” =f “(-.)2 

(8) (f @ g)” =f” + g”* 

If f” (a) = b, then the function f is majorized by the 
affine function x+-t (x, u} +b. Therefore, if we compute 
the infimum of all affine functions XH (x, u) + f”(u), 
we obtain a function which majorizes the original 
function f. This motivates us to define 

%+(s)(x)= // g(u) + (J%4 (3.11) 
UElWd 

for a function g : [Wd -+ rW. 
The upper slope transform maps the a&e function 

x H (x, ue) + b onto an upper impulse which equals b 
for u = us and +cc elsewhere. If we apply sP,- to this 
upper impulse, we retrieve the original input function 
x+-+ (x, uo) + b. 

We call 9Yv+ the adjoint upper slope transform. 
This nomenclature is justified by our next result. 

Proposition 3.15. (9v+,Y;) is an adjunction on 
Fun( [Wd). 

Proof. We must show that 

%(f)Gg w f <q+(g). 

We prove ‘ =+ ‘; the other implication is proved simi- 
larly. Assume that Y;(f) 6 g; this means that 

f(x) - (4 4 Q(a), XEIWd, u E II@. 

Therefore, f(x) i g(u) + (x, u) for x E lRd, u E IWd. This 
yields that f(x) < A vERd g(u) + (x, u) for xE I@, i.e., 

f <y;‘(g). 0 

Analogous to Proposition 3.13 we can prove that the 
function Y”+(g) is U.S.C. and concave for an arbitrary 
function g. In fact, we can prove a much stronger 
result. 

Proposition 3.16. 
(a) Rati consists of the Is. c. convex functions. 

(b) Ran(Y?+ ) consists of the U.S. c. concaue func- 
tions. 

Proof. We prove (b); the proof of (a) follows by sim- 
ilar arguments. Assume that f is U.S.C. and concave; 
we show that f ~Ran(y”+). Define g=sPv(f); we 
show that y;‘-(g) = f. Put f ‘= ,40,‘-(g). Since Yv+Y; 
is a closing we get that f’=Yv+Yv(f) 2 f. There- 
fore, it remains to be shown that f 2 f’. Since f is 
U.S.C. and concave, it follows that f is the infimum 
of all afhne functions XH (x, u) + b majorizing f; cf. 
[ 13, Proposition IV. 1.2.81. If e is such an affine ftmc- 
tion, then L’=9v+9v(c!)>Y;-9v(f)= f’. But this 
implies immediately that f 2 f ‘. 0 

Combining the latter two propositions we arrive at 
the following result. 

Corollary 3.17. 
(a) y;‘-Y; is a closing on Furi with invariance 

domain the u. s. c. concaue functions, i. e., 

y;‘J%=B”h. 

@I Y;%+ is an opening on Fun(@) with inuari- 
ante domain the Ls. c. convex functions, i.e., 

yLYvt=ct&“. 

If we apply Proposition 2.1(b) to the adjunction 
( y;‘-, Y; ), we find that 

if fj is U.S.C. and concave for every j E J. 
We now list a number of properties of y;‘-; see 

also [18]. 

Proposition 3.18. (Properties of y;‘-). For f ,gE 
Fun(&),y~@, WE@, r>O, andcgk 

(4 %+(fw)=K+(f ))[w19 
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tb) %+tfrv~)=t%+tf))-y, 
(c) y;‘-(f + c)=Y;C(f) + c, 
(4 %+trf)=r%+(f)t./r), 
(4 y;“tftr~)>=sp,-tf)(~lr>, 
(0 y;‘-(f(-))=%+(f)(-), 
(g) %+tf~g>=%+tf) + %+@I. 

Further, it is easy to verify that 

K/+(-f)= - S(f); (3.12) 

in other words, yl’- is the negative operator of yt. 
However, we point out that (3.12) is, in a sense, 
meaningless. For, the upper slope transform acts on 
functions of the spatial variable x, whereas the adjoint 
upper slope transform acts on functions of the slope 
variable v. 

3.5. Lower slope transform 

If we replace the supremum in (3.9) by an infimum 
we get the lower slope transform. It goes without say- 
ing that all results for the upper slope transform stated 
in the previous section have a counterpart for the lower 
slope transform. For the sake of completeness we will 
state them briefly. 

Let f E Fun( rWd), the lower slope transform off is 

fl‘(a) = %(f)(n) = /\ f(x) - (XT 0). 
xEnd 

(3.13) 

There exists the following relationship with the upper 
slope transform and the Young-Fenchel conjugate: 

f“(U) = -f*(v) = -(-f)v(-u). (3.14) 

Proposition 3.19. For every f E Fun( rWd), its lower 
slope transform f A is u. s. c. and concave. 

We list a number of properties of the lower slope 
transform; cf. [18]. 

Proposition 3.20. (Properties of SPA). For f ,g E 
Fun([Wd),y~[Wd, WE[W~, r>Oandc~fi: 

(a) (fyY = W)h+ 

(b) (f[wl)‘=(f”\)w, 
(C)(f+c)*=f*+c, 
(4 G-f>” = rf”(./r>, 
(e> f(r.)* = f *C./r), 

(f) f (-*IA = f Y-.1, 
W (f q gY=fA+gA. 

Analogous to (3.11) we define 

%+(g)(x) = v g(u) + GG n), 
v@nd 

(3.15) 

which we call the adjoint lower slope transform. We 
now state without proof the analogues of Proposi- 
tions 3.15 and 3.16 and Corollary 3.17. 

Proposition 3.21. (YA,YA+) is an adjunction on 
Fun( rWd). 

Proposition 3.22. 
(a) Ran($,) consists ofthe U.S.C. concavefunctions. 
(b) Ran( SPA+ ) consists of the 1. s. c. conuex functions. 

Corollary 3.23. 

(a) 

@I 

YA,YA is an opening on Fun(rWd) with invari- 
ance domain the Is. c. convex functions, t. e., 

sp,‘-~~ = CIpxv. 

Yp,.5$,+ is a closing on Fun(lWd) with invariance 
domain the u. s. c. concave functions, i. e., 

%yy = Buh. 

We state some properties of SPA+; cf. [18]. 

Proposition 3.24. (Properties of yA+). For f ,gE 
Fu~(~R~),~EK!~, wc[Wd, r>O,andc~& 

(a) K+(G) = (%+(f >)rWb 

(b) Z,+(frul) = (%+(f II-y, 

Cc) %_(.f + c> = K+(f) + c, 

Cd) %+(rf) = r?,“(f)(#), 

(e) %+(f Cr.)) = %+(fN*lr>, 

(0 =7X+(f (-.>I = y;;-(f )(-*), 

W y;;-(f @ g> = sp,-Cf) + X+(g). 

4. Slope transform for sets 

4.1. Preparations 

In Section 2.1 we have summarized some basic 
facts about convex sets. In this preparatory section we 
present some additional notations. 
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We can embed the convex sets into the lattice of 
concave (respectively convex) functions. Thereto we 

need the following definitions. The upper and lower 
indicatorfunction corresponding to a set X are defined 

as 

and 

respectively. It is evident that 

X closed ej r,,(X) I.s.c. em l/\(X) U.S.C. 

X convex ($ I”(X) convex H zA(X) concave. 

We introduce some further notation; see [24]. We de- 

note, for a E Rd and Y E h, by W(a, Y) the hyperplane 

W(a, r) = {x E Rd / (a,x) = r}. 

Note that W(a,r) = 0 if Y = ko. Furthermore, 

W-(a, r) and W+(a, r) are the closed half spaces 

H-(a,r)={xERd/(a,x)<r}, 

W+(a, r) = {x E Rd 1 (a,x} >r}. 

If Y = -cc then E-I-(a, r) = 0 and W+(a, Y) = Rd; du- 

ally, if r = fco then O--(a, r) = lQd and W+(a, r) = 0. 
We say that the hyperplane W(a,r) supports the set 
X C: Rd at h if h EX n W(a, r) and X c H-(a, r) or 

X Cr W+(a, r). 

4.2. Sublinear functions 

We start with a definition. 

Definition 4.1. A function f : Rd + R is said to be 

positively homogeneous if f (rx) = rf (x) for r > 0 and 
x E Rd. It is sublinear if it is both convex and posi- 
tively homogeneous. 

For a comprehensive discussion on sublinear fimc- 
tions the reader may refer to [ 13, Chapter V]. It 
is easy to see that any sublinear function satis- 
fies j-(0)=0, -oc or +m. Note that f 3 -CC if 
f(0) = -CO. Furthermore, the epigraph U,(f) is a 

convex cone. Every sublinear function satisfies the 
inequality 

J-(x + Y) <“0x) + f (y>; 

a function with this property is called subadditive. 
We give some examples. 

Examples 4.2. 

(4 

(b) 

cc> 

IfK C Rd is a convex cone, then the upper indi- 

cator function z”(K) is sublinear. 

A function /) . // : Rd + @+ = [0, $001 is called a 

norm if 

(i) j/x(] =0 iffx=O; 

(ii) ilrxil = lr( . (Ix]/, r E R, x E Rd; 

(iii) IIx + y/I ,< 11x11 + llyll, x, Y E Rd. 

Note that (lnl( is allowed to be +c~. Every norm 
is a (nonnegative) sublinear function. 
Let X c Rd be a convex set containing the origin. 

The function y(X) defined by 

y(X)(x)= inf{r>OIxErX} (4.1) 

is called the gauge (function) of X. It is a sub- 

linear function. 

We prove the following lemma. 

Lemma 4.3. If .f is positively homogeneous then its 
convex hull a”(f) is positively homogeneous as well. 

Proof. Define, for a function ,f and a real number 

r > 0, fr(x) = rf (x/r). Thus, f is positively homoge- 
neous iff fr = f for every r > 0. The convex hull of a 
function f is given by 

Q(f) = v 99 

where %? consists of all convex functions g < f. It fol- 

lows immediately that g E %? + gr E %’ for every r > 0. 

But this implies that av(f) is positively homogeneous, 
too. 0 

We denote the family of all sublinear functions by 
Fun,t(@). It is easy to verify that the pointwise supre- 
mum of an arbitrary collection fi, i E I, of sublinear 
functions is sublinear. Thus there exists an opening 
CI,I on Fun(Rd) with invariance domain FunSI( 

The pointwise infimum of a collection of sub- 
linear functions is positively homogeneous but not 
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subadditive in general. Let f E Fun,r([Wd) such that 
f G:fr for i ~1. Now a”(f) = f since f is con- 
vex, and we find that f <av(AiEr f;:). Lemma 4.3 
says that av(/jiCr J;:) is positively homogeneous, and 
hence it is sublinear. We conclude that crv(Ai,, J;:) 
is the infimum in the complete lattice Fun,r(!Rd). 

Proposition 4.4. The set Funsi with the point- 
wise partial ordering is a complete lattice with 
the usual pointwise supremum and with infimum 

aV<Ai,I hf;:)’ 

Remark 4.5. If f, g are sublinear and not identically 
fco, then 

uv(f A Q)=faQ. (4.2) 

To prove <, observe that (fOg)(x)<f(x) + g(0) 
= f(x). Hence f Cl g d f and similarly f q g < g. This 
yields that f Clg < f A g. Since fog is convex, we 
get fOQ<uv(f A 9). 

To show that ftlg >h := av(f A g), observe that 
h is the infimum off and g in Fun,i(&), hence h ,< f 
and h <g. This implies that h 0 h < f 0 g. As h is sub- 
additive, we find that h(x-y)+h(y) > h(x), and there- 
fore hC!h Z h. This proves relation (4.2). 

Refer to [13, p. 2061 for a different proof. 

4.3. Slope transform for sets: the support function 

For a set X c Rd its support function o(X) is de- 
fined by 

o(X)(u) = v (x, D), 0 E IWd. (4.3) 
xEX 

Note that a(X) E -co if X = 0. Refer to Fig. 10 for 
an illustration. 

From the observation that the support function is the 
pointwise supremum of the affine functions v H (x, v) , 
x EX, and Propositions 3.4(b) and 4.4, the following 
result is clear. 

Proposition 4.6. The support function a(X) of a set 
X s Rd is 1. s. c. and sublinear. 

We call the operator (r : 9(Rd) + Fun(tRd), which 
maps a set X to the corresponding support function, 
the slope transform for sets. 

Fig. 10. Support function. 

There is a simple correspondence between the slope 
transform for functions and that for sets, namely, 

%(r@))(u) = v r/Y(X)(x) - (x, 0) 
x@%d 

= v -(x,v), 
XEX 

whence we derive 

Y;(r//(X))(u) = o(X)(-u) = @(-X)(V). 

We also have 

(4.4) 

%(rv(X))(v) = c(X)(-r) = a(-X)(r) 

and 

(4.5) 

(i”(X))* = o(X). (4.6) 

Remark 4.7. Strictly speaking, we should refer to r.r 
as the ‘upper’ slope transform. The lower slope trans- 
form should then be defined as follows: 

XEX 

Such a definition would only make sense if we would 
introduce the concept of ‘concave sets’, i.e., comple- 
ments of convex sets. In order to keep new notation 
and terminology limited, we will not do so. 
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If o(X)(u) = b, 
X C W-(v,b). We 

+ Y(rWd) by 

then (x, V) <b for x E X, that is, 
define the operator cr+ : Fun(D@) 

o-(f) = n W-(&f(u)). (4.7) 
c.EIW” 

It is obvious that a’(f) is a closed convex set for 

every function f. 

Lemma 4.8. Let X C Rd, u E lRd, and b E &, then 

that o(X) = f. Note first that a(X) = aa- <f, 
since ocr+ is an opening. Thus it remains to be shown 

that g(X) af. The following proof is taken from 

Schneider [24,2nd proof of Theorem 1.7.11. Since f is 

sublinear and 1.s.c. its epigraph U”(f) is a closed con- 
vex cone in IWd x [w. Let u # 0, then (u, f (u)) lies on 

the boundary of U,(f). There exists a support plane 

W((y,a),r), where y E IWd-’ and a E R to U”(f) 

through (u, f(u)) such that U,(f) C W-((y, a),r). 
This yields that for t E R, w E Rd: 

X C W-(0, b) ifs a(X)(u)<b. t>/f(w) * (y,w) +atdr. 

Proof. ‘only if’: assume X C W-(Y, b). Then 

o(X)(v)=sup{(x,~) )x~X}<b. 

‘if’: assume a(X)(u) <b. If x EX, then (x, U) Gb, 

hencexE l-i-(v,b). •1 

Since U,(f) is a cone, the support plane must contain 

(0, 0), hence Y = 0. Suppose that a B 0, then (y, w) < 0 
for all w; this is impossible, hence a < 0. Without loss 

of generality, we can assume that a = - 1. Thus, 

t>f(w> + (JJ,w)dt. 
Proposition 4.9. The pair (a-, o) constitutes an ad- 
junction between Fun( rWd) and 9’( Rd). 

Proof. We must show that 

Then (y,w) <j”(w) for all w. Thus y EX, that is 

X # 0. Furthermore, (y, v) = f(u) (for (u, f(u)) E 

W(Y, - 1),0)). Then 

a(X) < f * X c a’(f). 

First we prove ‘+‘. Assume that a(X)< f and that This holds for every u # 0. For v = 0 this inequality is 

xEX.WemustshowthatxEW-(u,f(v))foruEIWd. obvious, and we conclude that o(X)2 f, which was 

This follows from to be proved. 0 

(x, u) do(X)(o) d f(v). 

‘G’: Assume thatX & o+(f) = nDEWd W(u,f(v)). 

Thus XC_ W(u,f(u)) for u E IWd. From the previ- 

ous lemma we conclude that a(X)(v)df(u), i.e., 

o(X)<f. 0 

Remark 4.11. We can give an alternative proof of 

Proposition 4.1 O(b) which uses the upper slope trans- 
form for functions discussed in Section 3.4. 

Proposition 4.10. 
(a) Ran(a+) consists of the closed convex sets in 

Rd. 
(b) Ran(a) consists of the I.s.c. sublinear functions 

on Rd. 

Proof. (a) It is evident that every set in Ran(o+ ) is 

closed and convex. On the other hand, if X is closed 
and convex, then X can be represented as the inter- 
section of all closed halfspaces which contain it. 

Assume that f is 1.s.c. and sublinear, and that 

f $ fco. We show that f = o(X) for some (closed, 
convex) set X. Consider the function g = Yc'+(f ). 
Since f $ +co we have g(x)<+cc for all x. The 
sublinearity of f in combination with Proposi- 

tion 3.18(d)-(e) implies that g(rx)=g(x) for 

r > 0, x E Rd. We conclude therefore that g assumes 
only the values -KJ and 0, and so g = l,,(X) for 

some closed convex set X (note that g is U.S.C. and 

concave by Proposition 3.16(b)). Since f E Ran(&) 
by Proposition 3.16(a), we have 

f = y;%_(f) = S(g) = =%(1,(X)) = 0(-X), 

(b) We have seen that every support function is 
I.s.c. and sublinear. Assume, on the other hand, that 
f is 1.s.c. and sublinear. Let X= a+(f), we show 

by (4.4). This concludes the proof. 

Schneider [24, Theorem 1.7.11 claims that every 
sublinear function is the support function of some 
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convex body. Apparently, he forgot to include the re- 
quirement that this function is 1.s.c. 

We have the following analogue of Corollary 3.17. 

Corollary 4.12. 

(4 

(b) 

Co is a closing on 9(Rd) with invariance do- 
main the closed convex sets in Rd, i.e., 

o+a(x) = PJ*(X) = c6(X). 

(TO + is an opening on Fun(Rd) with invariance 
domain the 1.s.c. sublinear functions, i.e., 

oo’(f) = W,r(f). 

Proof. (a) follows from the previous results. 
To prove (b) we still have to show that C~CQ 

is an opening with invariance domain Funl(lRd) n 
Fun,i( Rd), the 1.s.c. sublinear functions. Exploit- 
ing Proposition 2.3(a), it remains to show that 
cc,taea,i = aea,i. We use the fact that the first term a,~ 
at the left-hand side may be replaced by av (because 
of Lemma 4.3). Now 

~vwkl= h/~e~v~sl= WQ~SI = w&l, 

(cf. Corollary 3.23) and this concludes the proof. 13 

Many results in the literature follow easily if one 
uses Propostion 4.10 and Corollary 4.12. For example, 
in Satz 12.4, Leichtweiss [15] shows that 

O(co(Xi u . . .uX,))=a(X~)V...Vo(X,), 

if x1,x2, . . . ,X, are compact and convex. From 
the fact that Z(e)= G+(T (hence o(~(X))=oa’ 
o(X) = o(X)) and that (r is a dilation, we find that 

for a collection Xi, i E I, of arbitrary subsets of Rd. 
If one applies Proposition 2.1(b) to the adjunction 

(o+, (T), one finds that 

(4.8) 

if Xi is closed and convex for every i E I; cf. 
[13, Theorem. V-3.3.3(iii)]. 

We list properties of 0 and its adjoint cr+. For a 
set X C_ Rd and a vector h E Rd we define X, as the 
translate of X along h, i.e., Xh = {x + h (x EX}. 

Proposition 4.13. (Properties of o). ForX, Y C lRd, h 
ERd,andr>O: 

(a) o(G) = o(X)[h], 
(b) a(rX) = ro(X), 

(c) 4-X) = 4X)(-.), 
(d) o(X $ Y) = o(X) + o(Y). 

Proposition 4.14. (Properties of a-). For fGFun(Rd), 
hERd,andr>O: 

(a) o+(f[hl) = o+(f)h, 
(b) o+(rf) = rot(f), 
(c) o+(f(r.)) = ro+(f), 
(4 o+(f(-.)) = - o+(f). 

We substitute f = o(X) and g = a(Y) in (4.2) and get 

av(a(X) A o(Y)) = o(x)oo(Y). 

Applying CIC at both sides and using (4.8) yields 

~(x n Yj = ~~(~(xjo~(rjj. 

In [22, Corollary 16.4.1; 13, p.2271 similar results 
have been obtained. 

4.4. Polar, gauge, and support function 

The polar X” of a set X 2 Rd is defined by 

X”={yERd](x,y)<l forallxEX}. 

We define the operator rt by 

rc(X) =x0. 

Let 9’(lRd) be the opposite of the complete Boolean 
lattice 9( Rd) (see Section 2.1). 

Proposition 4.15. 
(a) (TC, rc) is an adjunction between 9’( Rd) and 

9( Rd), in particular 

t ) U x, =n 
iEI iEI 

for every collection Xi c Rd, i E I. 
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(b) Ran(n) consists of the closed convex sets which (b) Ran(y) consists of all positively homogeneous 
contain the origin. functions. 

Proof. (a) We must show that Y 5 rc(X) %X C rc(Y), 

for X, Y C [Wd. Because of the symmetry of this as- 

sertion, it suffices to prove ‘ + ‘. Therefore, assume 

that Y C r(X). We show that X 2 rr( Y). Take x E X; 
we must show that x E n(Y), i.e., that (y,x) < 1 for 

y E Y. Since Y C rc(X) we have that (y,x) ,< 1 for 

x EX, y E Y. This proves the result. 

(c) Ran(g’) consists of all sets X c Rd with the 
property that 

xEX H Vr’v(O,l):rxEX. (4.9) 

Proof. (a) We must show that XC_ ;~‘(,f)@fG 

Y(X). 

(b) It is easy to show that a set in the range of n 

is closed, convex, and contains the origin. To prove 

the converse we observe that Ran(n) is closed under 

intersection. Every closed convex set containing the 

origin is the intersection of closed half planes contain- 

ing the origin. A straightforward computation shows 
that 7~’ leaves such half planes invariant, which means 

in particular that they lie in Ran(rc). Now the result 
follows. 0 

’ + ‘: Assume X C y’(f); we show that f <y(X). 

Suppose that, for some x, S(x) > inf {r > 0 [ x E YX}. 
Then there is an r<f(x) such that x E rX, i.e., 

(l/r)x EX. Since X C_ r’(f), this means that 

(l/r)x E y’(f). Then f ((s/r)x) <s for every s>O. 

Substituting s = r yields that f(x) <r, a contradiction. 

‘e’: Assume that f <y(X); we show that 
X C y+(f). Suppose x EX and r > 0. Then 

f(rx)<l(X)(rx) = inf{s>O 1 YX EsX} dr. 

This yields that x E v’(f). 

Corollary 4.16. n2 is a closing on 9’(Rd) and 
7r2(X) = 55(X U {O}),fov every X & Rd. 

Proof. The theory on adjunctions summarized in 

Section 2.1 gives that 71’ is a closing. Furthermore, 
Proposition 4.15(b) yields that the invariance domain 

of I? consists of the closed convex sets which contain 

the origin. Therefore, rc2(X) is the smallest closed 

convex set containing the origin which is larger than 
X. This means that n2(X) = E(X U (0)). 0 

A similar result (though only for convex sets) can 
be found in [22, p. 1251. 

In Example 4.2(c) we have introduced the gauge 
function of a convex set containing the origin. We 
extend this definition to arbitrary subsets of [Wd and 

Put 

(b) It is easy to see that every function y(X) 
is positively homogeneous. We have to show 

that for every positively homogeneous function f 
there exists a set X such that y(X) = f. Define 

X = r’(f) = {x ) Vr >O : ,f(rx) <r}. We show that 
y(X) = f. Since yy i is a closing, it follows immedi- 

ately that y(X) = j’y’( f) > f. Thus, it remains to be 

shown that y(X) d f. Assume that y(X)(y) >f(y) 
for some y. Choose r such that y(X)(y) > Y > f( y). 

Then r(X)(y) = inf {s > 0 1 y E sX} > Y, meaning that 

y $! rX. This yields that (I/r)y 6X = {x ( Vs > 0 : f(sx) 

Gs}. Hence there exists an s >O such that 

f (s . (l/r)y)>s. 4s f is positively homogeneous 
this means that 

S<f 5.. ( 1 ;Y =;f(y)<; .r=s, 

a contradiction. 
y(X)(x) = inf { y > 0 ) x 6 rX}. 

Thus, ‘J is a mapping from ?(l@) into Fun(lWd). Fur- 
thermore, we define yt : Fun( rWd) -_) L?( rWd) by 

Proposition 4.17. 
(a) (y,y*) is an adjunction between P’(D@) and 

Fun( rWd). 

(c) It is rather easy to show that for every set 

X=?+(f) property (4.9) holds. To prove the con- 
verse, assume that X # 0 is a set for which (4.9) 
holds. Define f = y(X) and X’= y+(f). We show 
that X’ =X. The composition y+y is an opening on 
#(I@), hence a closing on p(t@). This yields that 
XC y-y(X) =X’. Therefore, we must show that 

X’ C X. Suppose that y E X’, that is, f(iy) <r for ev- 
ery r > 0. This means in particular that f(y) d 1. As 
,f = ;(X), this implies that inf{s >O ( y E sX} < 1. 
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If y = 0 then y EX. Therefore, we may assume that 
y # 0. We distinguish between two cases. 
1. y~sX for some O<s<l. Then (l/s)y~X, 

and (4.9) yields that y EX. 
2. y E s,X for some sequence {sn} converging 

to 1 from above. This yields that ( l/sn)y EX. 
Now (4.9) implies that ry EX for Y < 1, hence 
YEX. 0 

In particular, Proposition 4.17(c) gives that a set 
which lies in the range of y+ and which contains the 
origin, is star-shaped with respect to the origin, i.e., 
ifxEXthenrxEXforO<r<l. 

From Proposition 4.17(a) we know that ye y is 
a closing on Zi’(l@) and that yy’ is a closing on 
Fun( Rd). We derive explicit expressions for these op- 
erators. 

Let o : P( Rd) + P(Rd) be given by 

O(X)= n U rX 
Sll O<r<s 

and let r : Fun( Rd) * Fun( Rd) be given by 

Qf)(x)= V $-x). 
r>O 

Proposition 4.18. 
(a) ycy = o, and this operator defines a closing on 

L?q Rd). 
(b) yy- = r, and this operator defines a closing on 

Fun( Rd). 

Proof. (a) A straightforward computation shows that 

y’y(X)={xERd(Vr>O: y(X)(rx)<r} 

={xERdIVr>O: 

inf{s>OIrxEsX},<r} 

={xERd(VrYO: 

r.inf{s>O(xEsX}<r} 

={xERdl inf{s>OJxEsX}<l}. 

Therefore, x E y’ y(X) iff inf {s > 0 1 x E XX} < 1. We 
show that y+ y(X) = o(X). 

To prove ‘ C ’ assume that x E y+y(X), that is, 
inf {s > 0 1 x E sX} < 1. There are two possibilities: 
1. x E SX for some 0 <s < 1. In this case it is obvious 

that x E w(X). 

2. x E s,X for some sequence {sn} converging to 1 
from above. Then x E UOirgs rX, for every s > 1, 
and it follows that x E w(X). 

To prove ‘2’ assume that x E o(X). This implies 
that inf {r > 0 1 x E rX} <s for every s > 1. But then 
inf {r > 0 1 x E rX} 6 1, yielding that x E y+y(X). 

(b) For yy+ we derive 

yy+(f) = inf {r > 0 1 x E ry+(f)} 

= inf{r>O(xEr{x\Vs’sO: f(sx)<s}} 

= inf{r>OIVs’sO: f (:x) <s} 

= inf{r>O(Vs>O: f(sx)<rs} 

= inf{r>O(Vs’sO: if(sx)<r} 

= inf {r>O Ixif(sx)<r} 

= V ;f(w 
s>o 

=~(f)(x). 

This proves the result. 0 

From the literature on convex sets [22, Thm.14.51 
it is well-known that 

Y(X”) = o(X), 

if X is closed, convex, and if 0 EX. Since rc*(X) sat- 
isfies these constraints for every X G Rd (cf. Corol- 
lary 4.16) we get that yrc3 = arc*. But rc3 = rc since 
(n, rc) is an adjunction, hence yrt = arc*. This yields 
that yrr* = a7t3 = arc. 

Proposition 4.19. yn: = arr* and yz* = a7t. 

5. Two applications 

In this section we outline the applicability of slope 
transforms for two different problems in nonlinear 
image analysis, distance computation and partial dif- 
ferential equations of the evolution type that model 
morphological scale space. 
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5. I. Distance transforms 

Let 11 . )lp denote the norm on lRd given by 

p VP 
ll~llp=(I~ll~+I~2I~+~~~+I~dl > . 

Given a set X C_ Rd, we define its distance transform 
(also known as its distance function) with respect to 

p-norm by 

D/4X)(x)= A llx - Yllp. 
);EX 

The distance transform has various applications in im- 
age analysis and computer vision. For example, its 

thresholds at levels r > 0 yield the multiscale dilations 

of X by the balls rBP, where BP is the unit ball with re- 

spect to the p-norm. Further (for p = 2), its local max- 
ima provide the points of the skeleton (medial) axis of 

Xc. Then, if we consider the upper indicator function 
z”(X), and the convex conical structuring function 

g(x) = ll4h 

it follows that 

D,(X)(x) = A (iv(X)(Y) + llx - vllp) 
YEW 

= (h4x)~g)(~); 

see also [13, Example 2.3.51. In other words, the dis- 

tance transform of X can be obtained as the infimal 
convolution of the upper indicator function of X with 
the conical norm function. This infimal convolution 

is equivalent to passing the input signal, i.e., the set’s 
upper indicator function r,,(X), through an ET1 sys- 
tem with slope response 

g*(u) = A II47 - (% 4. 
XER” 

It is evident that gA(u) ~0. Furthermore, by using 
Holder’s inequality we get 

I k 4 I d Ibll P ’ lI4lq~ 

where the exponent q is determined by 

Thus, we find that 

@(a)> A llxllp(1 - lbllq>~ 
XER” 

Therefore, gA is equal to 

tY4 = 
i 

0, lbllq 6 1, 
- 00, ll$ > 1. 

That is, the distance transform is the output of an ideal- 

cutoff slope-selective filter that rejects all input planes 

whose slope vector falls outside the unit ball with re- 

spect to the // . /I4 norm, and passes all the others un- 

changed. 

5.2. Hamilton-Jacobi equations for multiscale 
morphology 

Let K : Rd -+ R be a U.S.C. concave function. Con- 

sider the parameterized family {K, 1 t 3 0} given by 

i 

Ko=qA (i.e., Ko(x) = 0 if x = 0 
and --03 elsewhere), 

K,(x)=tK(x/t), xcIWd, t>O. 

This family satisfies the semigroup property 

Kt 3Ks=K,+,, s,t>O. (5.1) 

Let, for a given input f, the function U: [O,oo) x 

lRd + Rd be given by 

We have the following heuristic derivation of a PDE 
(partial differential equation) for u(t,x). First, we note 
that 

fJ(t,x) = lii f [u(t +s,x) - u(t,x)]. 

We use that u(t + s, .) = u(t, .) $ &,; 

+ sK(h/s) - u(t,x)) 1 
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= hi f i/ (u(t,x - sh) 
hGRd 

-u(t,x) + sK(h)) 1 . 
Presuming that u(t,x) is differentiable in x we may 
write 

u(t,x -sh) - u(t,x)= - (sh,Vu(t,x))+o(s), ~40, 

where s-‘o(s) -+ 0 as s 10. Here Vu denotes the gra- 
dient of u. We get 

$t.x) = !E v [K(h) - (h,Vu(t,x)) + o(s)1 
hEW 

= v [K(h) - (h,Vu(t,x))l 
hGRd 

=K”(Vu(t,x)), 

where K” is the upper slope transform of K. Writing 
ut = au/& we arrive at the evolution equation: 

Ut = K”(Vu). (5.2) 

Before we solve this equation, we give a short treat- 

ment of a class of PDEs known from mathemati- 

cal physics, the so-called Hamilton-Jacobi equation, 
given by 

wt + H(Vw) = 0, (5.3) 

where the Hamiltonian H : Rd -+ R is a convex func- 

tion which satisfies 

lim Ho = +a 
IlPll + CQ IIPII . 

(5.4) 

(A function which satisfies (5.4) is called coercive.) 
The Young-Fenchel conjugate L= H’, called the 

Lagrangian, is finitely-valued, convex, and coercive. 
If f is bounded and I.s.c., then the function w(t;) 
given by 

{ 

“f, t = 0, 

w(t7.) = j-O&, t > 0, 

where L,(x) = t&/t), has the following properties: 
- w(t, x) ---f f(x) as t IO, for every x; 
_ w is locally Lipschitz continuous (hence differen- 

tiable almost everywhere); 

- at every (t,x) where w is differentiable, it satisfies 
the Hamilton-Jacobi equation (5.3 ). 

In the literature w is called the viscosity solution 
of the Hamilton-Jacobi equation; see [16] for a 

comprehensive account. For other literature on the 

Hamilton-Jacobi equation, see [3]. 

The relation between the Hamilton-Jacobi equation 
(5.3) and our morphological evolution equation (5.2) 

is as follows: if we substitute u = -w in (5.2) we get 

-Wt = K”(-VW). 

With relation (3.10) this can be written as 

Wt + (-K)*(vw) = 0. (5.5) 

If we assume that K is concave, u.s.c., and coercive, 

then the Hamiltonian H = (-K)* is convex, l.s.c., and 
coercive, and the Lagrangian is given by 

L zz H” = (-K)** = -K. 

The viscosity solution of (5.5) with w(0) = - u(0) = 

- f is given by 

w(t;) = (-f)UL, = (-f)cl(-K),. 

Therefore, the ‘viscosity solution’ of our morpholog- 

ical evolution equation (5.2) is given by 

u(t;) = -(-f)O(-K)~ = f $ Kt. 

We summarize our findings in the following result. 

Proposition 5.1. Assume that the function K is 
concave, u.s.c., and coercive. If f is bounded and 
U.S. c. then the function u(t, .) = f @ Kt satisfies 
_ u(t, x) -+ f(x) as t 10, for every x; 
- u is locally Lipschitz continuous (hence difleeren- 

tiable almost everywhere); 
_ at every (t,x) where u is diflerentiable, it satisjies 

the evolution equation (5.2). 

For example, ifK(x) = -i )1x))*, then K”(v) = $ /v1\*. 
For some related results on multiscale morpho- 

logical evolution equations, the reader may refer to 

[l, 20,291. 
If we take a flat structuring element, K = l,,A with 

A a closed convex set, we arrive at the equation 

ut = a(-A)(Vu). 
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If A is symmetric (A = - A) and contains the origin 
in its interior, then a( -A) = o(A) equals the gauge 

functional of the polar set 

A0 = {x 1 (a,x) 6 1, for all a E A}. 

This gauge function is a norm with unit ball A”. The 

examples treated in [5,6] fall inside this class. 

6. Conclusions and discussion 

In recent studies in mathematical morphology 

[ 17, l&7], the slope transform has emerged as a 

transform which has similar properties with respect 
to morphological signal processing as the Fourier 

transform does with respect to linear signal process- 

ing. Its main property is that it transforms a supremal 
convolution (morphological dilation) into an addi- 

tion, in the very same way as the Fourier transform 

transforms a linear convolution into a multiplication. 
At an earlier stage, Ghosh [9] built a computational 

framework for Minkowski addition and subtraction 

of convex and non-convex polygons based on the 
so-called slope diagram, a concept which is very 

closely related to the slope transform. 

There is, however, an important difference between 

the Fourier transform and its morphological counter- 
part, the slope transform. The Fourier transform is 

invertible, whereas the slope transform only has an 
adjoint in the sense of adjunctions. This means that 
the ‘inverse’ of the slope-transformed signal is not the 

original signal but only an approximation within the 
subcollection of convex or concave signals. This is 

why convex analysis plays such a prominent role in 

the study of the slope transform. We have pointed out 
various relations with known concepts from the the- 

ory of convex sets and functions, such as the Legendre 

transform, the (Young-Fenchel) conjugate, the sup- 
port function, the gauge function, and set polarity. In 

particular, we have explained how such classical con- 
cepts can be studied as complete lattice operators. This 

allows one to reformulate various known results, and 
even to extend a number of them. 

The complete lattices considered in this papers are 
either lattices of sets or of functions. For an abstract 
treatment of the slope transform on arbitrary complete 
lattices we refer to [ 121. 
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