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Abstract

We study Max-Product and Max-Plus Systems with Markovian Jumps and focus on stochastic stability problems. At first,
a Lyapunov function is derived for the asymptotically stable deterministic Max-Product Systems. This Lyapunov function is
then adjusted to derive sufficient conditions for the stochastic stability of Max-Product systems with Markovian Jumps. Many
step Lyapunov functions are then used to derive necessary and sufficient conditions for stochastic stability. The results for the
Max-Product systems are then applied to Max-Plus systems with Markovian Jumps, using an isomorphism and almost sure
bounds for the asymptotic behavior of the state are obtained. A numerical example illustrating the application of the stability
results on a production system is also given.
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1 Introduction

Max-Plus systems are dynamical systems which satisfy
the superposition principle in the Max-Plus algebra.
The use of Max-Plus systems was proposed in various
applications involving timing, such as communication
and traffic management, queueing systems, production
planning, multi-generation energy systems, et.c. (eg. [1],
[2], [3], [4], [5]). Recently, the use of the closely related
class of Max-Product systems (systems which satisfy
the superposition principle in the Max-Product algebra)
was proposed as a tool for the modelling of cognitive
processes, such as detecting audio and visual salient
events in multimodal video streams ([6]). Max-Plus and
Max-Product algebras have also computational uses
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involving Optimal Control problems ([7]) and estimation
problems in probabilistic models such as the max-sum
algorithm in Probabilistic Graphical models and the
Viterbi algorithm in Hidden Markov Models (eg. [8]).

In this work, we study stochastic Max-Plus and
Max-Product systems, where the system matrices
depend on a finite state Markov chain. For the Max-Plus
systems we focus on the asymptotic growth rate,
whereas for the Max-Product systems on stochastic
stability. A motivation to study Max-Plus systems with
Markovian jumps is to model production systems, where
the processing or holding times are random variables
(not necessarily independent) or there are random
failures and repairs, modeled as a Markov chain. The
results on max-product stochastic systems will be used
as an intermediate step. An independent motivation
to study Max-Product systems is the modeling of
cognitive processes interrupted by random events.
Similar problems with Markovian delays for linear
systems were studied in [9], for random failures in [10]
and for nonlinear time varying systems in [11], in the
context of distributed parallel optimization and routing
applications. In the current work, we try to exploit the
special (Max-Product or Max-Plus) structure of the
system.
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At first, deterministic Max-Product systems
are considered and their asymptotic stability is
characterized using Lyapunov functions. The Lyapunov
function derived can be also used to study systems which
are not linear in the Max-Product algebra. We then
study Max-Product systems with Markovian Jumps
and derive sufficient conditions for their stochastic
stability. Further, necessary and sufficient conditions
for the stochastic stability of Max-Product systems
with Markovian Jumps are derived using many step
Lyapunov functions. The results for the stochastic
stability of Max-Product systems are then used to
derive bounds for the evolution of the state of Max-Plus
systems with Markovian Jumps.

The results of this work relate to the literature
for the approximation of the Lyapunov exponent of
Max-Plus stochastic systems. The existence of the
Lyapunov exponent was proved in [12]. Limit theorems
for the scaled asymptotic evolution of stochastic
Max-Plus systems were proved in [13], [14]. Most of
the works on the approximation of the Lyapunov
exponent focus on the independent random matrix
case. In [15], [16] series expansions are used in order
to approximate the Lyapunov exponent and [17], [18]
use approximate stochastic simulation techniques to
estimate the Lyapunov exponent. In [19] it is shown
that the approximation of the Lyapunov exponent is
an NP-hard problem. Bounds for the tail distributions
of Max-Plus stochastic systems are proposed in [20]. In
[21], a model of Max-Plus system with Markovian input
is considered and bounds for the tail distributions are
derived. A model where the Markov chain (branching
process) evolves according to a Max-Plus stochastic
system is analyzed in [22]. Bounds on the length of the
transient phase of Max-Plus systems are proved in [23].

Another related class of systems is Switching Max-Plus
systems with deterministic or stochastic switching
introduced in [24] and studied further in [25]. The basic
difference with the current work is that the current work
focuses on stochastic stability properties whereas [24],
[25] study stability under arbitrary switching. Several
approximation methods in stochastic Max-plus systems
control and identification were studied in [26].

The techniques used in this work closely parallel the
techniques used for the stability analysis of Markovian
Jump Linear Systems (MJLS). The study of the
stochastic stability of MJLS dates back at least to the
1960s ([27]) and today is a well-established field (eg. [28],
[29], [9], [10], [30]).

1.1 Background

The Max-Plus and Max-Product algebras are used.
In the Max-Plus algebra the usual summation is
substituted by maximum and the usual multiplication is

substituted by summation. In the Max-Product algebra
the usual summation is substituted by maximum but
the multiplication remains unchanged.

The Max-Plus algebra is defined on the set of extended
reals R̄ = R∪{−∞,+∞}with the binary operations “⊕”
and “⊗”. The operation “⊕” stands for the maximum
i.e., for x, y ∈ R̄, it holds x ⊕ y = max{x, y}. The
operation “⊗” corresponds to the usual addition i.e.,
for x, y ∈ R̄ it holds x ⊗ y = x + y, where the
convention −∞ ⊗ ∞ = −∞ is used. For a set (xi)i∈I
of extended reals “

⊕
” stands for the supremum i.e.⊕

i∈I xi = supi∈I{xi}. For a pair of matrices A = [Aij ]
and B = [Bij ], the operation “⊕” is their element-wise
maximum, i.e.:

(A⊕B)ij = Aij ⊕Bij ,

and similarly is the element-wise supremum for an
arbitrary set of matrices.

For a pair of matrices A = [Aij ] ∈ R̄n×m and B =
[Bij ] ∈ R̄m×l their Max-Plus product A⊗B is an n× l
matrix and its i, j-th element is given by:

(A⊗B)ij =

m⊕
p=1

(Aip +Bpj) , (1)

where “
⊕

” denotes the maximum of the m elements.

The Max-Product algebra is defined on R̄+ = [0,∞],
with the binary operations “⊕” and “�”. The “�”
operation is the usual scalar multiplication with the
convention 0 � ∞ = 0. The “⊕” operation is defined
exactly as in the Max-Plus algebra. The matrix
multiplication in the Max-Product algebra is defined by:

[A�B]ij =

m⊕
p=1

(AipBpj) ,

The power of a square matrix is defined byAk = Ak−1�
A and A0 = I. For a given square matrix A a new
matrix A+ is defined as A+ =

⊕∞
k=0A

k. The subset
R+ = [0,∞) of R̄+ will be also used.

Max-Product multiplication distributes over “
⊕

”, i.e.:

⊕
i∈I

A�Bi = A�

(⊕
i∈i
Bi

)
. (2)

The same property holds also for the Max-Plus
multiplication.

In both algebras, the “⊕” operation has lower priority
than “+” or “⊗” in the Max-Plus algebra and “·”
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Operation Meaning

⊕ The maximum. Applies for scalars,

vectors and matrices

⊗ Max-plus multiplication. Defined in (1)

� Max-plus multiplication. Defined in (2)

Table 1
The algebraic operations used.

or “�” in the Max-Product algebra respectively. Let
us note that there is an isomorphism exp(·) between
the Max-Plus algebra (R̄,⊕,⊗) and the Max-Product
algebra (R̄+,⊕,�).

A unifying algebraic framework to study Max-Plus and
Max- Product systems (and also other systems) is the
theory of Weighted Lattices ([31], [32]).

1.2 Notation

For a pair of vectors x = (x1, . . . , xn)T and y =
(y1, . . . , yn)T , the inequality notation x ≤ y is used
meaning that xi ≤ yi, for all i. Similarly, the inequality
notation x < y stands for xi < yi, for all i. The infinity
norm will be used i.e. ‖x‖ = maxi |xi|. We denote by 1
the column vector of dimension n consisting of ones. The
underlying probability space is denoted by (Ω,F , P ).

A function α : R+ → R+ will be called classK function if
α is increasing and α(0) = 0. A function β : R+×R+ →
R+ will be called class KL function if, for each fixed t,
the function β(·, t) is a class K function and for any fixed
s, the function β(s, ·) is decreasing and β(s, t) → 0 as
t→∞.

1.3 Problem Formulation

The first class of systems considered is Max-Product
systems with Markovian jumps. The uncertainty of the
system is described by a Markov chain yk having a
finite state space {1, . . . ,M} and transition probabilities
cij . That is, the evolution of yk is described by cij =
P (yk+1 = j|yk = i). A Max-Product system with
Markovian jumps is described by:

xk+1 = A(yk)� xk, (3)

x0 ∈ Rn+.

That is, at each time step the system matrix A takes one
of the M different values A(1), . . . , A(M) according to
the value of the Markov chain.

At first, the class of deterministic Max-Product systems
will be considered. In these systems the matrixA(·) does
not depend on the Markov chain and takes a single value
A.

The other class of systems considered is Max-Plus
systems with Markovian jumps in the form:

xk+1 = A(yk)⊗ xk, (4)

x0 ∈ Rn.

In the following definitions, some notions of stability and
stochastic stability are recalled from the literature (eg.
[33], [32] and [34]).

Definition 1 Consider the system:

xk+1 = (A� xk)⊕ (B � uk) , (5)

zk = (C � xk)⊕ (D � uk) , (6)

where xk, uk, zk, denote the system state, input
and output and A,B,C,D are matrices of appropriate
dimensions.

(i) The free system, i.e. (5) with uk = 0, is exponentially
stable, if there exist constants a > 1 and L > 0 such
that ‖xk‖ ≤ L‖x0‖/ak, for any initial conditions and
any k.

(ii) The system (5) is Input to State Stable (ISS) if there
exist a class KL function β and a class K function α
such that:

‖xk‖ ≤ β(‖x0‖, k) + α

(
k⊕
i=0

‖uk‖

)
,

for any initial condition, any k and any input sequence
uk.

(iii) The system (5), (6) is Bounded Input Bounded Output
(BIBO) stable ([32]) if

⊕∞
k=0 ‖uk‖ < ∞ implies⊕∞

k=0 ‖zk‖ <∞, for any initial conditions.

Definition 2 The system given by (3) is:

(i) Almost surely stable if for any initial conditions, xk →
0 almost surely.

(ii) Mean norm stable if E[‖xk‖]→ 0 as k →∞.
(iii) Mean norm exponentially stable if there exist constants

a > 1 and L > 0 such that E[‖xk‖] ≤ L‖x0‖/ak.

Conditions for the stochastic stability of systems in the
form (3) will be derived. For Max-Plus systems bounds
on the growth of xk will be derived.

2 Deterministic Max-Product Systems

In this section the asymptotic stability of deterministic
Max-Product systems in the form:

xk+1 = A� xk, (7)

x0 ∈ Rn+,
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is studied.

The following Lemma presents a condition equivalent to
the the exponential stability of (7) (for a definition of
exponential stability see for example [33]).

Lemma 1 It holds:

(i) The function f(x) = A � x is homogeneous of order
1, i.e. it holds f(ρx) = ρf(x) for any ρ ∈ R+.

(ii) The system (7) is exponentially stable iff for some a >
1, the system xk+1 = aA� xk is stable.

Proof: The proof is immediate. �

A Lyapunov function will be constructed for the stable
systems in the form (7). Consider the function:

V (x) =

∞⊕
k=0

λT �Ak � x, (8)

where λ is a vector with positive entries. Equivalently,
V can be written as

V (x) =

∞⊕
k=0

λT � xk,

where xk is the state vector of (7) with initial condition
x0 = x. It is not difficult to see that if (7) is stable, then
V (x) is finite for any x and V (0) = 0. Furthermore, the
sequence V (xk) is non-increasing:

∞⊕
k=k0+1

λT � xk ≤
∞⊕

k=k0

λT � xk.

Thus, V is a Lyapunov function.

The form of V can be computed using the following
calculations:

V (x) =

∞⊕
k=0

λT �Ak � x = λT �

[ ∞⊕
k=0

Ak

]
� x

= (λT �A+)� x (9)

Thus, V has the form:

V (x) = pT � x, (10)

where p is an n vector with positive entries.

Proposition 1 The following are equivalent:

(i) The system (7) is exponentially stable.
(ii) There exists a vector p, with positive entries, such that

AT � p < p

Proof: In order to show the direct part, we use Lemma
1, to obtain a constant a > 1 such that xk+1 = aA�xk
is stable. Using a Lyapunov function in the form (8) for
that system, we obtain a positive vector p such that
V (x) = pT � x. Then it holds:

apT �A� x ≤ pT � x,

for any x ∈ Rn+. Thus, pT � A < pT or equivalently

AT � p < p.

The fact that (ii) implies (i) is shown with usual
Lyapunov analysis. �

Remark 1 The condition apT �A ≤ pT can be checked
using Linear Programming.

Remark 2 A Lyapunov function in the form (8) is
the direct analogue of a Lyapunov function for a usual
linear system xk+1 = Axk, x0 = x in the form
VL(x) =

∑∞
k=0 x

T
kQxk. Particularly, in the place of

the summation, we have the supremum and in the place
of the Q-norm ‖x‖2Q = xTQx we have the λ-norm

‖x‖λ = max{λ1x1, . . . , λnxn}.

Remark 3 The asymptotic behaviour of Max-Plus
deterministic systems, depends on the Max-Plus
eigenvalue of the system matrix which under connectivity
assumptions turns out to be unique (eg. [2]). This
eigenvalue can be computed in terms of the critical paths
i.e. the paths with maximal average weight. This analysis
can be transferred to Max-Product systems using the
exp(·) isomorphism of the Max-Plus and Max-Product
algebras. The Lyapunov approach adopted here could,
however, be extended to stochastic systems and systems
which are not linear in the Max-Product algebra.

The following corollary studies the Input to State
Stability (ISS) and the Bounded Input Bounded Output
(BIBO) stability.

Corollary 1 Assume that the system given by (7) is
exponentially stable. Then:

(i) The system given by (5) is input to state stable.
(ii) The system given by (5), (6) is BIBO stable.

Proof : (i) Consider a Lyapunov function V in the form
(10). Then V satisfies Lemma 3.5 of [35]. Thus, the
system is ISS.

(ii) Follows immediately from (i). �

The following example illustrates that the same
Lyapunov functions can be used to analyze systems
which are nonlinear in the Max-Product algebra.
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Example 1 Consider the system:

xk+1 =

[
2/3 2

1/3 3/4

]
� xk. (11)

We consider the Lyapunov function candidate V (x) =
[2 5]� x. It holds:

[2 5]

[
2/3 2

1/3 3/4

]
= [5/3 4] < [2 5].

Thus, V is a Lyapunov function and the system (11) is
exponentially stable.

Let us then consider the system:

xk+1 =

[
2/3 2

1/3 3/4

]
� xk ⊕

[
2

3

]
� (xTk � xk), (12)

which is not in the form of (7). The same Lyapunov
function V (x) can be used to show the local asymptotic
stability of (12).

Furthermore, the same Lyapunov function V (x) can be
used to show the ISS of the system:

xk+1 =

[
2/3 2

1/3 3/4

]
� xk ⊕

[
5

8

]
� uk.

3 Max-Product Systems with Markovian
Jumps

We then turn to Max-Product systems with Markovian
Jumps in the form (3). Lyapunov functions in the form:

V (x, y) = p(y)T � x, (13)

generalizing (10) are considered.

Proposition 2 Assume that there exist a constant a >
1 and vectors with positive entries p(1), . . . ,p(M) such
that:

a

M∑
j=1

cijp(j)T �A(i)� v ≤ p(i)T � v, (14)

for any vector v with positive entries. Then, (3) is mean
norm exponentially stable and almost surely stable.

Proof: Consider the function (13). It holds:

E[V (xk+1, yk+1)|xk = x, yk = i] =

M∑
j=1

cijp(j)T�A(i)�x.

Condition (14) implies that V is a positive
super-martingale. Furthermore, V = 0 implies x = 0.
Thus, the system is almost surely stable.

Condition (14) further implies that:

E[V (xk+1, yk+1)|V (xk, yk)] ≤ V (xk, yk)/a.

Thus, using this inequality repeatedly and taking
expectations in both sides we have:

E[V (xk, yk)] ≤ V (x0, y0)/ak.

Denoting by pM and pm the maximum and the minimum
entry of p(1), . . . ,p(M), we obtain:

E[pm‖xk‖] ≤ pM‖x0‖/ak.

Thus, using L = pM/pm, the inequality in Definition
2 part (iii) holds and the system (3) is mean norm
exponentially stable. �

Condition (14) should hold for any v ∈ Rn+ and thus,
it could be difficult to check it in general. The following
lemma may be used to simplify condition (14). The
lemma will be used also in Section 4 which considers
many step Lyapunov functions. Hence, the lemma will
be stated using a possibly different timing (with t in the
place of k), a possibly different set of system matrices,
depending on an additional random variable wt and a
state vector x̄ in the place of x.

Lemma 2 Consider a system in the form:

x̄t+1 = Ā(yt, wt)� x̄t, (15)

where yt takes values in {1, . . . ,M} and wt take values
in {1, . . . , M̄}. Assume also that (yt, wt) is a Markov
chain and that wt is independent of (wt−1, yt−1) given yt.
Denote by c̃(i, j, i′) the conditional probability P (yt+1 =
i′, wt = j|yt = i). Consider also the function:

V (x̄, y) = p(y)T � x̄, (16)

with p(1), . . . ,p(M) vectors with positive entries. For
some δ with 0 < δ < 1, the following are equivalent:

(i) It holds

E[V (x̄t+1, yt+1)|x̄t, yt] ≤ δV (x̄t, yt), (17)

for all x̄t, yt.
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(ii) It holds:

M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T � Ã(i′, i, j)� 1 ≤ δ, (18)

for i = 1, . . . ,M , where

Ã(yt+1, yt, wt) = diag(p(yt+1))Ā(yt, wt)diag(p(yt)
−1).

(19)

Proof: Consider the vector:

zt = diag(p(yt))� x̄t.

Then, it holds:

V (x̄t, yt) = 1T � zt = ‖zt‖. (20)

Furthermore, zt evolves according to:

zt+1 = Ã(yt+1, yt, wt)� zt.

Let us first show that (i) can be expressed in terms of zt
as:

E
[
‖zt+1‖

∣∣zt, yt] ≤ δ‖zt‖. (21)

Equation (20) shows that the both the right and the left
hand side of (21) are equal to the corresponding terms
of(17). Hence, it remains to prove that (ii) is equivalent
to (21).

It holds:

E
[
‖zt+1‖

∣∣zt, yt = i
]

= F (zt, i) =

=

M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T � Ã(i′, i, j)� zt.

The function F (z, i) is 1-homogeneous in z. Thus, (21)
is equivalent to

max
‖z‖≤1

F (z, i) ≤ δ, for i = 1, . . . ,M.

Furthermore, F (z, i) is non-decreasing in z. Thus, (i) is
equivalent to F (1, i) ≤ δ, which is equivalent to (ii). �

Remark 4 Equation (18) is stated using the matrix Ã,
which is computed in transformed coordinates (equation
(19)). A similar transformation is used (in a different
context) in [25], in order to define the ‘maximum
autonomous growth rate’.

For the needs of the rest of the current section we shall
use k in the place of t,A(y) in the place of Ā(y, w) and
x in the place of x̄.

Corollary 2 Assume that:

M∑
j=1

cijp(j)T �A(i)� (p−1(i)) ≤ δ,

for i = 1, . . . ,M , δ < 1 and p−1(i) is a vector having
as entries the inverses of the entries of p(i). Then the
system given by (3) is mean norm exponentially stable
and almost surely stable.

Proof: Using k in the place of t, A(y) in the place of
Ā(y, w) and x in the place of x̄ in Lemma 2 we get
that the conditions of Proposition 2 hold true. Thus, the
system given by (3) is mean norm exponentially stable
and almost surely stable. �

We then consider Max-Product stochastic systems with
inputs and outputs and the notion of BIBO stability in
probability is introduced.

Definition 3 Consider the system:

xk+1 = A(yk)� xk ⊕B(yk)� uk, (22)

zk = C(yk)� xk. (23)

The system is Bounded Input Bounded in probability
Output (BIBipO) stable if for any ε > 0,Mu > 0 and any
initial condition, there exist a bound Mz > 0 such that:

P (‖zk‖ ≤Mz) > 1− ε. (24)

The following proposition shows that the exponential
mean norm stability of the free system implies the
BIBipO stability.

Proposition 3 If the free system given by (3) is mean
norm exponentially stable then the system (22)-(23) is
BIBipO stable.

Proof: Consider a pair of constants ε > 0, Mu > 0 and
an initial condition x0 ∈ Rn+. Following [32] the state
vector can be written as:

xk = Φ(k, 0)� x0 ⊕

(
k⊕
t=1

Φ(k, t)�B(yt−1)� ut−1

)
,

where Φ is the transition matrix given by:

Φ(k2, k1) =

{
A(yk2−1)� · · · �A(yk1) if k2 > k1

I if k2 = k1.
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For any given constant Mx > 0 it holds:

P [‖xk‖ > Mx] ≤ P [‖Φ(k, 0)� x0‖ > Mx]+

+

k∑
t=1

P [‖Φ(k, t)�B(yt−1)� ut−1‖ > MX ]

≤ P [‖Φ(k, 0)� x0‖ > Mx]+

+

k∑
t=1

P [‖Φ(k, t)� Ū‖ > Mx], (25)

where:

Ū = max {‖B(i)� u‖ : ‖u‖ ≤Mu, i = 1, . . . ,M}1.

The following claim will be used:
Claim: There exists a value Mx > 0 such that the right
hand side of the last inequality in (25) is less than ε for
any positive integer k.

To prove the claim we first use the Markov inequality:

E[‖xk‖ > Mx] ≤

≤ 1

Mx

[
E[‖Φ(k, 0)� x0‖] +

k∑
t=1

E[‖Φ(k, t)� Ū‖]

]
.

(26)

The term E[‖Φ(k, 0)�x0‖] is bounded, due to the mean
norm exponential stability of the free system. Then,
observe that it holds E[‖Φ(k, t) � Ū‖] = E[‖x̃k−t‖]
where x̃l satisfies:

x̃l+1 = A(yk−t+l)x̃l, (27)

x̃0 = Ū .

The system (27) is mean norm exponentially stable.
Thus:

k∑
t=1

E[‖Φ(k, t)�Ū‖] ≤
∞∑
t=1

E[‖Φ(k, t)�Ū‖] ≤ aL

a− 1
‖Ū‖,

(28)
where a and L the constants satisfying the mean norm
exponential stability definition. Hence, the right hand
side of (26) tends to zero as Mx increases, which
completes the proof of the claim.

Hence, a constant Mz satisfying (24) is given by: Mz =
max {‖C(i)� x‖ : ‖x‖ ≤Mx, i = 1, . . . ,M}. �

4 k-Step Lyapunov Functions

In the last section, Lyapunov functions were used for
the stability analysis of Max-Product systems with
Markovian jumps. In this section we consider k-step

Lyapunov functions and derive necessary and sufficient
conditions for the mean-norm exponential stability. It
turns out that many step Lyapunov functions offer
greater flexibility.

We shall consider Lyapunov functions V : Rn+ ×
{1, . . . ,M} → R+ with the following properties:

P1. V (x, y) is 1-homogeneous in x.
P2. V (x, y) is continuous in x.
P3. It holds V (x, y) = 0 iff x = 0.

The following proposition gives necessary and sufficient
conditions for the mean-norm exponential stability in
terms of many step Lyapunov functions.

Proposition 4 Consider a function V (x, y) satisfying
(P1)-(P3). Then, the following are equivalent:

(i) The system given by (3) is mean-norm exponentially
stable.

(ii) For each δ ∈ (0, 1), there exists a positive integer k0

such that:

E[V (xk, yk)] ≤ δV (x0, y0), (29)

for any x0 ∈ Rn+, y0 ∈ {1, . . . ,M} and any k ≥ k0.
(iii) There exists a δ ∈ (0, 1) and a positive integer k0 such

that:
E[V (xk0 , yk0)] ≤ δV (x0, y0), (30)

for any x0 ∈ Rn+, y0 ∈ {1, . . . ,M}.

Proof : (i) ⇒ (ii). The following claim is first proved:

Claim: There exist positive constants bmin and bmax
such that:

bmin‖x‖ ≤ V (x, y) ≤ bmax‖x‖. (31)

From (P2) and (P3) the values of the constants bmin and
bmax defined by:

bmin = min{V (x, y) : x ∈ Rn+, ‖x‖ = 1},
bmax = max{V (x, y) : x ∈ Rn+, ‖x‖ = 1},

are finite and positive. Then, (P1) completes the proof
of the claim.

Assume that the system given by (3) is mean-norm
exponentially stable and a and L satisfy Definition 2
part (iii). Fix a δ ∈ (0, 1). It holds:

E[V (xk, yk)]] ≤ E[bmax‖xk‖] ≤

≤ bmaxL‖x0‖/ak ≤
bmax
bmin

La−kV (x0, y0).

Choosing k0 such that bmax

bmin
La−k0 < δ, inequality (29)

is satisfied.
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(ii)⇒ (iii) is trivial.

(iii)⇒ (i). Using the same arguments as in the first part
of the proof it is easy to see that there exists a positive
integer N0 such that:

E[‖xN0k0‖] ≤ δ‖x0‖.

Consider the Euclidean division of k by N0k0, i.e. k =
(N0k0)q + r. Using repeatedly the following inequality:

E[‖xk‖] =E
[
E
[
‖xk‖

∣∣xk−N0k0 , yk−N0k0

]]
≤

≤ δE[‖xk−N0k0‖],

we obtain:

E[‖xk‖] ≤ δqE[‖xr‖]. (32)

Furthermore, r as a remainder satisfies 0 ≤ r < N0k0

and q as a quotient satisfies q ≥ k
N0k0

− 1. A bound for

E[‖xr‖] is then derived using repeatedly the following
inequality:

‖A(y)� x‖ ≤
[
max
i,j,y

Aij(y)

]
‖x‖.

Inequality 32 implies that:

E[‖xk‖] ≤ δ
k

N0k0

[
max
i,j,y

Aij(y)

]N0k0−1

/δ.

Thus, using for a and L the values a = δ1/(N0k0)

and L = [maxi,j,y Aij(y)]
N0k0−1

/δ, the inequality in
Definition 2 part (iii) holds true and the system is mean
norm exponentially stable. �

The following corollary uses Lyapunov functions in the
form V (x, y) = p(y)T �x and Lemma 2. Particularly, a
system in the form (15) is considered with x̄t = xk0t.

Corollary 3 Fix a positive integer k0. Assume that there
exists a set of vectors p(1), . . . ,p(M) such that:∑

(j1,...,jk0−1),i′

c̃(i, (j1, . . . , jk0−1), i′)1T�

� Ã(i′, i, (j1, . . . , jk0−1), i′))� 1 ≤ δ,
(33)

where δ < 1, the matrix Ã is given by (19), the matrix
Ā by:

Ā(yt, (j1, . . . , jk0−1), i′) = A(jk0−1)� · · · �A(j1),

and the constants c̃ by:

c̃(i, (j1, . . . , jk0−1), i′) = cij1cj1j2 · · · · · cjk0−1i′ .

Then (3) is mean norm exponentially stable.
Furthermore, if (3) is mean norm exponentially stable
then there exists a positive integer k0 and a set of vectors
p(1), . . . ,p(M) satisfying (33). �

5 Max-Plus Systems with Markovian Jumps

5.1 Almost Sure Bounds for the Free System

We then turn to Max-Plus systems with Markovian
Jumps in the form (4). An almost sure bound on the
evolution of the state of (4) will be derived using the
results of the previous sections.

For a given system in the form (4) and a positive constant
γ, we construct an equivalent Max-Product system.
Particularly, consider the vector x′k = exp(xk)/γk,
where the exponentiation is considered component-wise.
Then, x′k evolves according to:

x′k+1 = A′(yk)� x′k, (34)

x′0 ∈ Rn+,

and A′ = exp(A)/γ where the exponentiation is again
considered component-wise.

Remark 5 A transformation of a Max-Plus system to
a sub-linear system is used in [20]. In contrast to the
transformation to a sub-linear system the transformation
to a max-product system is exact (invertible). Let us note
that the proof of the following proposition uses similar
techniques with the proof of Corollary 2.3 of [20].

The mean norm exponential stability of (34) can be used
to derive some almost sure bounds for the evolution of
(4).

Proposition 5 Assume that (34) is Mean-norm
exponentially stable. Then almost all the sample paths of
(4) satisfy:

xk < (k ln γ)1, (35)

for large k.

Proof: Consider the sets:

Bk = {ω ∈ Ω : xk ≮ (k ln γ)1}. (36)

It holds E[‖x′k‖] ≤ M/ak for some a > 1. Thus, using
Markov inequality P [‖x′k‖ > 1] ≤ M/ak. Furthermore,
‖x′k‖ > 1 iff xk ≮ (k ln γ)1. Hence, P (Bk) ≤M/ak and∑∞
k=1 P (Bk) <∞.

Thus, 1st Borel-Cantelli lemma (eg. [36]) applies. Hence:

P (lim supBk) = 0, (37)
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which concludes the proof. �

The results of Proposition 5 can be used to bound
the Lyapunov Exponent of a Max-Plus systems with
Markovian jumps. Conditions for the existence of the
Lyapunov exponent are given in [12].

Corollary 4 Assume that the system described by (4)
has a Lyapunov exponent `. Furthermore, assume that
(34) is mean norm exponentially stable. Then, ` < ln γ.

Proof : It holds xk/k < γ1 for large k, almost surely. �

5.2 Systems with Inputs

In this section systems of the form:

xk+1 = (A(yk)⊗ xk)⊕ (B(yk)⊗ uk) ,

zk = C(yk)⊗ xk, (38)

are considered in the context of the multi machine
production system example studied in the following
section. Using the results of Theorem 1 of [25], we assume
that the input signal uk is scalar and that it grows in an
approximately linear fashion:

uk = kT + δk, (39)

with δk bounded and T a positive constant. In [25] it is
proved that, under certain additional conditions, inputs
in the form (39) stabilize the corresponding switching
Max-Plus linear system.

The following proposition shows that the difference
of the state vector entries from kT are bounded in
probability. Let us note that the boundedness of these
differences have been used in the literature to define a
notion of stability for discrete-event systems [25], [37].

Proposition 6 If the system (34) with γ = eT , where
e is the basis of the natural logarithm, is mean norm
exponentially stable then for any ε > 0 there exists a
bound Mx such that:

P [xik − kT ≤Mx] > 1− ε, (40)

for any k, where xik is the i-th component of the vector
xk.

Proof : Consider the vector x′k = exp(xk)/γk =
exp(xk)/ exp kT . This vector evolves according to:

x′k+1 =
(
A′(yk)� x′k

)
⊕
(
B′(yk)� dk,

)
(41)

where dk = eδk , A′ = exp(A)/γ and B′ = exp(B)/γ
where all the matrix exponentiations are considered
component-wise. Then, the application of Proposition 3
to (41) competes the proof. �

6 Numerical Examples

6.1 Deterministic Max-Product Systems

In this section we use the Lyapunov analysis of
deterministic max-product systems to analyze slightly
‘nonlinear’ max-plus systems. Such systems may arise
in the modeling of discrete event systems for which the
transport, processing, holding or idle times depend on
system operation. For example, the necessary cooling
time for a machine in a production system may depend
on the length of the previous cycle. Another example is
the loading or boarding times in a rail transportation
system which depend on the quantity of products or
the number of passengers waiting to be served, which
in turn may depend on the length of the last cycle. In
this section we analyze a simple model of such a discrete
event system.

Consider the two dimensional model:

x1
k+1 = max

(
x1
k + ā11, x

2
k + ā12

)
+ f1(x1

k+1 − x1
k),

x2
k+1 = max

(
x1
k + ā21, x

2
k + ā22

)
+ f2(x2

k+1 − x2
k),
(42)

where xik represents the instant of time at which an event
takes place for the k−th time (eg. the train departs from
station i) and f1, f2 terms represent the dependence on
the length of the last cycle. For simplicity assume that
f1 and f2 are linear: f1(z) = z2(z) = δ̄z, with |δ̄| < 1/2.

Then (1) can be be written as:

x1
k+1 = max(x1

k + a11, x
2
k + a12 − δ(x1

k − x2
k)),

x2
k+1 = max(x1

k + a21 − δ(x2
k − x1

k), x2
k + a22), (43)

where aij = aij/(1− δ) and δ = δ̄/(1− δ). This system
is clearly not of the max-plus form. In order to analyze
(43), consider the corresponding exponentiated system:

x′1k+1 = max
(
a′11x

′1
k , a

′
12x
′2
k (x′1k /x

′2
k )−δ

)
,

x′2k+1 = max
(
a′21x

′1
k (x′2k /x

′1
k )−δ, a′22x

′2
k

)
, (44)

where x′ik = exp(xik)/γk, a′ij = exp(aij)/γ. The
dynamics (44) can be written as:

x′k+1 = A′(x′1k /x
′2
k )� x′k (45)

where

A′(x′1k /x
′2
k ) =

[
a11 a′12(x′1k /x

′2
k )−δ

a′21(x′2k /x
′1
k )−δ a′22

]
.

Then, the stability of the dynamics (44) can be
studied using the Lyapunov function of the max-product
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‘linearized’ system:

x′k+1 = A′(1)� x′k (46)

Example 2 Assume that a11 = a22 = 1.5686, a12 =
1.7918, a21 = 1.3350, d = −0.15 and γ = 5. Then, the
exponentiated system is:

x′1k+1 = max
(
0.96x′1k , 1.2(x′1k /x

′2
k )0.15x′2k

)
,

x′2k+1 = max
(
0.76x′1k (x′2k /x

′1
k )0.15, 0.96x′2k

)
, (47)

and the ‘max-product linearized’ matrix is:

A′(1) =

[
0.96 1.2

0.76 0.96

]
.

Using (9), (10) we obtain a Lyapunov function for the
max-plus linearized system:

V (x) = [1 1.25]� x.

We then use V as a Lyapunov function candidate
for (47). The function f(x) = A′(x1/x2) � x is
1-homogenus. Therefore, we need only to show that if
V (x′k) ≤ 1 implies V (x′k+1) ≤ 1. Equivalently we need

to show that x′1k+1 ≤ 1 and x′2k+1 ≤ 0.8, if x′1k ≤ 1 and

x′2k ≤ 0.8. Indeed for such x′k it holds:

x′1k+1 = max
(
0.96x′1k , 1.2(x′1k )0.15(x′2k )0.85

)
≤ 1,

x′2k+1 = max
(
0.76(x′1k )0.85(x′2k )0.15, 0.96x2

k

)
≤ 0.8.

Thus, the system (47) is stable. �

Let us note it is not possible to analyze (43) using
directly max-plus techniques and the transformation to
a max-product system is essential.

6.2 Max-Product Systems with Markovian Jumps

In this section, we present a very simple numerical
example of a Max-Product system with Markovian
jumps. The Markov chain has two possible states yk ∈
{1, 2} and the values of matrix A are given by:

A(1) =

[
1.05 1.5

0.4 0.3

]
,A(2) =

[
0.5 0.4

0.7 0.3

]
, (48)

and the Markov chain has transition probability matrix:

c =

[
0.3 0.7

0.4 0.6

]
.

Fig. 1. Several sample paths of the system described by (48).
(Best viewed in color)

Using simple search techniques a Lyapunov function
satisfying the conditions of Corollary 2 can be obtained.
One of those Lyapunov functions is:

p(y) =

{
[4 6]T if y = 1

[3 2]T if y = 2.

Hence, the system is mean norm exponentially stable.
Several sample paths of the system are given in Figure
1.

6.3 Application to Multi-Machine Production Systems

In this section we study a very simple example of a
production system consisting of three machines analyzed
in [25]. The production system may produce two distinct
outputs A and B. The order in which the machines
process the raw material is different for the two products.
Particularly, when the product A is produced, the
machines are used with order M1 → M2 → M3

while when the product B is produced the order is
M2 → M1 → M3. The production system is depicted
in Figure 2. An important question is that of maximum
throughput. Maximum throughput is the maximum rate
at which the system can process the raw material and it
is defined as the inverse of the minimum cycle time ([2]).

A max-plus stochastic system describing the timing of
the production system will be described. Each machine
starts working as soon as possible, that is when the
input material is available and also it has finished all the
previous work. Let us denote by uk the time instant at
which the raw material for the k − th product becomes
available and by xik the time instant at which the
machine i starts working for the production of the k-th

10



Fig. 2. The production system

product. We assume that the processing time for the
machines are s1 = 1, s2 = 2 and s3 = 1. Furthermore, zk
denotes the time instant at which the product k becomes
available.

The evolution of xk and zk is given by:

xk+1 = (A(yk)⊗ xk)⊕ (B(yk)⊗ uk+1) ,

zk = C ⊗ xk, (49)

where yk = 1 when the product A is produced and
yk = 2 when product B is produced. The matrices
A(1),A(2),B(1),B(2) and C are given by:

A(1) =


s1 −∞ −∞
2s1 s2 −∞

2s1 + s2 2s2 s3

 , B(1) =


0

s2

s1 + s2

 ,

A(2) =


s1 2s2 −∞
−∞ s2 −∞
2s1 s1 + 2s2 s3

 , B(2) =


s2

0

s1 + s2

 ,
andC = [−∞ −∞ s3]. The details can be found in [25].

We assume that which product is produced at each
time step depends on exogenous orders which behave
randomly. Particularly we assume that yk is a Markov
chain with transition probability matrix:

c =

[
0.8 0.2

0.2 0.8

]
.

We further assume that the raw material arrives at
a constant rate. Thus, the input signal has the form
uk = kT . Proposition 6 will be used to show that
the raw material that has arrived to the production
system but not yet fully processed remains bounded in
probability. Thus the system is capable of processing
the raw material at the given rate. The condition that
all the buffer levels remain bounded has been used in
the literature to define the stability of Discrete Event
Systems (eg. [25]).

Fig. 3. The differences xi
k−kT in a sample path of the system

(49). (Should be viewed in color).

Example 3 Assume that the raw material arrival has a
period T = 2.5. The matrices A′(yk) are:

A′(1) =


0.2231 0 0

0.6065 0.6065 0

4.4817 4.4817 0.2231

 ,

A′(2) =


0.2231 4.4817 0

0 0.6065 0

0.6065 12.1825 0.2231

 .
The vectors p1 = [12 12 1], p2 = [3 32 1] satisfy the
conditions of Corollary 2. Hence, Proposition 6 applies
and xik − kT remains bounded in probability. Figure 3
illustrates the evolution of stock times.

Remark 6 A stability condition is also derived in [25].
This stability condition resembles the stability under
arbitrary switching property. It turns out that, in contrast
to usual linear systems, the stability under arbitrary
switching property is easier to check than the stochastic
stability in the Max-Plus systems ([19]).

The minimum value for T satisfying the stability
conditions of [25] can be computed using Linear
Programming and for the current example has a value
T = 3.

Thus, the stochastic stability conditions (40) are less
restrictive and allow the system to operate at a
higher rate, compared with the stability under arbitrary
switching.

7 Conclusion

Max-Plus and Max-Product systems with Markovian
jumps were considered. A Lypaunov function is
constructed for asymptotically stable deterministic
Max-Product systems. This Lyapunov function is found
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to have a simple form and the stability conditions derived
can be checked using Linear Programming. Slightly
modified Lyapunov functions are then used to derive
sufficient conditions for the mean norm exponential
stability of Max-Product systems with Markovian
Jumps. A simpler form of these conditions can be derived
based on the monotonicity of the Lyapunov functions.
Necessary and sufficient conditions for the mean norm
exponential stability are then derived using many step
Lyapunov functions.

Bounds for the evolution of the state of Max-Plus
systems with Markovian jumps are then derived, based
on the results for the Max-Product systems. Finally
a numerical example illustrates the application of the
methods described on a production system.
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