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ABSTRACT

The paper presents our approach to speech-controlled home automa-
tion. We are focusing on the detection and recognition of spoken
commands preceded by a key-phrase as recorded in a voice-enabled
apartment by a set of multiple microphones installed in the rooms.
For both problems we investigate robust modeling, environmental
adaptation and multichannel processing to cope with a) insufficient
training data and b) the far-field effects and noise in the apartment.
The proposed integrated scheme is evaluated in a challenging and
highly realistic corpus of simulated audio recordings and achieves
F-measure close to 0.70 for key-phrase spotting and word accuracy
close to 98% for the command recognition task.

Index Terms— distant speech recognition, multichannel pro-
cessing, keyword spotting, adaptation

1. INTRODUCTION

The recently emerged intelligent applications for smart domestic en-
vironments [1] are designed to offer new opportunities for security,
awareness, comfort, and full environmental control in daily indoor
life. Although voice interfaces enable potentially richer interactions,
one of the major issues that prevents the development of speech
technologies in real home settings is the poor performance of Au-
tomatic Speech Recognition (ASR) in noisy environments, as well
as the unsolved challenges that emerge in complex acoustic scenes
with multiple, possibly overlapping events. There has been increas-
ing attention to signal processing and ASR methods for more robust
recognition [2] in everyday listening conditions. In this direction,
the community of microphone array processing [3] has reached sig-
nificant milestones in several problems of speech processing such as
source localization, source separation and speech enhancement but
end applications still have to earn from these benefits [4].

The current paper presents our research on multichannel com-
mand recognition and keyword spotting from far-field speech [5]
targeting their integration for smart home applications. Such appli-
cations are designed in the framework of an ongoing EU project un-
der the name “Distant-speech Interaction for Robust Home Applica-
tions” (DIRHA) [6]. As its name suggests, DIRHA ambitiously aims
at introducing a multichannel, distant-speech-controlled system that

This research was supported by the EU project DIRHA with grant FP7-
ICT-2011-7-288121. We wish to thank the members of the SHINE group at
FBK for providing the simulated data and professor V. Digalakis at Technical
University of Crete for kindly providing the LVCSR ”Logotypografia” cor-
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Fig. 1. The floorplan of the apartment for which the DIRHA pro-
totype is being developed. The black dots represent the 40 mi-
crophones installed, namely 28 microphones on the walls and two
pentagon-shaped arrays on the kitchen and livingroom ceilings.

would allow human-home interaction in real, everyday conditions.
The current research prototype is developed for the apartment shown
in Fig. 1. In this context, the success of the integrated system crit-
ically depends on the effective solution to the following problems,
namely robust speech modeling, channel selection and channel com-
bination. For robust speech modeling, in the absence of speech data
for home environments, the mismatch between the complex acoustic
environment and generic speech models can be reduced by artifi-
cially distorting the training data as in [7, 8], by dereverberation [9]
and/or adaptation to a development set [10, 7]. For channel selec-
tion, the signal-to-noise ratio (SNR) of the microphones can be used
as in [11], other signal-based metrics [12], or decoder-based tech-
niques as the one presented in [13] that is based on the confidence of
the speech recognition results for each microphone. Channel combi-
nation, similarly can happen either at the signal-level, e.g., by beam-
forming as in [11, 10], or at the decision-level by techniques such as
ROVER [14], or a similar SNR-weighted confusion-network based
fusion [11] or by the driven decoding algorithm, presented in [10].

In this work, we present an integrated approach for keyword
spotting and speech recognition by investigating alternative schemes
for the solution of the problems mentioned above. More specifically,
a) we optionally apply beamforming with or without postfiltering, b)
we use properly distorted training data for robust speech modeling,
c) adapt the resulting models on a separate development set, d) se-
lect the most reliable channels based on signal-to-noise ratio (SNR),
and e) then combine these channels via N-best list rescoring. The
proposed system has been developed for Greek and is evaluated on
a corpus collected for the purposes of the DIRHA project and com-
prises simulated recordings in the apartment. The recordings are
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highly realistic: they include speech of various types, background
noise, various localized acoustic events, and suffer from significant
reverberation. Overall, we achieve a 97.92% word accuracy in a 99-
commands recognition task and reach an F-measure close to 0.70 for
key-phrase spotting.

2. ROBUST AND MULTICHANNEL PROCESSING

2.1. Robust modeling

Robust modeling refers to the class of approaches that aim to reduce
the mismatch between the training and testing conditions either by
simulating the testing conditions for the generation of artificial train-
ing data or by using adaptation methods to fit the parameters of a
model set in testing data.

Training corpus distortion. Reverberation and typical noise con-
ditions in the apartment are expected to seriously degrade the per-
formance of generic acoustic models for distant speech recognition.
Training the models on apartment data can increase robustness but
in most cases collection of a sufficient dataset for this purpose is not
practical. Instead, the training corpus can be artificially distorted
to reduce the mismatch with the real data [7]. According to this
paradigm, clean training speech is convolved with acoustic impulse
responses that have been measured in the apartment and can par-
tially capture the reverberation properties of the rooms. To further
simulate the real environment, additive noise can also be included.

In our work, we consider two variants of this distortion process
that is applied on a generic speech corpus, namely the Greek, large
vocabulary, continuous speech database “Logotypografia” [15]1 for
the generation of two separate versions of the training corpus: a)
reverb1 for which the room impulse response of a single source-
and-microphone pair is used and white Gaussian noise is added at
a certain gain, b) reverbR for which one of 10 source-microphone
impulse responses is randomly selected for each utterance and white
Gaussian noise is randomly added at one of three gain levels. The
first set corresponds to a simplified scenario that requires the mea-
surement of a single impulse response in the apartment. On the other
hand, the second set offers significantly higher diversity and is ex-
pected to be more representative of the real conditions. Additional
details on the estimation of the impulse responses that are used and
how the simulated data are generated can be found in [8].

Acoustic model adaptation. Environmental adaptation of the
acoustic models to real data from the apartment can lead to addi-
tional performance improvements. In our current work, we only
consider a supervised adaptation scenario, according to which few
users (not necessarily the final users) of the system utter a predefined
set of commands or other phrases in the apartment which can then
be used for offline transformation of the acoustic models.

In the multichannel environment of the apartment, adaptation
data, that comprise all the microphone recordings of the uttered com-
mands, can be used in two ways, namely to determine a multichannel
adaptation transformation that would be the same for all channels or
a separate adaptation transformation per channel. The first scheme
involves more data and can lead to a more robust transformation
but the second scheme would allow a transformation to also capture
more localized properties of the acoustic environment. In any case,
conventional adaptation techniques are used to estimate the model
transformations, i.e., global Maximum Likelihood Linear Regres-
sion (MLLR) and Maximum A Posteriori (MAP) adaptation [16].

1The corpus comprises 72 hours of speech (utterances of newspaper text)
from 120 speakers using either a head-mounted or a desktop microphone.

2.2. Multichannel processing.

Channel combination via N-best list rescoring. Channel selec-
tion is a critical component of the proposed command spotting and
recognition system. It is currently based on the SNR of the current
speech segment to be recognized but more elaborate selection tech-
niques can also be applied [13]. Recognition is only run on the mi-
crophone with the highest SNR. The corresponding results are then
combined in three steps as described in the following:

1. Speech recognition on the microphone with the highest SNR
returns an N-best list of possible hypotheses.

2. The N-best list is rescored for each of the selected micro-
phones. Rescoring is achieved by forced-alignment of each of
the hypotheses with the corresponding microphone recording
using the adapted acoustic model for the specific microphone.
The Viterbi algorithm is used for this alignment and the esti-
mated log-likelihood of the best path is the hypothesis score.

3. The sum of all the microphone scores is estimated for each
hypothesis and the list of hypotheses is resorted. The recog-
nized command is the one with the highest combined score.

This algorithm was originally proposed for fusing heterogeneous
speech recognition engines in [17] and to the best of our knowledge
it has not been applied in the context of multichannel combination
for distant speech recognition.

Beamforming is the typical way to fuse the microphones at the
signal level. Speech signals are enhanced acoustically and their
intelligibility is increased but in many cases there is no guarantee
that the beamformed signal is directly exploitable from the recog-
nizer due to the nonlinear distortions that enhancement methods can
cause. In our experiments, we employ a minimum variance distor-
tionless response (MVDR) beamformer, followed by a single chan-
nel Wiener post-filter with a minimum mean square error (MMSE)
estimator [18] (MVDR-MMSE-est). The user (source) locations are
estimated by an improved version of the method proposed in [19]
based on previous work from our group in [20] 2. Beamforming is
only applied when the source is in the livingroom or kitchen, using
the ceiling microphone arrays installed there, which satisfy the max-
imum inter-microphone distance requirements for the technique to
be effective.

3. KEYWORD DETECTION AND SPEECH RECOGNITION

By using the techniques proposed in Sec. 2, we describe our keyword
spotting and speech recognition systems, targeted for the apartment
environment.

The problem of keyword-spotting (KWS) is well-studied [21]
even in cases of large sets of keywords and noisy channels [22]. The
classical keyword-filler approach for KWS implements whole-word
Hidden Markov Models (HMMs) for keywords and one for general
speech, i.e., garbage model. It is more flexible than the large vocabu-
lary continuous speech recognition (LVCSR)-based KWS which acts
more accurately in word- or phone-level lattices but requires large
amounts of training data and a task-dependent language model [23].
Our implementation is in principle based on the approach introduced
in [24]. It is designed to detect a predetermined set of small key-
phrases. In the absence of training data, the keyword models are con-
structed from sub-word models pooled from the available LVCSR

2For comparison, we also experiment with the widely used delay-and-sum
(DS) [3] and the MVDR-MMSE beamformers with known (ground truth)
source locations: DS-gt and MVDR-MMSE-gt, respectively.
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Fig. 2. An excerpt of the grammar for the recognition of 99 Greek
commands for home automation. This subgrammar accepts the com-
mands ”Switch on/off the light/lights in the livingroom/bathroom”.

system [25]. Sub-word models are properly concatenated to form
whole-words which are then MLLR- and MAP- adapted to record-
ings of the key-phrases in the development set of the corpus com-
ing from the apartment. Key-phrase spotting only runs for the best-
SNR microphone. Note that the activation phrases that the keyword
spotter aims to detect consist of one up to three words. The current
implementation works with a simple grammar that forces the recog-
nizer to recognize one key-phrase among possible garbage segments.

For speech recognition, the system is designed to recognize a
set of 99 commands of various lengths. A finite-state-grammar has
been built for the task, part of which is shown in Fig. 2. Speaker-
independent, cross-word, triphone models are trained on the original
and the two distorted versions of the training corpus. The cor-
responding model-sets are referred to by “clean”, “reverb1” and
“reverbR” respectively. The models are then MLLR-adapted to the
development set. Channel selection based on SNR and channel
combination via N-best list rescoring determine the final command
hypothesis.

4. EXPERIMENTS

We present experiments in the DIRHA simulated corpus. In our cur-
rent work, we evaluate the keyword spotting and speech recognition
components separately. So, potential keyword spotting errors, do not
affect the speech recognition results.

The DIRHA corpus comprises simulated recordings of speech
in a 4-room apartment that has been set up for the needs of the
DIRHA project at the institute of Fondazione Bruno Kessler (FBK)
in Trento, Italy, see Fig. 1. The corpus has been generated in two
phases, namely the clean speech collection phase and the simulation
phase. The goal has been to simulate realistic recordings in a home
environment to the highest possible degree.

In the first phase, 20 speakers (10 male, 10 female) were
recorded with a close-talking microphone at a rate of 48kHz in
an unechoic studio uttering the following (among others) in Greek:
a) 15 DIRHA key-phrases, e.g., “DIRHA activate”, b) 15 read
DIRHA commands out of a set of approximately 250 commands, c)
15 spontaneous DIRHA commands, induced by showing a picture,
d) 22 phonetically rich sentences, and e) 2 minutes of spontaneous,
conversational speech, e.g., discussion about one’s favorite restau-
rant. The duration of the recorded speech material sums up to
approximately 8 minutes per speaker 3.

In the second phase, this material was convolved with impulse
responses from the DIRHA apartment to simulate real recordings of
speech in the apartment. Real background noise and various ran-
dom acoustic events representing typical sounds in a home envi-
ronment (327 different events in total), e.g., appliance sounds, ring-
ing, squeaking, were also properly added to generate the final sim-
ulated one-minute long recordings of acoustic events in the apart-
ment. Each of these recordings can comprise multiple speech and
acoustic events, occuring at random locations in the apartment and
possibly overlapping. The corresponding recordings for all the 40

3Examples of these recordings can be found at:
http://cvsp.cs.ntua.gr/research/dirha
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Fig. 3. F-measures for the key-phrase spotting system. The orig-
inal models are just the word models created by concatenating the
triphone models from the clean, reverb1, and reverbR sets. The best
and median microphones are found for all simulations and their per-
formances are compared with a selected microphone having the best
SNR per speech segment.

microphones are simulated. Overall, 150 simulations are generated,
i.e., recordings for 150 mixtures of speech and noise events. Half of
the data, involving half of the speakers, are held out as a development
set and the rest form our test set.

In this paper we focus on the recognition of the read commands
that appear in these recordings and are preceded by one of the
DIRHA key phrases. Our goal is to detect and recognize these com-
mands in the one-minute long recordings. Key-phrase spotting is
only activated for the speech segments identified by a voice activity
detection module and speech recognition only runs for the speech
segment following a keyword. Due to lack of space we are skipping
the presentation of our multichannel VAD module4. To avoid any
confusion, for the presented experiments we use the ground truth
boundaries of speech segments in the recordings.

4.1. Key-phrase spotting experiments

The presented results for keyword spotting, in our case better de-
scribed as key-phrase spotting, correspond to the 75 testing simu-
lations of the DIRHA corpus. The detections must be accurate in
terms of precision and recall in order to properly activate the ASR
module when a command is going to be uttered.

The reported results are in terms of F-measure which is the har-
monic mean of precision and recall. As it is depicted in Fig. 3, the
adaptation step benefits all keyword and garbage model sets, espe-
cially the clean ones. Note that the synthetic word models corre-
spond to the words contained in all system activation phrases. Also,
the garbage model is trained on 10 hours of speech. Both model sets
are trained in “Logotypografia” and adapted on the development data
of each microphone in the “DIRHA” corpus. An important factor we
noticed in the employed approach for keyword spotting is the dura-
tion of the garbage model. We experimented with the number of its
HMM states to find that when we used 24 states, which is near the
size of the average keyword model, with left-to-right transitions and
32 Gaussians per state, false alarms were significantly reduced.

In the multichannel environment of the apartment the keyword
spotting module only runs on the audio coming from the microphone
with the highest SNR. The results of channel selection are also de-
picted in Fig. 3. It is evident that the microphone with the best SNR
per speech segment performs almost the same with the best micro-
phone over all simulations yielding an F-measure of 0.67 in the best

4It yields 4.2% frame detection error in the DIRHA test set.
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clean reverb1 reverbR

DS-gt (unadapted) 0.22 0.66 0.68
DS-gt 0.74 0.81 0.79

SNR-best 0.54 0.62 0.62

Table 1. Key-phrase spotting F-measures using Delay-and-Sum
beamforming with known source locations. Microphone selection
results (with the adapted models) are also given for comparison.
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Fig. 4. Word accuracy for all the microphones. Results for all the
models, before and after adaptation, are shown. Median perfor-
mance is improved by almost 57% when the proposed robust mod-
eling techniques are applied.

case of adapted reverbR models. Finally, the results for channel com-
bination with beamforming (DS-gt) are presented in Table 1 for a
subset of 51 simulations in which the activation phrase was uttered
in the livingroom or kitchen. All the adapted models performed bet-
ter in beamformed signals especially reverb1 which achieved an F-
measure of 0.81.

4.2. Speech recognition experiments

Model training and adaptation evaluation. For our current eval-
uations, speech recognition is run on all the speech segments con-
taining only the spoken command, as ideally these would have been
indicated by perfect voice activity detection and keyword spotting.
Our engine is built using HTK [26]. More details on acoustic model
training can be found in [25]. Separate microphone adaptation trans-
formations are estimated using global MLLR. Preliminary experi-
ments with regression-tree based MLLR did not yield any additional
improvements possibly due to limited adaptation data. In Fig. 4
speech recognition performance is shown for all 40 microphones of
the apartment, sorted by ASR performance, for all the acoustic mod-
els and their adapted versions. The word accuracies are shown in
increasing order of magnitude. It can be seen that combined appli-
cation of training using the properly distorted training corpus and
adaptation leads to an improvement of median accuracy close to
57%. Adaptation alone can improve the performance of the “clean”
models significantly but the performance of “reverb1” and “reverbR”
models less so. Last but not least, the performance of the “reverb1”
and “reverbR” appears to be more or less equalized after adaptation
which indicates that large variability of the distortions of the train-
ing corpus may not be so critical as long as they capture the basic
reverberation and noise properties of the real environment.

Channel selection, combination and beamforming evaluation.
Results of SNR-based channel selection are shown in Table 2. The
SNR-best microphone performs significantly better than the single
best microphone. The latter is selected a posteriori based on its
performance on all the test data, for all the cases of adapted speech

clean reverb1 reverbR

best-mic 52.21 89.09 90.13
SNR-best 85.71 96.88 97.66

mc-combined 88.05 97.14 97.92

Table 2. Channel selection and channel combination word accuracy
results for the adapted acoustic models. The best mic is selected a
posteriori based on word accuracy for the entire test. The SNR-best
microphone is the microphone with the highest SNR for each simu-
lated command. The mc-combined results are based on the proposed
multichannel combination approach.

clean reverb1 reverbR

DS-gt 78.41 96.52 98.49
MVDR-MMSE-gt 92.70 95.26 93.89
MVDR-MMSE-est 80.48 90.36 91.90

SNR-best 84.09 97.35 98.48
mc-combined 87.50 97.73 98.48

Table 3. Comparison with beamforming: word accuracy results in
a subset for which beamforming can be effectively run. Simple de-
lay and sum and MVDR-beamforming with MMSE postfiltering are
tested. In all cases, MLLR-adapted models are used. Beamforming
does not perform as well when the source location information is
estimated and not known a priori (-est vs. -gt).

models. By employing SNR as our channel selection criterion we
pick the 3 SNR-best microphones for each simulation and com-
bine them in the way described in Sec. 2.2. The second and third
best-SNR microphones have SNRs that are typically not lower than
3dB from the top SNR. A 5-best list is generated for the highest-
SNR microphone for each simulation and is then rescored by the
other two microphones and resorted based on the combined score
(mc-combined results). The resulting performance was better by
2.34% in absolute for the clean case compared with the SNR-best
microphone performance as shown in Table 2.

We also evaluated the proposed channel selection and combina-
tion scheme against the use of beamforming to fuse the information
from multiple channels. Beamforming is applied for a subset of the
test-set, i.e., for 51 simulations, for which the source is either in the
kitchen or in the livingroom. Results for this subset using adapted
models are shown in Table 3. Given the ground-truth source loca-
tions it appears that beamforming can perform very well. Also, it’s
worth noting that the MVDR-MMSE beamformer significantly out-
performs the DS one for the clean models which have been trained in
mismatched conditions. On the other hand, when source location in-
formation is estimated and not exact, the proposed channel selection
and combination scheme performs better in all cases.

5. CONCLUSIONS

By combining robust modeling and multichannel processing, we
presented our current approach for key-phrase spotting and com-
mand recognition for home automation. By employing SNR-based
channel selection and the proposed N-best rescoring combination of
multiple channels our system achieves word accuracy close to 88%,
97% and 98% for the adapted clean, reverb1 and reverbR models
respectively. For keyword spotting we reach an F-measure close to
0.70. In the future, we plan to explore alternative keyword modeling
approaches and investigate the application of the proposed channel
combination scheme for keyword spotting as well.
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