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ABSTRACT. In this paper we introduce some new
techniques for modeling fractal images using concepts from
the theory of iterated function systems and morphological
skeletons. In the theory of iterated function systems, a
fractal image can be modeled arbitrarily closely as the at-
tractor of a finite set of affine maps. We use the morphologi-
cal skeleton to provide us with sufficient information about
the parameters of these affine maps. This technique has
applications for fractal synthesis, computer graphics, and
coding. Images that exhibit self-similarity, such as leaves,
trees, mountains, and clouds, can be easily modeled using
these techniques. Slight perturbations in the parameters of
the model create variations in the image that can be used
in animation. Finally, the small number of parameters in
the model allows for very efficient image compression.

1 Introduction

“I wonder about trees” —Robert Frost

Many natural objects exhibit a very high level of geo-
metrical complexity. When a small region of such an object
is examined closely, a surprising level of detail is revealed.
Such objects are known as fractals (a fractal is more for-
mally defined by Mandelbrot (8] as a set whose Hausdorf-
Besicovitch dimension is greater than its topological dimen-
sion) and a variety of techniques have been developed to
model these objects.

For a large class of natural images such as leaves, trees,
mountains, and clouds, the detail of the object closely re-
sembles the object as a whole. This paper discusses a tech-
nique for modeling such self-similar fractals.

Demko, Hodges, and Naylor [4] provide a summary of
the previously used techniques to model self-similar objects.
Some of the techniques are highly specialized in the sense
that they effectively model only one type of object, while
other techniques are not intuitive and thus are ill-suited for
interactive design and modeling. Many of the fractal tech-
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niques offer very limited control, such as the specification
of the fractal dimension, and are therefore of limited use in
modeling specific fractal objects.

The technique introduced here is based on the theory
of iterated function systems. An important contribution to
this area is Barnsley’s Collage Theorem which states that if
an image can be roughly covered with smaller affine trans-
formations of itself then an approximation to the image can
be reconstructed by computing the attractor of the set of
affine transformations.

While this theory is potentially very useful in model-
ing a large class of images, until now there has been no
systematic method for actually finding the parameters of
the affine transformations. Our method is based on first
computing the skeleton, a thinned caricature of the image,
and using the information provided by the skeleton to com-
pletely determine the affine transformations. This leads to
a very simple interactive modeling tool and our algorithms
are well-suited for complete automation of the modeling
process.

In Sections 2 and 3 we review the necessary mathemat-
ical background. Section 2 reviews the theory of iterated
function systems while Section 3 deals with the basic op-
erations of mathematical morphology and the skeleton. In
Section 4 we incorporate these concepts into a series of
new algorithms for the interactive solution of the inverse
problem. In Section 5 we summarize our results and make
suggestions for future research.

2 Iterated Function Systems

Big whirls have little whirls;

That feed on their velocity;

And little whirls have lesser whirls,
And so on to viscosity.

— L. F. Richardson

In this section we begin with the classical definition of
the Hausdorff metric and then introduce the notions of con-
traction mappings, sterated function systems, and attrac-
tors. Finally, we present a surprising result, due to Barns-



ley, which provides us with the mathematical basis neces-
sary to model self-similar and “pseudo-self-similar” binary
images.

Let 7(X) be the set of all nonempty closed and bounded
subsets of the metric space (X,d). Then the Hausdorff
distance function is defined by

h(A,B) = inf d i
(4, B) = max{sup inf d(z, y),sup inf d(z,y)}

for A,B € ¥(X). f: X — X is a contraction if there exists
a number a < 1 such that d(f(z), f(y)) < ad(z,y) for all
z,ye X. f fi: X — X, 1< 1 < n, are contraction
mappings, then {X, f; | 1 < ¢ < n} is said to be an sterated
function system. Let us define f;(A4) by fi(A) = {fi(z) |
z € A}, 1 < i < n. Then, Hutchinson [5] has shown
that the function F : F(X) — F(X) defined by F(A) =
IJ fi{4), A € F(X), is a contraction mapping with
1<i<n
respect to the Hausdorff metric A.

Let us define F*(A) recursively by F™*(A) = F(F"~1(4))
where FO(A) = A. Then the attracior, A, of the iter-
ated function system {X,f; | 1 < ¢ < n} is defined by
A= lim F"(A) for A € ¥(X). An important property of
the attractor is that A is independent of A € F(X) [7].

Theorem 1 (Barnsley [2]) Let {X, f; | 1 <i < n} beanit-
erated function system and let S € F(X) with h(F(S),S) <
g, € > 0. Then h(A,S) < 1% where A is the attractor of
the iterated function system and m is the smallest number
such that d(fi(z), fi(y)) < md(z,y) for all z,y € X and
1<i<n.

This theorem states that if we can “approximately” cover
an image S with smaller transformations of itself, then the
attractor of these transformations approximates the image
S.

We will find it convenient to generalize somewhat the
standard definition of the iterated function system by adding
a fixed set map to the system. That is, given an iterated
function system {X,f; | 1 < ¢ < n} with F(A) defined
to be |J fi(A) and given a fixed set C, we can define a

1<i<n
new iterated function system {X,C, f; |1 <1< n} and an
associated set map G : F(X) — F(X) defined by

G(4)=Fa)uo=| U fi(4)

1<i<n

uC, A€ ¥(X)

Since h(AUC, BUC) < h(A, B) and F is a contraction map
with respect to h, we see that h(A, B) > h(F(A), F(B)) >
h(F(A) U C,F(B) U C) = h(G(A),G(B)) and thus G is
a contraction mapping with respect to h. Therefore, the
attractor of G is well-defined. Now, by Barnsley’s Theorem,
if we can “approximately” cover an image S with smaller
transformations of itself and a fixed set, then the attractor
of this system approximates the image S. For example,
each tree in Figure 1 was produced by using a fixed set map
for the trunk and affine transformations for the branches.
Figure 2 demonstrates these transformations for a simple
tree. The tree was computed as the attractor of three affine
transformations (see the table in Figure 2) and a fixed set

“trunk.” The fixed set is comprised of two ellipses with
major axis of length 60 and minor axis of length 10 centered
at (0,0) and (0,20). The bottom of the “trunk” was later
truncated to make the base of the “trunk” flat. The process
of actually computing the attractor is discussed below.

In practice, it is inefficient to compute the attractor di-
rectly from its definition by computing G(A), G(G(A)), etc.
If A is much larger than the attractor, or the value of m in
Barnsley’s Theorem is close to 1, or there are many trans-
formations in the system, then the number of iterations
in this process may be quite large. Furthermore, in a finite
number of iterations it is only possible to achieve an approx-
imation to the attractor. However, Barnsley and Demko [1]
propose an efficient and exact computation of the attractor
that works as follows: Let {X, C, f; | 1 <i < n} be an iter-
ated function system with attractor 4. Let p = (po,...,pn)
be a probability vector (p; > 0 and Y ,p; = 1) and let
z € X. Choose C with probability py and f; with prob-
ability p; at random. If C is selected then choose a new
z € C at random and plot z. If f; is chosen, apply f; to =,
plot fi(z), and set z := f;(z). This process is repeated for
a fixed number of steps. For example, the tree in Figure
2 was computed using 500,000 iterations of this algorithm
with equal probability assigned to each of the three affine
transformations and the fixed set map.

If point z is initially chosen inside A then each iteration
will keep the point inside A since points cannot “escape”
from the attractor. If point z is initially chosen outside the
attractor then we can first perform a few iterations with-
out plotting to bring the point inside the attractor. This
algorithm only plots points inside the attractor and the
probability vector effects the distribution of points and not
the geometry of the attractor. A sufficiently large number
of iterations of this process will cover the entire attractor.

3 Mathematical Morphology

Mathematical morphology extracts geometrical information
about an image (represented as a set) by performing a set
transformation of the image with respect to a simpler and
smaller object called a structuring element (represented by
a compact set). The two most fundamental morphological
transformations are eroston and dilation. Let A be an ar-
bitrary set in R%, where R is the set of real numbers. Let
B be a compact symmetric set (with respect to the origin)
in R2. Then the erosion of A by B, denoted by A © B, is

defined to be n Ay where A, is the translate of A centered
beB

at b (that is, Ay = {b-+z | £ € A} ). The dilation of A by B,

denoted by A® B, is defined to be U A, [10]. If B contains

the origin of the plane then erosiorfesirinks the image while
dilation expands the image. The morphological opening of
A by B, denoted by AOB, is defined to be (A © B) & B
[10]. An important property of the opening is that A OB
is the union of all translates of B which are contained in A.

If Ais a set in the plane then the disk rD, of radius
r and centered at z is mazimal with respect to A4 if it is
contained in A and is not properly contained in any other
disk contained in A. Blum [3] defines the skeleton (medial
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axis) of A, denoted by SK(A), to be the set of centers of all
disks maximal with respect to A. To each point, z, in the
skeleton corresponds the radius of the maximal disk cen-
tered at z. The skeleton function §(z) returns the radius
of the maximal disk centered at z. The r*! skeleton sub-
set of SK(A), denoted by S,(A), is defined to be the set
of all skeleton points z such that S(z) = r. An impor-
tant property of the skeleton function is that it contains all
the information necessary to reconstruct the original image.

That is, A = |J[S,(A) @ rD|. This fact has been used to
r>0
efficiently encode binary images by their skeletons (9]

Lantuejoul [6,11] has shown that the skeleton can be
alternatively defined by morphological operations as

SK(4) = U s.(4) = J[(AerD) - (AerD)0drD]

r>0 r>0
where 7D denotes the open disk of radius r, drD is the
closed disk of infinitesmally small radius dr, and “—” de-
notes set difference.

The above concepts can be equally well applied to dis-
crete binary images. If A and B are subsets of Z?, where
Z denotes the set of integers, the definitions of erosion,
dilation, and opening are still meaningful [11]. In order to
generalize the concept of the discrete skeleton [9], we choose
a finite discrete symmetric structuring element of approxi-
mately circular shape, D, and define this shape as having
size 1. Now, rD, the disk of discrete size r, is defined to be

D¥DeDe...oD
L

r

where r = 0,1,2,3,.... If r = 0, then rD = {(0,0)} by
convention. Then, the r*® skeleton subset is S-(A)=(Ae
rD) — (A© rD)OD, and the discrete skeleton is

SK(4) = | s.(4) = Ul(AerD) - (AerD)oD]
r=0 r=0
where n = max{k | A © kD # @8}. Notice that the discrete
skeleton may be disconnected. Maragos and Schafer de-
scribe an O(n) algorithm for computing the discrete skele-
ton of a set A, where n+1 is the number of skeleton subsets
of SK(A) and the unit operation is an image erosion [9).

4 New Techniques

In order to apply Barnsley’s Theorem, we must be able
to find the set of transformations and the fixed set map
that comprise the iterated function system. In this section
we present some new techniques for solving this problem.
Specifically, we use the information provided by the skele-
ton to find the affine transformations and the fixed set map.

Our study began with the investigation of several “syn-
thetic” self-similar objects (These objects are called “syn-
thetic” because they can be defined precisely by a simple
construction rule). Perhaps most famous among such ob-
jects is the Triadic Koch Island (8], K, shown in Figure 3.
The boundary of this fractal is generated by constructing
an equilateral triangle whose edges are recursively defined
in terms of smaller versions of themselves by the construc-
tion rule shown in Figure 4.
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The Triadic Koch Island, K, is self-similar because it is
defined in terms of smaller versions of itself. Notice that
each of the six “protruding parts” is itself a Triadic Koch
Island of size one-third that of the original. Therefore, this
fractal can be ezactly covered by six affine transformations
of itself (Figure 5) and a fixed disk that covers the remain-
ing portion or “bulk” of the image. The six affine transfor-
mations have the form:

() 43) (1) v

where ( If ) is the appropriate shift vector.

1

For the Triadic Koch Island, the problem of finding
these shift vectors is a simple exercise. However, we will
use this example to demonstrate an observation that will
be of great importance in modeling more complex objects.
The skeleton of K is shown in Figure 6. The central branch
point (labelled in Figure 6) corresponds to the center of the
image. Each of the outer branch points (labelled in Figure
6) corresponds to the center of a smaller Triadic Koch Is-
land. Therefore, the six shift vectors are the six vectors
emanating from the center and terminating at the branch
points. If the coordinates of the center point and the six
branch points are known then the six affine transformations
can now be found.

In general, since self-similar objects are comprised of
smaller rotated and shifted versions of themselves, we can
use for the contraction mappings in the iterated function
system affine transformations of the form:

z cos 0:’ —sin 0,‘ z x; )
fi(y>=ri<sin0; cos0,~)(y)+(y‘),lﬁz§n

where 0 < r; < 1, 0 < §; < 2n. However, these affine
transformations may not completely cover the image and
it is convenient to cover the remaining bulk of the image
with a fixed set comprised of disks. Disks are particularly
convenient for two reasons. First, it is important that the
fixed set be simple to encode. A disk can be easily encoded
with three real parameters (radius, x- coordinate of center,
and y- coordinate of center). Of course, the bulk could also
be covered with affine transformations, but since the bulk is
not in general similar to the original image, this approach
is quite cumbersome. Furthermore, disks relate directly
to the concept of the skeleton, and thus the bulk-covering
disks can easily be found from the skeleton.

An Interactive Modeling Tool

Employing the ideas in the above discussion, we have de-
veloped an interactive tool for modeling fractal binary im-
ages. Given an image A to be modeled, we first compute
the skeleton of the image. The user locates the central
branch point, a, and a branch point, b, corresponding to
the scaled, rotated, and shifted copy of the image, B. The
shift element of the affine transformation carrying A to B
is the vector from a to b. Since the ratio of the sizes of B to
A is the ratio of sizes of the largest maximal disks in B and



A, respectively, the scaling factor of the transformation is
r = $(b)/S(a) where § is the skeleton function.

The problem of finding the angle of rotation, §;, is some-
what more difficult. If the image A is comprised of smaller
rotated and shifted but not distorted copies of itself then
we can apply the transformation, f;, with several values
for 8; and find the value, 8}, that provides the best fit.
We solve the problem of finding this optimum value by
minimizing a set-theoretic error criterion. Specifically, our
method involves computing first ACkD, the k** opening
where k = §(b), eliminating all detail up to disks of ra-
dius k from the image [9]. We then superimpose f;(4)
on the opening and try to find the value of 6; for which
(AOkD) U f;(A) “best matches” A. This is done by min-
imizing the area of the symmetric set difference between
(ACkD) U f;(A) and A {The symmetric set difference of
sets X and Y is defined by XAY ¥ (X UY) - (XNnY) ).
The algorithm is given below.

Algorithm 1

begin
min.area := BIGNUMBER;
min.theta := 0;
opening := (A0 kD) ® kD;
for 6; := 0 to 27 step incrementsize do

begin
for all (z,y) € A do
T cosf®; —siné; T 7
f‘<y>_r"(sin0,' cosag)(y)+(y;);
symmetric.difference := (opening U f;(A))AA;
area.of.difference := area(symmetric.difference);
(* The area function computes the
area (cardinality) of a set *)
if area.of.difference < min.area then
begin
min.area ;= area.of.difference;
min.theta := 0
end
end;
return(min.theta)
end

The stipulation that the image be comprised of undis-
torted transformations of itself is in general only valid for
synthetic self-similar images. Natural self-similar images
are comprised of somewhat distorted copies of themselves
and thus the “collage” of affine transformations will be im-
perfect. For such images, Algorithm 1 will not perform well
since the best fit transformation may not correspond to the
self-similarity transformation.

For these cases we use a different technique to compute
the angle 8;. The user locates the branch point, b, as well
as several other points on the same branch. We then apply
a least square fit to these points to give us the slope, m, of
the branch and thus §; = arctan(m) + k7 where k is O or
1 depending on the orientation of the branch. Also, due to
distortion, the x- and y- scalings of the self-similar region
may be different and instead of a single scaling factor, r;,

we may consider seperate x- and y- scalings, r.; and 7y,
so that the transformation has the form:

P ( T ) _ ( reicosl; —ry;sind; ) ( z ) + ( x; )
*Vy )\ rgesind;  ryscosé; y Y
where r;;, r,; < 1. To compute rz; and r,; we use an
algorithm similar to Algorithm 1. We first compute AOkD
and then superimpose f;(A) with varying values of r,; and
ry.> attempting to minimize ((AOkD) U fi(A))AA. This

algorithm is given below.

Algorithm 2

begin
(* User specifies central branch point, a,
and a branch point b. LOFACTOR ts a real number
less than 1 and HIFACTOR is a real number greater
than 1. ¥)
min.area := BIGNUMBER;
r:= §(b)/S(a);
for r,; := (r*LOFACTOR) to (r*HIFACTOR)

step incrementsize do
i
. +
y reisind; ry;cosd; y ) ( Y

step incrementsize do
for r,; := (r*LOFACTOR) to (r*HIFACTOR)
begin
for all (z,y) € A do
fi ( T ) _ ( rgicosl; —r,;sind; ) ( z
symmetric.difference := ((ACkD) U fi(A))AA;
area.of.difference := area(symmetric.difference);
if area.of.difference < min.area then

begin
r:,i = Ty
r;’,- =Ty
end
end;
return (r:,,., r;,,-)

end

Once the affine transformations for the iterated function
system are found, the fixed set can be found. The user
views the original image with the affine transformations
superimposed on the image and then fills the uncovered
portion of the image with maximal disks. The maximal
disks are found by locating skeleton points in uncovered
regions of the image. Each skeleton point corresponds to
the center of a maximal disk and the radius of the disk can
be computed from the skeleton function.

Figure 7 demonstrates Algorithm 2 applied to a maple
leaf. The attractor was computed using three affine trans-
formations (see the table in Figure 7) and a fixed set disk
of radius 20 centered at (0,-3). The attractor was then pro-
cessed with a sequence of erosions and dilations to give an
image more closely resembling the original leaf.

5 Conclusion

In this paper we have demonstrated an application of it-
erated function systems and mathematical morphology to

)
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techniques for modeling self-similar images. Using iter-
ated function systems alone, it is possible to construct self-
similar images such as the trees in Figure 1. Using the
techniques that we have described here, it is possible to
solve the inverse problem and construct a model for any
self-similar image.

Two obvious applications of this technique are to im-
age compression and animation. The leaf in Figure 7 was
modeled by three affine transformations and a bulk-filling
disk corresponding to an information rate of approximately
0.038 bits per pixel.

Figures 8a, 8b, and 8c show three frames of a bending
tree obtained by slightly varying the angular components in
the affine transformations. This demonstrates a very nice
application to animation.

Finally, the process that we have described here could
potentially be fully automated. The difficulty of automa-
tion is primarily in the detection of branch points. This
problem could perhaps be resolved by using a connected
skeleton algorithm modified slightly to contain the infor-
mation of the skeleton function. An automated algorithm
for filling in the “bulk” is less difficult and could be imple-
mented, for example, by choosing skeleton points (begin-
ning with the last skeleton subset) and drawing the cor-
responding maximal disks until the “bulk” is completely
covered.
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Figure 1. Trees constructed from iterated function systems.
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