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ABSTRACT

In this paper we briefly summarize our on-going work on
modeling nonlinear structures in speech signals, caused
by modulation and turbulence phenomena, using the theo-
ries of modulation, fractals, and chaos as well as suitable
nonlinear signal analysis methods. Further, we focus on
two advances: i) AM-FM modeling of fricative sounds
with random modulation signals of the 1/f-noise type and
ii) improved methods for speech analysis and prediction
on reconstructed multidimensional attractors.

1. INTRODUCTION

For several decades the traditional approach to speech mod-
eling has been the linear (source-filter) model where the
true nonlinear physics of speech production is approxi-
mated via the standard assumptions of linear acoustics and
1D plane wave propagation of the sound in the vocal tract.
This approximation leads to the well-known linear predic-
tion model for the vocal tract where the speech formant
resonances are identified with the poles of the vocal tract
transfer function. The linear model has been applied to
speech coding, synthesis and recognition with limited suc-
cess; to build successful applications, deviations from the
linear model are often modeled as second-order effects
or error terms. However, there is strong theoretical and
experimental evidence [1, 2, 3, 4, 5] for the existence of
important nonlinear aerodynamic phenomena during the
speech production that cannot be accounted for by the lin-
ear model. In our work we view the linear model only
as a first-order approximation to the true speech acoustics
which also contain second-order and nonlinear structure.
The investigation of speech nonlinearities can proceed in at
least two directions: (i) numerical simulations of the non-
linear differential (Navier-Stokes) equations [6] governing
the 3-D dynamics of the speech airflow in the vocal tract,
as e.g., in [3, 7], and (ii) development of nonlinear signal
processing systems suitable to detect such phenomena and
extract related information. In our research we focus on the
second approach, which is computationally much simpler,
i.e., to develop models and extract related acoustic signal
features describing two types of nonlinear phenomena in
speech, modulations and turbulence. Turbulence can be
explored both from the geometric aspect, which brings us
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to fractals [16], and from the nonlinear dynamics aspect,
which leads us to chaos [23, 22].

Thus, in our on-going work we explore models suit-
able to extract information about the modulation, fractal
and chaotic structure of speech signals and use it for appli-
cations such as recognition and synthesis. The purpose of
this paper is doublefold: First, we briefly summarize the
main concepts, models and algorithms that we have used
or developed in the three above nonlinear methodologies
for speech analysis. Second, we focus on two advances:
i) an AM-FM model for fricative sounds using random
processes with 1/f spectrum for the instantaneous nonlin-
ear phase fluctuation, and ii) some improved techniques for
nonlinear speech analysis and prediction on reconstructed
multidimensional attractors.

2. SPEECH MODULATIONS

By ‘speech resonances’ we shall loosely refer to the os-
cillator systems formed by local vocal tract cavities em-
phasizing certain frequencies and de-emphasizing others.
Although the linear model assumes that each speech reso-
nance signal is a damped cosine with constant frequency
within 10-30 ms and exponentially decaying amplitude,
there is much experimental and theoretical evidence for
the existence of amplitude modulation (AM) and frequency
modulation (FM) in speech resonance signals, which make
the amplitude and frequency of the resonance vary instan-
taneously within a pitch period. First, due to the airflow
separation [1, 6], the air jet flowing through the vocal tract
during speech production is highly unstable and oscillates
between its walls, attaching or detaching itself, and thereby
changing the effective cross-sectional areas and air masses.
This can cause modulations of the air pressure and velocity
fields. Also, during speech production vortices can easily
be generated and propagate along the vocal tract [6, 3],
while acting as modulators of the energy of the jet. Mo-
tivated by this evidence, in [8, 9] we proposed to model
each speech resonance with an AM-FM signal

x(t) = a(t) cos[φ(t)] = a(t) cos[2π
∫ t

0
f(τ)dτ ] (1)

and the total speech signal as a superposition of such AM-
FM signals,

∑
k ak(t) cos[φk(t)], one for each formant.

Here a(t) is the instantaneous amplitude signal and f(t) is
the instantaneous cyclic frequency representing the time-
varying formant signal. The short-time formant frequency
average fc = (1/T )

∫ T

0 f(t)dt, where T is in the order
of a pitch period, is viewed as the carrier frequency of
the AM-FM signal. The classical linear model of speech
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views a formant frequency as constant, i.e., equal to fc,
over a short time (10-30 ms) frame. However, the AM-FM
model can both yield the average fc and provide additional
information about the formant’s instantaneous frequency
deviation f(t) − fc and its amplitude intensity |a(t)|.

For demodulating a single resonance signal, in [9] we
used the nonlinear Teager-Kaiser energy-tracking opera-
tor Ψ[x(t)] � [ẋ(t)]2 − x(t)ẍ(t), where ẋ = dx/dt, to
develop the following nonlinear algorithm√

Ψ[ẋ(t)]
Ψ[x(t)]

≈ 2πf(t) ,
Ψ[x(t)]√
Ψ[ẋ(t)]

≈ |a(t)| (2)

This is the energy separation algorithm (ESA) and pro-
vides AM-FM demodulation by tracking the physical en-
ergy implicit in the source producing the observed acoustic
resonance signal and separating it into its amplitude and
frequency components. It yields very good estimates of
the instantaneous frequency signal f(t) ≥ 0 and of the
amplitude envelope |a(t)| of an AM-FM signal, assuming
that a(t), f(t) do not vary too fast (small bandwidths) or
too greatly compared with the carrier frequency fc.

There is also a discrete version of the ESA, called
DESA [9], which is obtained by using a discrete energy
operator on discrete-time nonstationary sinusoids. The
DESA is a novel and very promising approach to demod-
ulating speech resonances for many reasons: (i) It yields
very small errors for AM-FM demodulation. (ii) It has an
extremely low computational complexity. (iii) It has an ex-
cellent time resolution, almost instantaneous; i.e., operates
on a 5-sample moving window. Extensive experiments on
speech demodulation using the DESA in [9, 12, 13] indi-
cate that these amplitude/frequency modulations exist in
real speech resonances and are necessary for its natural-
ness. The main disadvantage of the DESA is a moderate
sensitivity to noise. This can be reduced by first interpolat-
ing the discrete-time signal with smoothing splines to cre-
ate a continuous-time signal, then applying the continuous-
time ESA (2), and finally sampling the information-bearing
signals to obtain estimates of the instantaneous amplitude
and frequency of the original discrete signal x[n]. This
whole approach is called the Spline-ESA and is developed
in [10].

The ESAs are efficient demodulation algorithms only
when they are used on narrowband AM-FM signals [11].
This constraint makes the use of filterbanks inevitable for
wideband signals like speech. Thus, each short-time seg-
ment (analysis frame) of a speech signal is simultaneously
filtered by all the bandpass filters of the filterbank, and
then each filter output is demodulated using the ESA. In
our on-going research [12, 13, 14, 15] we have been using
filterbanks with Gabor bandpass filters whose center fre-
quencies are spaced either linearly or on a mel-frequency
scale. See Fig. 1.

Random Modulations and 1/f Noises
While the instant frequency signals produced by de-

modulating resonances of speech vowels have a quasiperi-
odic structure, those of fricatives look random. Since frica-
tive and stop sounds contain turbulence, motivated by Kol-
mogorov’s multiscale model of turbulence, we are propos-
ing a random modulation model for resonances of fricatives
and stops where the instant phase modulation signal is a
random process from the 1/f-noise family. Specifically, we
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Fig. 1. Demodulating a speech phoneme using a Gabor
filterbank and the Spline-ESA. From [15].

are modeling each such speech resonance R(t) as

R(t) = a(t) cos(2πfct+ p(t)), E[|P (ω)|2] ∝ σ2

|ω|γ

where p(t) is a random nonlinear phase signal, P (ω) is its
power spectral density (PSD), and E[.] denotes expecta-
tion. The PSD, measured either by a sample periodogram
|P (ω)|2 or empirically via filterbanks, is assumed to obey
a 1/ωγ power law; such processes are called “1/f noises”.
A popular fractal model for a subclass of 1/f noises are the
fractional Brownian motions (FBMs) [17]. The method
we used to solve the inverse problem, i.e. that of extract-
ing the phase modulation p(t) from the speech resonance,
is summarized below in four steps: (1) Isolate the reso-
nance by bandpass filtering the speech signal. We used a
Gabor filter due to its minimal duration-bandwidth prod-
uct. (2) Use the ESA to estimate the AM and FM signals,
a(t) and f(t). (3) Median filter the FM signal for reduc-
ing some extreme spikes as discussed in [9]. (4) Estimate
the phase modulation signal p(t) by integrating the instant
frequency: p̂(t) = 2π

∫ t

0 (f(τ) − fc)dτ, where fc is the
short-time average of f(t).

To test the efficiency of this method we created artifi-
cial resonace signals with 1/f phase modulation signal and
compared the initialp(t)with its estimate p̂(t)via the above
procedure. The original 1/f phase modulation was created
by filtering white noise; however, any known method for
1/f noise synthesis can be used. As seen in Figs. 2(d),(e)
the reconstructed phase modulation p̂(t) is a low pass ver-
sion of the original p(t). This is due to the Gabor filtering
and the inherent limit to the amount of information that
can be carried by phase modulation.

Next we present strong experimental evidence that cer-
tain classes of speech signals have resonances that can be
effectively modeled as phase modulated 1/f signals. In
order to test the validity of the model we demonstrate log-
axes plots of the estimated power spectrum of p̂(t) that
clearly follow a spectral 1/fγ power law. All the power
spectra were estimated by using Welch’s averaged modi-
fied periodogram method. Another test we used was the
variance of the wavelet coefficients. Following [18], if
ψm

n (t) is an Rth-order regular wavelet basis (R depends on
γ), then the process constructed via the expansion p(t) =∑

m

∑
n x

m
n ψ

m
n (t) is "nearly 1/f" when the wavelet coeffi-

cients have variances varxm
n = σ22−γm. We have exper-

imentally found that many real speech phase modulation
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Fig. 2. (a) Artificial Resonance with 1/f phase p(t). b) Instant Frequency. c) p(t) and p̂(t). d) PSD of p(t) and p̂(t).

signals seem to obey this law.

After estimating the phase modulation signal, the prob-
lem of estimating its spectral exponent γ naturally fol-
lows. Many methods have been proposed for this estima-
tion problem. They include, among others, least squares
estimation of the slope of log-axes plots of sample pe-
riodograms, methods based on wavelets, and maximum
likelihood (ML) schemes. For a detailed review see [19].
The ML estimators are considered the most suitable be-
cause they are able to cope with measurement noise. These
methods are based on the well-known FBM model [17].
Unfortunately, FBM is not suitable for processes where
γ > 3 because the theory does not directly accommodate
such cases. Further, the fact that the signal p̂(t) (from
which γ will be estimated) is a low-pass filtered 1/f pro-
cess creates difficulties for any estimator based on an exact
1/f model. In our experimental study we used the simple
method of using least-squares estimate on a log-axes plot
of Welch’s periodogram using only the part of the power
spectrum not affected by low pass filtering. The spectral
exponents estimated were roughly in the range γ ∈ (2.5, 4)
demonstrating that FBM is not suitable to model such high
correlated 1/f processes also known as "black noises". The
wavelet EM approximation algorithm proposed in [18],
an interesting approach not based on FBM, was recently
shown in [19] to provide satisfactory estimation only when
0 < γ < 1. Therefore, the only method that worked rela-
tively well was to use a least squares fit on the frequencies
of the periodogram not affected by the low pass filtering.
This method only provides a rough estimate of γ exponent
and is sensitive on measurement noise.

Figure 3 demonstrates the application of the above de-
scribed 1/f-phase modulation model to an unvoiced and
a voiced fricative. We have also performed numerous
other similar experiments on real speech signals (from the
TIMIT database), by following the same procedure: A
strong speech resonance is located, possibly by using the
iterative ESA method. Then the ESA is used to extract the
phase modulation. (The phase modulations were also esti-
mated via the Hilbert transform to make sure that the ESA
does not introduce any artifacts.) The estimated phase is
assumed to be a low passed version of a 1/fγ random pro-
cess and the γ exponent is estimated from the slope of the
power spectrum (as well as from the variance of wavelet
coefficients). In all these experiments our conjecture that
the phase modulation of random speech resonances has a
1/fγ spectrum has always been verified.

Our on-going work in this area includes better estima-
tion algorithms and a statistical study relating estimated
exponents with types of sounds.

3. SPEECH TURBULENCE

Conservation of momentum in the air flow during speech
production yields the Navier-Stokes equation [6]

ρ(
∂
u

∂t
+ 
u · ∇
u) = −∇p+ µ∇2
u (3)

where ρ is the air density, p is the air pressure, 
u is the (vec-
tor) air particle velocity, and µ is the air viscosity coeffi-
cient. It is assumed that flow compressibility is negligible
and hence ∇·
u = 0. An important parameter characteriz-
ing the type of flow is the Reynolds number Re=ρUL/µ,
where U is a velocity scale for 
u and L is a typical length
scale, e.g., the tract diameter. For the air we have very
low µ and hence high Re. This causes the inertia forces
to have a much larger order of magnitude than the viscous
forces µ∇2
u. A vortex is a region of similar (or constant)
vorticity 
ω, where 
ω = ∇×
u. Vortices in the air flow have
been experimentally found above the glottis in [1, 3] and
theoretically predicted using simple geometries in [2, 1, 4].
There are several mechanisms for the creation of vortices:
1) velocity gradients in boundary layers, 2) separation of
flow, which can easily happen at cavity inlets due to adverse
pressure gradients (see [1] for experimental evidence), and
3) curved geometry of tract boundaries, where due to the
dominant inertia forces the flow follows the curvature and
develops rotational components. After a vortex has been
created, it can propagate downstream as governed by the
vorticity equation [6]

∂
ω

∂t
+ 
u · ∇
ω = 
ω · ∇
u+ ν∇2
ω , ν = µ/ρ (4)

The term 
ω · ∇
u causes vortex twisting and stretching,
whereas ν∇2
ω produces diffusion of vorticity. As Re in-
creases (e.g., in fricative sounds or during loud speech),
all these phenomena may lead to instabilities and eventu-
ally result in turbulent flow, which is a ‘state of continuous
instability’ [6] characterized by broad-spectrum rapidly-
varying (in space and time) velocity and vorticity. Many
speech sounds, especially fricatives and stops, contain var-
ious amounts of turbulence. In the linear speech model this
has been dealt with by having a white noise source exciting
the vocal tract filter.

Modern theories that attempt to explain turbulence [6]
predict the existence of eddies (vortices with a characteris-
tic size λ) at multiple scales. According to the energy cas-
cade theory, energy produced by eddies with large size λ
is transferred hierarchically to the small-size eddies which
actually dissipate this energy due to viscosity. A related
result is the Kolmogorov law

E(k, r) ∝ r2/3k−5/3 (5)
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Fig. 3. Experiments with phoneme /s/ (top row) and /z/ (bottom row). Columns: a) Speech signal s(t). b) PSD of s(t)
and Gabor filter. c) Instant Frequency. d) Phase modulation p̂(t). e) PSD of p̂(t) and estimated slope. f) Variance of the
wavelet coefficients.

where k = 2π/λ is the wavenumber in a finite nonzero
range, r is the energy dissipation rate, and E(k, r) is the
velocity wavenumber spectrum, i.e., Fourier transform of
spatial correlations. This multiscale structure of turbu-
lence can in some cases be quantified by fractals. Man-
delbrot [16] and others have conjectured that several ge-
ometrical aspects of turbulence (e.g., shapes of turbulent
spots, boundaries of some vortex types found in turbulent
flows, shape of particle paths) are fractal in nature. We
may also attempt to understand aspects of turbulence as
cases of chaos. Specifically, chaotic dynamical systems
converge to attractors whose sets in phase space or related
time-series signals can be modeled by fractals; references
can be found in [23]. Now there are several mechanisms
in high-Re speech flows that can be viewed as routes to
chaos; e.g., vortices twist, stretch, and fold [6, 16]. This
process of twisting, stretching, and folding has been to
found in low-order nonlinear dynamical systems to give
rise to chaos and fractal attractors.

3.1. Speech Analysis using Fractals

Motivated by Mandelbrot’s conjecture that fractals can
model multiscale structures in turbulence, in [20] we used
the short-time fractal dimension of speech sounds as a fea-
ture to approximately quantify the degree of turbulence in
them. Although this may be a somewhat simplistic anal-
ogy, we have found in previous work [20, 21] the short-time
fractal dimension of speech to be a feature useful for speech
sound classification into phonetic classes, segmentation,
and recognition. An efficient algorithm developed in [20]
to measure it consists of using multiscale morphological
filters that create geometrical covers around the graph of
the speech signal, whose fractal dimension D can then be
found by

D = lim
s→0

log[Area of dilated graph by disks of radius s/s2]
log(1/s)

(6)
D is between 1 and 2 for speech signals; the larger D is,
the larger the amount of geometrical fragmentation of the
signal graph. In practice, real-world signals do not have
the same structure over all scales; henceD is computed by
least-squares fitting a line to the log-log data of (6) over
a small scale window that can move along the s axis and
thus create a profile of local multiscale fractal dimensions
D(s, t) at each time location t of the short speech analysis

frame. The function D(s, t) is called a fractogram. The
fractal dimension at the smallest scale (s = 1) can provide
some discrimination among various classes of sounds such
as vowels (very lowD), unvoiced fricatives (very highD),
and voiced fricatives (medium D). At higher scales, the
fractogram multiscale fractal dimension profile can also
offer additional information that helps in discriminating
among speech sounds. See Fig. 4.
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Fig. 4. Multiscale fractal dimension of phonemes /sh/,
/zh/, /uh/ and /t/, /d/, averaged over 200 instances [21].

Related to the Kolmogorov 5/3-law (5) is the fact that
the variance between particle velocities at two spatial lo-
cations X and X + ∆X varies ∝ |∆X|2/3. By linking
this to similar scaling laws in FBMs, it was concluded in
[20] that speech turbulence leads to fractal dimension of
D = 5/3, which was often approximately observed during
experiments with fricatives.

3.2. Speech Attractor Analysis using Chaotic Models

Attempting to explore the link between turbulence and
chaos, we have used concepts and methods from chaotic
systems to model and analyze nonlinear dynamics in speech
signals. Most of the techniques we used can be found
in [22]. Some preliminary efforts in our work to apply
these advanced techniques to speech signals are discussed
in [25]. Previous work on using chaotic systems to model
speech includes [26, 27, 28].

Embedding and Attractor Reconstruction. We as-
sume that (in discrete timen) the speech production system
can be viewed as a nonlinear (but finite dimensional due
to dissipativity) dynamical system Zn+1 = F (Zn) where
the phase space of Zn is multidimensional. A speech sig-
nal segment s(n), n = 1, ..., N , can be considered as a 1D
projection of a vector function applied to the unknown dy-
namic variables Zn. According to the embedding theorem
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Fig. 5. Waveforms for phonemes /iy/ and /z/ and attractors of embedded signals. From [25].

[22], the vector
Xn = [s(n), s(n+Td), s(n+2Td), . . . , s(n+(De−1)Td]
formed by samples of the original signal delayed by mul-
tiples of a constant time delay Td defines a motion in a
reconstructed De-dimensional space that has many com-
mon aspects with the original phase space of Zn. Specif-
ically, many quantities of the original dynamical system
(e.g. generalized fractal dimensions and Lyapunov expo-
nents) in the original phase-space Zn are conserved in the
reconstructed space traced by Xn. Thus, by studying the
constructible dynamical system Xn → Xn+1 we can un-
cover useful information about the original unknown dy-
namical systemZn → Zn+1 provided that the unfolding of
the dynamics is successful, e.g. the embedding dimension
De is large enough. However, the embedding theorem does
not specify a method to determine the required parameters
(Td, De) but only sets constraints on their values. Hence,
procedures to estimate good values of these parameters are
essential. Td is related to the correlation or mutual infor-
mation among speech samples. As in [22, 25] we choose
Td as the first minimum location of a function I(T ) equal to
the average mutual information between speech samples
that are T positions apart. Due to the projection, sam-
ples of the 1D signal are not necessarily in their relative
positions because of the true dynamics of the multidimen-
sional system (true neighbors). As in [22, 25], we find the
embedding dimension De by increasing its value until the
percentage of false neighbors goes to zero (or minimized
in the existence of noise). After choosing Td and De, the
task of embedding the speech signal in a multidimensional
phase space and reconstructing its attractor is completed.
See Fig. 5.

Dimensions. In the unfolded state-space one can mea-
sure invariant quantities of the attractor, which if chaotic
would be characterized by sensitive dependence on ini-
tial conditions, dense periodic points and mixing [23], and
fractal-type dimensions of geometrical (e.g. box-counting
dimension) and/or probabilistic (e.g. information dimen-
sion) character. The dimension of the attractor except from
being a measure of complexity, corresponds to the number
of active degrees of freedom of the system. A useful gen-
eralized dimension of probabilistic type is the correlation
dimension [24, 23]

DC = limr→0 limN→∞ logC(N, r)/ log r
whereC is the correlation sum, equal for each scale r to the
number of point pairs with distances less than r normalized
by the number of pairs.

Modeling and Prediction on Reconstructed Attractor

The task of predicting a chaotic signal that has been
produced by a system whose dynamics are described by
a function F can be formulated as finding a function F̂

that approximates F in an optimal way. Only a time series
of output observations s(n) are given, which can be used
to reconstruct the system’s attractor, where prediction is
done. Numerous techniques have been proposed for the
purpose of prediction, ranging from local linear models to
complex neural networks [29]. Various models (e.g. RBF
networks, zeroth and first order TSK models [32], local
polynomials) have been tested and found improper when
applied to a short data set (ca. 500 samples), which is
our case in speech; hence, only those that gave satisfying
results will be presented. The performance of predictors
has been evaluated on the data they have been trained with,
giving a measure of how well a model can learn the data
it has been given. However, this may be misleading when
we want to extract some useful features about the system
dynamics.

Lyapunov Exponent (LEs). A chaotic system is
characterized by extreme sensitivity on initial conditions
and rapid divergence of nearby orbits. LEs measure the ex-
ponential rate of divergence of orbits on phase-space and
can be used to characterize a dynamical system, since they
are independent of a particular coordinate system and em-
bedding dimension. Divergence of nearby orbits results in
a positive LE and convergence of orbits results in a nega-
tive LE. For a conservative system the sum of LEs has to
be negative, so that the orbits are bounded, while a chaotic
system has at least one positive LE.

LEs can be calculated as follows [34]: assume an ini-
tial state X0 which is slightly perturbed by ∆X to a new
one X ′

0. The values of the their orbits will differ by

|X ′
k −Xk|2 = ∆TXJT (X0)··JT (Xk)·J(Xk)··J(X0)∆X

k = 1, 2, 3 . . ., J(Xn) is the Jacobian of F at Xn and
| · | is the euclidian norm of a vector. We can estimate J
by using the predictor which approximates F . The quan-
tity J(Xk) · · ·J(X0)JT (X0) · · ·JT (Xk) when k → ∞
converges to the Oseledec matrix OSL of F . The loga-
rithm of the eigenvalues of the Oseledec matrix are equal
to the LEs of the system whose dynamics are described by
F . Since we usually do not have that long a time-series,
we use an approximation of OSL which involves only the
first kmatrixes, from which we calculate the so called local
Lyapunov exponents.

A problem that arises when calculating the eigenvalues
of the Oseledec matrix is its ill-conditioned nature which
causes numerical inaccuracies. The recursive QR decom-
position technique has been proposed, which breaks the
problem into smaller ones: The matrixOSL can be viewed
as the product of 2m matrixes,A2m ·A2m−1 · ·A1 each of
which can be expressed as AjQj−1 = QjRj ∀j, Q0 = I
where Qj , Rj result from the QR-decomposition of Aj .
Q is an orthogonal matrix and R is upper diagonal with
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decreasing diagonal elements. Thus, we can simplify the
diagonalization of OSL as follows [34]:

A2mA2M−1· · ·A1 = Q2mR2mR2m−1· · ·R1.
Since Q2m is orthogonal the eigenvalues of the last ex-
pression shall be equal to the eigenvalues of the product of
the R1···2m matrixes, so their eigenvalues shall equal the
elements of their diagonal. Subsequently, the i-th LE can
be expressed as λi =

∑2k
j=1 log(dji) where dji is the i-th

element of the diagonal of Rj .
Another problem we may encounter is due to the fact

that the embedding dimension is not necessarily the intrin-
sic dimension of the system, but can be a larger one, which
guarantees the unfolding of the attractor. As a by-product
of the embedding process, more LEs than the true ones are
calculated and they are called spurious exponents. One
can resolve this problem by reversing the order of the data
and calculating once more the LEs of the system. The true
ones should flip sign, since convergence of nearby orbits
now becomes divergence and vice-versa. The spurious
ones, however, are an artifact of the embedding process
and should stay negative, since they only represent how
the rest of the dimensions should collapse to the attractor
of the system, independently of the nature of the system.
This method was proposed in [34] and works well with
clean and long data sets using local polynomials for the
identification of the system dynamics. One of our main
criteria for choosing a certain predictor was how well this
can be done with short and relatively noisy data sets.

Speech Dynamic Models on Attractor. The model
that was found to be optimal for the purpose of prediction
with a relatively small number of parameters was a rather
simple one, which is an extension of the well known linear
(AR) model. Instead of assuming that the next value of
the state-space vector can be expressed as a linear com-
bination of the previous values of the signal we can use
an expression that uses higher order terms, i.e. a global
polynomial instead of a global linear model. The parame-
ters of a global polynomial that fits the data in an optimal
way can be calculated using the family Φ of orthonormal
multivariate polynomials:

φk(X = [x1, ..., xDe])=
k∑

m=1

Ak
m

De∏
i=1

x
ei(m)
i (7)

where {e1(m), · · · , eDe(m)}=I(m), and I is a one-to-one
correspondence with the propertym2 > m1 =⇒ei(m2)≥
ei(m1), i = 1 . . . De. The coefficientsAk

m for the polyno-
mials belonging to family Φ can be derived using a rather
sophisticated (but fast) method, so we assume they have
already been calculated; for a complete presentation see
[30]. We can then express F over the basis Φ as

F (X) =
∞∑

i=1

Ci ·φi(X), F � F̂ (X) =
k∑

i=1

Ci ·φi(X),

(8)
where Ci =

∑N
n=1 F (Xn) · φi(Xn). So the approxima-

tion F̂ is the is the most accurate expansion of F over
Φ using only k terms. This model is quite efficient for
the purpose of representing a signal where a rather crude
approximation of the dynamics is achieved using a very
small number of parameters. However, it is rather inade-
quate when our goal is to capture the dynamics of a system
to calculate its LEs. Having tested numerous models, we

finally decided to make use of Support Vector Machines
(SVMs) for regression [33].

SVMs are based on novel ideas from the field of neural
networks and have proven to give excellent results when
applied to chaotic signals [31]. What distinguishes them
from other models is that they aim to minimize the gen-
eralization error of the predictor rather than its training
error, so a fairly accurate model of the system dynamics
that is not biased in favor of the training data can be pro-
duced. Training an SVM for regression, whose output is
y = WTX + b, can be expressed as a quadratic program-
ming problem:

minimize 1
2W

TW + κ
∑L

i=1(ξi + ξ∗
i )

subject to




yi −WTXi − b ≤ ε+ ξi
WTXi + b− yi ≤ ε+ ξ∗

i

ξi, ξ
∗
i ≥ 0

where L is the training set length. The term WTW pe-
nalizes model complexity while the second term tries to
minimize prediction error. The first constraint penalizes
positive prediction errors e larger than ε by ξ = e − ε,
and the second does the same thing for negative errors i.e.
an ε-insensitive error function is used which results in a
robust to noise and outliers predictor. From the nature of
the optimization problem a sparse set of data points can
be used to approximate the function F and those Xi that
determine the value of W are called Support Vectors. The
expression of the approximating function is

F (X)=
∑l

i=1(αi−α∗
i )X

TXi+b
where α, α∗ are Lagrange multipliers from the dual op-
timization problem and only dot products are used. Any
kernel that satisfies the Mercer conditions [33] can be used
instead, such as odd B-splines, the Gaussian kernel and
polynomial kernels. SVMs using Gaussian kernels have
proven to give the best results amongst other techniques
that have been tested on short time-series for the purpose
of capturing the system’s dynamics and extracting the LEs.
One of their most important features is that they make it
possible to validate a LE based on the fact that LEs flip
sign, even when using only few and relatively noisy data.

Applications to speech signals. Our interest in apply-
ing the methods from chaos to the speech signal is twofold:
we wish to predict the speech signal using a predictor with
a relatively small number of parameters and we want to
extract some meaningful features (LEs) from the speech
signal that could be used for speech analysis. For every
phoneme class the global polynomials model can achieve
lower MSE than the LPC model using the same number of
parameters, even when only linear terms are included in the
expression for the global polynomials (Fig. 6). This veri-
fies that predicting the speech signal on the reconstructed
phase-space is more efficient. Specifically, in the context
of prediction of chaotic signals, the LPC model assumes
Td = 1 for any signal and De equal to the number of pa-
rameters and tries to fit a global linear model to the data.
On the contrary, using global polynomials, a fixedDe is as-
sumed and Td is calculated using a principled way, so that
any additional complexity of the predictor results in a more
accurate reconstruction of the system dynamics rather than
just increasing De. The results are quite impressive espe-
cially for vowels, where the LPC model is supposed to be
at its best. Applying some of the other models that we have
tested we managed to have a much lower MSE but at the
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Fig. 6. Prediction of speech signals on their attractor.

cost of larger predictors (fig.6). Our model of choice for
speech representation is therefore a global polynomial.

We calculated the LEs for different phonemes to see
whether some meaningful results can be obtained from
their values. After extensive testing, we decided to use an
SVM with error tolerance ε = 0.01 and Gaussian kernels,
whose spread was set to σ = 0.8R, where R is the diver-
gence of data from the mean of the attractor. In brief, the
results obtained are: (1) Vowels have small positive expo-
nents (usually only one) and 2-3 negative. (2) Stop sounds
have no validated exponents, i.e. no LEs flip sign when
the data are presented with the inverse direction. This is
a property characteristic of random or non-stationary sig-
nals: the methods applied to chaotic signals then break
down and cannot yield meaningful results. (3) For voiced
fricatives it is possible to find some validated positive expo-
nents while for unvoiced fricatives the same problem arose
as with stop sounds. This is a consequence of the highly
noisy nature of unvoiced fricatives that causes the methods
of chaotic analysis to break down. The fact that no LEs are
validated may still be used as information since this dis-
tinguishes stop sounds /unvoiced fricatives from vowels/
voiced fricatives.

A vague separation of the
phoneme classes can be ac-
complished using the first
three LEs of phonemes, as
can be seen in the right fig-
ure. After Principal Com-
ponents Analysis (PCA) we
have projected the data in
two dimensions, where the

+:vowel, o un/d fric., square: v/d fric. hexa:stop

four major classes can be separated, up to a certain degree.
Having selected the most robust algorithms for feature ex-
traction our future work shall concentrate on incorporating
the new features in the speech recognition process. Some
primary results are encouraging, since by enhancing the
original feature vector (12 mel-cepstrum coefficients) with
the two larger LEs we achieved a 10% decrease, on aver-
age, in cross-validation error, when classification in the
four main phoneme classes was attempted. We used K-
NN classifiers where K ranged from 1 to 50 and the best
performing classifier was selected.

4. NONLINEAR FEATURES AND ASR

Although there have been some preliminary efforts to apply
fractal and modulation ideas to speech vocoders [35, 13],
so far we have mainly applied these models to automatic
speech recognition (ASR). In our work [21, 15, 25] we have
been developing improved acoustic features for ASR by
augmenting the ‘standard’ feature vector (mel-frequency
cepstrum coefficients-MFCC) and its time derivatives with
information from the modulation1 and turbulence structure
of speech. Thus, as short-time acoustic representations of
speech we use hybrid feature vectors that contain informa-
tion both from the the linear model (smoothed cepstrum)
which represents a first-order approximation to the true
speech acoustics, as well as from the speech modulations
and the chaotic dynamics, which contain information from
the second-order non-linear speech acoustics. We have
used these hybrid feature vectors as input to hidden Markov
model (HMM)–based speech recognizers.

1) In [21] combining the ‘standard’(MFCC) with frac-
tal features consisting of samples of the multiscale fractal
dimension were applied to recognizing the highly confus-
able e-set (spoken letters: b, c, d, g, p, t, v, z) of ISOLET
database and yielded up to 18% reduction in the word error
rate over using the ‘standard’ features alone.

2) In [15] modulation features were extracted from
each frame as FM percents (bandwidth/mean of instan-
taneous frequency) at the outputs of a Gabor filterbank.
These FM features were used to augment the standard
(MFCC) feature vector. The hybrid features showed a
significant improvement yielding a word recognition error
rate reduction over the TIMIT database that approached
40% for a medium number of mixture components.

3) In [15] after the embedding of speech signal in an
unfolded state space, chaotic features were computed con-
sisting of the mean and standard deviation of the scale-
varying correlation dimension and its integral. Augment-
ing the standard features (MFCC) with these chaotic fea-
tures gave better word recognition results over the TIMIT
database (error reduction of 29%). Combining the MFCC
with both the modulation and the chaotic features further
increased the error reduction to 42%.

Some current directions of our on-going research in-
clude: experimentation with more sophisticated chaotic
and fractal features; better integration of chaotic features
with modulation features; apply the nonlinear features for
speech recognition in noisy environments and for large vo-
cabulary speech recognition.

1Some preliminary work on using Teager energy features (that
indirectly contain pre-modulation information) in speaker and
speech recognition include [36, 37, 38, 14].
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Fig. 7. Direct and inverse Lyapunov exponents of 4 different phoneme classes.
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