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Abstract. In this paper we develop partial differential equations (PDEs)
that model the generation of a large class of morphological filters, the
levelings and the openings/closings by reconstruction. These types of
filters are very useful in numerous image analysis and vision tasks rang-
ing from enhancement, to geometric feature detection, to segmentation.
The developed PDEs are nonlinear functions of the first spatial deriva-
tives and model these nonlinear filters as the limit of a controlled growth
starting from an initial seed signal. This growth is of the multiscale di-
lation or erosion type and the controlling mechanism is a switch that
reverses the growth when the difference between the current evolution
and a reference signal switches signs. We discuss theoretical aspects of
these PDEs, propose discrete algorithms for their numerical solution and
corresponding filter implementation, and provide insights via several ex-
periments. Finally, we outline the use of these PDEs for improving the
Gaussian scale-space by using the latter as initial seed to generate mul-
tiscale levelings that have a superior preservation of image edges and
boundaries.

1 Introduction

For several tasks in computer vision, especially the ones related to scale-space
image analysis, there have been proposed continuous models based on partial dif-
ferential equations (PDEs). Motivations for using PDEs include better and more
intuitive mathematical modeling, connections with physics, and better approxi-
mation to the Euclidean geometry of the problem. While many such continuous
approaches have been linear (the most notable example being the isotropic heat
diffusion PDE for modeling the Gaussian scale-space), many among the most
useful ones are nonlinear. This is partly due to a general understanding about
the limitations or inability of linear systems to successfully model several impor-
tant vision problems.

Areas where there is a need to develop nonlinear approaches include the
class of problems related to scale-space analysis and multiscale image smooth-
ing. In contrast to the shifting and blurring of image edges caused by linear
smoothers, there is a large variety of nonlinear smoothers that either suffer less

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 363–374, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



364 P. Maragos and F. Meyer

from or completely avoid these shortcomings. Simple examples are the classic
morphological openings and closings (cascades of erosions and dilations) as well
as the median filters. The openings suppress signals peaks, the closings elimi-
nate valleys, whereas the medians have a more symmetric behavior. All three
filter types preserve well vertical image edges but may shift and blur horizontal
edges/boundaries. A much more powerful class of filters are the reconstruction
openings and closings which, starting from a reference signal f consisting of
several parts and a marker (initial seed) g inside some of these parts, can re-
construct whole objects with exact preservation of their boundaries and edges.
In this reconstruction process they simplify the original image by completely
eliminating smaller objects inside which the marker cannot fit. The reconstruc-
tion filters enlarge the flat zones of the image [15]. One of their disadvantages is
that they treat asymmetrically the image foreground and background. A recent
solution to this asymmetry problem came from the development of a more gen-
eral powerful class of morphological filters, the levelings [10,11], which include
as special cases the reconstruction openings and closings. They are transfor-
mations Ψ(f, g) that depend on two signals, the reference f and the marker g.
Reconstruction filters and levelings have found numerous applications in a large
variety of problems involving image enhancement and simplification, geometric
feature detection, and segmentation. They also possess many useful algebraic
and scale-space properties, discussed in a companion paper [12].

In this paper we develop PDEs that can model and generate levelings. These
PDEs work by growing a marker (initial seed) signal g in a way that the growth
extent is controlled by a reference signal f and its type (expansion or shrink-
ing growth) is switched by the sign of the difference between f and the current
evolution. This growth is modeled by PDEs that can generate multiscale dila-
tions or erosions. Therefore, we start first with a background section on dilation
PDEs. Afterwards, we introduce a PDE for levelings of 1D signals and a PDE
for levelings of 2D images, propose discrete numerical algorithms for their imple-
mentation, and provide insights via experiments. We also discuss how to obtain
reconstruction openings and closings from the general leveling PDE. Further, we
develop alternative PDEs for modeling generalized levelings that create quasi-
flat zones. Finally, we outline the use of these PDEs for improving the Gaussian
scale-space by using the latter as initial seed to generate multiscale levelings that
have a superior preservation of image edges and boundaries.

2 Dilation/Erosion PDEs

All multiscale morphological operations, at their most basic level, are generated
by multiscale dilations and erosions, which are obtained by replacing in the
standard dilations/erosions the unit-scale kernel (structuring element) K(x, y)
with a multiscale version K(t)(x, y) ≡ tK(x/t, y/t), t > 0. The multiscale dilation
of a 2D signal f(x, y) by K(t) is the space-scale function

δ(x, y, t) ≡ (f⊕K(t))(x, y) = sup
(a,b)

{f(x − a, y − b) + tK(a/t, b/t)} , t > 0
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where δ(x, y, 0) = f(x, y). Similarly, the multiscale erosion of f is defined as

ε(x, y, t) ≡ (f	K(t))(x, y) = inf
(a,b)

{f(x + a, y + b) − tK(a/t, b/t)}

Until recently the vast majority of implementations of multiscale morphological
filtering had been discrete. In 1992, three teams of researchers independently
published nonlinear PDEs that model the continuous multiscale morphological
scale-space. In [1] PDEs were obtained for multiscale flat dilation and erosion
by compact convex sets as part of a general work on developing PDE-based
models for multiscale image processing that satisfy certain axiomatic principles.
In [4] PDEs were developed that model multiscale dilation, erosion, opening
and closing by compact-support convex sets or concave functions which may
have non-smooth boundaries or graphs, respectively. This work was based on
the semigroup structure of the multiscale dilation and erosion operators and the
use of sup/inf derivatives to deal with the development of shocks. In [18] PDEs
were obtained by studying the propagation of boundaries of 2D sets or signal
graphs under multiscale dilation and erosion, provided that these boundaries
contain no linear segments, are smooth and possess a unique normal at each
point. Refinements of the above three works for PDEs modeling multiscale mor-
phology followed in [2,5,6,8,9,19]. The basic dilation PDE was applied in [3,16]
for modeling continuous-scale morphology, where its superior performance over
discrete morphology was noted in terms of isotropy and subpixel accuracy. Next
we provide a few examples.1

For 1D signals f(x), and if K(x) is the 0/ − ∞ indicator function of the
interval [−1, 1], then the PDEs generating the multiscale flat dilation δ(x, t) and
erosion ε(x, t) of f are:

δt = |δx| , εt = −|εx| (1)

with initial values δ(x, 0) = ε(x, 0) = f(x).
For 2D signals f(x, y), and if K(x, y) is the 0/ − ∞ indicator function of the

unit disk, then the PDEs generating the multiscale flat dilation δ(x, y, t) and
erosion ε(x, y, t) of f are:

δt = ||∇δ|| =
√

(δx)2 + (δy)2; , εt = −||∇ε|| (2)

with initial values δ(x, y, 0) = ε(x, y, 0) = f(x, y).
These simple but nonlinear PDEs are satisfied at points where the data

are smooth, i.e., the partial derivatives exist. However, even if the initial im-
age/signal f is smooth, at finite scales t > 0 the above multiscale dilation evolu-
tion may create discontinuities in the derivatives of δ, called shocks, which then
continue propagating in scale-space. Thus, the multiscale dilations are weak so-
lutions of the corresponding PDEs.

The above PDEs for dilations of graylevel images by flat structuring elements
directly apply to binary images, because flat dilations commute with threshold-
ing and hence, when the graylevel image is dilated, each one of its thresholded
1 Notation: For u = u(x, y, t), ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y, ∇u = (ux, uy).
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versions representing a binary image is simultaneously dilated by the same ele-
ment and at the same scale. However, this is not the case with graylevel structur-
ing functions. For example, if K(x, y) = −a(x2+y2), a > 0, is an infinite-support
parabolic function, the dilation PDE becomes

δt = ||∇δ||2/4a = [(δx)2 + (δy)2]/4a (3)

3 PDE for 1D Leveling

Consider a 1D signal f(x) and a marker signal g(x) from which a leveling Ψ(f, g)
will be produced.

If g ≤ f everywhere and we start iteratively growing g via incremental flat
dilations with an infinitesimally small element [−∆t, ∆t] but without ever grow-
ing the result above the graph of f , then in the limit we shall have produced the
opening by reconstruction of f (with respect to the marker g), which is a special
leveling. The infinitesimal generator of this signal evolution can be modeled via
a dilation PDE that has a mechanism to stop the growth whenever the interme-
diate result attempts to create a function larger than f . Specifically, let u(x, t)
represent the evolutions of f with initial value u0(x) = u(x, 0) = g(x). Then, u
is a weak solution of the following initial-value PDE system

ut = sign(f − u)|ux| =
{ |ux|, u < f

0, u = f or ux = 0 (4)

u(x, 0) = g(x) ≤ f(x) (5)

where sign(r) is equal to +1 if r > 0, −1 if r < 0 and 0 if r = 0. This PDE models
a conditional dilation that grows the intermediate result as long as it does not
exceed f . In the limit we obtain the final result u∞(x) = limt→∞ u(x, t). The
mapping u0 7→ u∞ is the opening by reconstruction filter.

If in the above paradigm we reverse the order between f and g, i.e., assume
that g(x) ≥ f(x) ∀x, and replace the positive growth (dilation) of g with negative
growth via erosion that stops when the intermediate result attempts to become
smaller than f , then we obtain the closing by reconstruction of f with respect
to the marker g. This is another special case of a leveling, whose generation can
be modeled by the following PDE:

ut = −sign(u − f)|ux| =
{−|ux|, u > f

0, u = f or ux = 0 (6)

u(x, 0) = g(x) ≥ f(x) (7)

What happens if we use any of the above two PDEs when there is no specific
order between f and g? The signal evolutions are stored in a function u(x, t)
that is a weak solution of the initial-value PDE system

ut(x, t) = |ux(x, t)|sign[f(x) − u(x, t)]
u(x, 0) = g(x) (8)
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This PDE has a varying coefficient sign(f −u) with spatio-temporal dependence
which controls the instantaneous growth and stops it whenever f = u. (Of course,
there is no growth also at extrema where ux = 0.) The control mechanism is of a
switching type: For each t, at points x where u(x, t) < f(x) it acts as a dilation
PDE and hence shifts parts of the graph of u(x, t) with positive (negative) slope
to the left (right) but does not move the extrema points. Wherever u(x, t) > f(x)
the PDE acts as an erosion PDE and reverses the direction of propagation. The
final result u∞(x) = limt→∞ u(x, t) is a general leveling of f with respect to g.
We call (8) a switched dilation PDE. The switching action of this PDE model
occurs at zero crossings of f−u where shocks are developed. Obviously, the PDEs
generating the opening and closing by reconstruction are special cases where
g ≤ f and g ≥ f , respectively. However, the PDEs generating the reconstruction
filters do not involve switching of growth.

The switching between a dilation- or erosion-type PDE also occurs in a class
of nonlinear time-dependent PDEs which was proposed in [13] to deblur images
and/or enhance their contrast by generating shocks and hence sharpening edges.
For 1D images a special case of such a PDE is

ut = −|ux|sign(uxx) (9)

A major conceptual difference between the above edge-sharpening PDE and our
PDE generating levelings is that in the former the switching is determined by
the edges, i.e., the inflection points of u itself whereas in the latter the switching
is controlled by comparing u against the reference signal f . Note also that, if at
some point there is an edge in the leveling output, then there must exist an edge
of equal or bigger size in the initial (reference) image.

3.1 Discretization, Algorithm, Experiments

To produce a shock-capturing and entropy-satisfying numerical method for solv-
ing the general leveling PDE (8), we use ideas from the technology of solving
PDEs corresponding to hyperbolic conservation laws [7] and Hamilton-Jacobi
formulations [14]. Thus, we propose the following discretization sheme, which is
an adaptation of a scheme proposed in [13] for solving (9).

Let Un
i be the approximation of u(x, t) on a grid (i∆x, n∆t)). Consider the

forward and backward difference operators:

Dx
+u ≡ u(x + ∆x, t) − u(x, t)

∆x
, Dx

−u ≡ u(x, t) − u(x − ∆x, t)
∆x

(10)

(Similarly we define the difference operators Dy
+ and Dy

− along the y direction.)
Then we approximate the leveling PDE (8) by the following nonlinear difference
equation:

Un+1
i = Un

i − ∆t[ (Sn
i )+

√
((Dx

−Un
i )+)2 + ((Dx

+Un
i )−)2

+(Sn
i )−√

((Dx
+Un

i )+)2 + ((Dx
−Un

i )−)2 ]
(11)



368 P. Maragos and F. Meyer

where Sn
i = sign(f(i∆x) − Un

i ), r+ = max(0, r), and r− = min(0, r). For sta-
bility, (∆t/∆x) ≤ 0.5 is required. Further, at each iteration we enforce the sign
consistency

sign(Un − f) = sign(g − f) (12)
We have not proved theoretically that the above iterated scheme converges

when n → ∞, but through many experiments we have observed that it converges
in a finite number of steps. Examples are shown in Fig. 1.

4 PDE for 2D Leveling

A straighforward extension of the leveling PDE from 1D to 2D signals is to
replace the 1D dilation PDE with the PDE generating multiscale dilations by a
disk. Then the 2D leveling PDE becomes:

ut(x, y, t) = ||∇u(x, y, t)||sign[f(x, y) − u(x, y, t)]
u(x, y, 0) = g(x, y) (13)

Of course, we could select any other PDE modeling dilations by shapes other
than the disk, but the disk has the advantage of creating an isotropic growth.

For discretization, let Un
i,j be the approximation of u(x, y, t) on a computa-

tional grid (i∆x, j∆y, n∆t). Then we approximate the leveling PDE (13) by the
following 2D nonlinear difference equation:

Un+1
i,j = Un

i,j − ∆t[· · ·
(Sn

i,j)
+
√

((Dx
−Un

i,j)+)2 + ((Dx
+Un

i,j)−)2 + ((Dy
−Un

i,j)+)2 + ((Dy
+Un

i,j)−)2

+(Sn
i,j)

−
√

((Dx
+Un

i,j)+)2 + ((Dx
−Un

i,j)−)2 + ((Dy
+Un

i,j)+)2 + ((Dy
−Un

i,j)−)2 ]
(14)

where Sn
i,j = sign(f(i∆x, j∆y) − Un

i,j). For stability, (∆t/∆x + ∆t/∆y) ≤ 0.5 is
required. Also, the sign consistency (12) is enforced at each iteration.

Three examples of the action of the above 2D algorithm are shown in Fig. 2.

5 Discussion and Extensions

5.1 PDEs for Levelings with Quasi-Flat Zones

So far all the previous leveling PDEs produce filtering outputs that consist of
portions of the original (reference) signal and of flat zones (plateaus). Actually
they enlarge the flat zones of the reference signal. Is it possible to generate
via PDEs generalized levelings that have quasi-flat zones? For example, zones
with constant linear slope or zones with parabolic surface? The answer is yes.
We illustrate it via the parabolic example. If we replace the flat dilation PDE
generator in (8) with the PDE generator for multiscale dilations by a 1D unit-
scale parabola K(x) = −ax2 we obtain the PDE for 1D parabolic levelings:

ut(x, t) = 1
4a |ux(x, t)|2sign[f(x) − u(x, t)]

u(x, 0) = g(x) (15)

To obtain the PDE for 2D parabolic levelings we replace |ux| with ||∇u||.
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Fig. 1. Evolutions of 1D leveling PDE for 3 different markers. For each row, the right
column shows the reference signal f (dash line), the marker (thin solid line), and the
leveling (thick solid line). The left column shows the marker and 5 of its evolutions at
times t = n20∆t, n = 1, 2, 3, 4, 5. In row (a,b) we see the general leveling evolutions for
an arbitrary marker. In row (c,d) the marker was an erosion of f minus a constant, and
hence the leveling is a reconstruction opening. In row (e,f) the marker was a dilation
of f plus a constant, and hence the leveling is a reconstruction closing. (∆x = 0.001,
∆t = 0.0005.)
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(a)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

(e) (i) (m)

Fig. 2. Evolutions of the 2D leveling PDE on the reference top image (a) using 3
markers. Each column shows evolutions from the same marker. On second row the
markers (t = 0) are shown, on third and fourth rows two evolutions at t = 10∆t and
t = 20∆t, and on fifth row the final levelings (after convergence). For left column (b-e),
the marker (b) was obtained from a 2D convolution of f with a Gaussian of σ = 4. For
middle column (f-i), the marker (f) was a simple opening by a square of 9 × 9 pixels
and hence the corresponding leveling (i) is a reconstruction opening. For right column
(j-m), the marker (j) was a simple closing by a square of 9 × 9 pixels and hence the
corresponding leveling (m) is a reconstruction closing. (∆x = ∆y = 1, ∆t = 0.25.)
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Fig. 3. 1D Multiscale levelings. (a) Original (reference) signal f (dash line) and 3 mark-
ers gi obtained by convolving f with Gaussians of standard deviations σi = 30, 40, 50.
(b)-(d) show reference signals gi (dash line), markers gi+1 (dotted line), and levelings
Ψ(gi, gi+1) (solid line) for i = 0, 1, 2, where g0 = f . (∆x = 0.001, ∆t = 0.0005.)
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Original Reference

Marker 1 Leveling 1

Marker 2 Leveling 2

Marker 3 Leveling 3

Fig. 4. Multiscale image levelings. The markers were obtained by convolving reference
image with 2D Gaussians of standard deviations σ = 3, 5, 7. (∆x = ∆y = 1, ∆t = 0.25.)
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5.2 Why Use PDEs For Levelings?

In addition to the well-known advantages of the PDE approach (such as more in-
sightful mathematical modeling, more connections with physics, better isotropy,
better approximation of Euclidean geometry, and subpixel accuracy), during con-
struction of levelings or reconstruction filters it is possible in some applications
to need to stop the marker growth before convergence. In such cases, the isotropy
of the partially grown marker offered by the PDE is an advantage. Further, there
are no simple digital algorithms for constructing levelings with quasi-flat zones,
whereas for the PDE approach only a simple change of the generator is needed.

5.3 From Gaussian Scale-Space to Multiscale Levelings

Consider a reference signal f and a leveling Ψ . If we can produce various markers
gi, i = 1, 2, 3, ..., that are related to some increasing scale parameter i and
produce the levelings of f with respect to these markers, then we can generate
multiscale levelings in some approximate sense. This scenario will be endowed
with an important property if we slightly change it to the following hierarchy:

h1 = Ψ(f, g1), h2 = Ψ(h1, g2), h3 = Ψ(h2, g3), ... (16)

The above sequence of steps insures that hj is a leveling of hi for j > i.
The sequence of markers gi may be obtained from f in any meaningful way.

In this paper we consider the case where the gi are multiscale convolutions of f
with Gaussians of increasing standard deviations σi. Examples of constructing
multiscale levelings from Gaussian convolution markers according to (16) are
shown in Fig. 3 for a 1D signal and in Fig. 4 for an image f . The sequence of
the multiscale markers can be viewed as a scale-sampled Gaussian scale-space.
As shown in the experiments, the image edges and boundaries which have been
blurred and shifted by the Gaussian scale-space are better preserved across scales
by the multiscale levelings that use the Gaussian convolutions as markers.
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