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Higher Order Differential Energy Operators
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Abstract—Instantaneous signal operators T (z) = sz(*™1) —
zz®) of integer orders k are proposed to measure the cross
energy between a signal z and its derivatives. These higher order
differential energy operators contain as a special case, for k = 2,
the Teager-Kaiser operator. When applied to (possibly modu-
lated) sinusoids, they yield several mew energy measurements
useful for parameter estimation or AM-FM demodulation. Ap-
plying them to sampled signals involves replacing derivatives with
differences that lead to several useful discrete energy operators
defined on an extremely short window of samples.

1. HIGHER ORDER ENERGY MEASUREMENTS

NSTANTANEOUS differences in the relative rate of
change between two signals z,y can be measured via
their Lie bracket

[z,y] = 2y — =¥

because [z,y]/zy = (2/z) — (§/y). Dots denote time deriva-
tives. Note the antisymmetry [r,y] = —[y,z]. £ y = %,
then [z, y] becomes the continuous-time Teager-Kaiser energy
operator [1], [2]

U(z) = (2)? - 23 = [, 1]

that has been used for tracking the energy of a source pro-
ducing an oscillation [2], [1] and for signal and speech
AM-FM demodulation [4], [5]. In the general case, if = and
y tepresent displacements in some generalized motions, the
quantity {z, 9] = ¢y — z§ has dimensions of energy (per unit
mass), and hence, we may view it as a ‘cross energy’ between
z and y. This energy like quantity &y — zij was used in [2], {3]
to analyze the output ¥(z +y) of the energy operator applied
to a sum of two signals.

In our work, we use the cross energy between a signal
z and its higher order derivatives to develop higher order
energy measurements. Specifically, we define the kth-order
differential energy operator (DEQ)

Ti(z) =[x, 2k V] = gx®=D _zz®) | g =0,+1,42, -

as yielding the cross energy between a signal z(t) and its
(k — 1)th derivative (or integral), where

dez(t)/dt*, kE>1
e ® (1) = { z(¢), k=0
ff a* ) (r)dr, k< -1
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denotes a signal derivative for positive order k or an integral
for k negative. Of practical current interest are the DEO’s
of positive orders. The second-order DEO T, measuring the
energy of a harmonic oscillator producing a signal z, gives to
Y1 the name “energy,” since it is identical to the standard
energy operator ¥. The zeroth-order operator is To(z) =
T f x — x2; this latter expression was recognized in [3] as the
negative of the energy of the signal integral. The first-order
DEO yields zero for any signal. Two new and useful energy
measurements are given by the third- and fourth-order DEO’s:

Y3(z) = &2 — z2® To(z) = 22 — za™®.

Note that (as also observed in [3])

To(z) = d‘I;ix) ’ - dT;t(m)

Hence, the third-order DEQ T3 is an energy velocity operator,
whereas the fourth-order DEO T4 has dimensions of energy
acceleration. In general, the higher order operators can be
generated by lower order operators with a two-step recursion:

Ti(o) = T

Ta(z) — ().

= Tr_2(Z).
Finally, note that
Yi(z +7) = Te(z) + Te(®) + [z, 5% V] + [y, 2*- 1],

When the energy operators T, are applied to a sine wave,
they yield products of powers of the amplitude and frequency.
Specifically, the cosine

z(t) = Acos(wt + 8)

representing the response of an undamped harmonic oscillator
satisfies the motion equation # + w?z = 0. This creates the
energy recursion

Ey=—-w?Ey_s , Ei = Ti[Acos(wt+ 8)]

with initial conditions Fy = —A? and E; = 0. Running this
recursive equation in both forward and backward order index
k yields

k=41,4£3,£5,---

0,
T[Acos(wt +8)]= {(—1)1+%A2w’“ k=042 +4,-

If the amplitude A and/or frequency w of z(¢) are slowly time-
varying, i.e., if z is an AM-FM signal, then the above energy
equations are approximately valid provided that A = A(¢) and
w = w(t) do not vary too fast or too much with respect to the
carrier frequency. Further, because A%w* are lowpass signals,
the above instantaneous energy measurements can be used for

1070-9908/95$04.00 © 1995 IEEE



MARAGOS AND POTAMIANOS: HIGHER ORDER DIFFERENTIAL ENERGY OPERATORS 153

robust estimation of instantaneous amplitude and frequency in
modulated sinusoids.

An application of the fourth-order DEO T4, in conjunction
with the standard energy operator Ty = ¥, is to estimate the
amplitude and frequency of a (possibly modulated) sinusoid
z(t) = Acos(wt + 0):

R )
TV Tax) Vv-Ta(z)

This is an energy separation algorithm, slightly different
from the one in [5], which can also be used for AM-FM
demodulation.

An application of the third-order DEO T3 is to estimate the
energy dissipation rate in damped oscillations. Namely, given
a damped cosine, the damping factor can be found using Y3
and the energy operator. Thus, if z(¢) = Ae™" cos(wt + 8),
r > 0, then

_ Ys(e) _ _1dlogYy(a)
2To(z) ~ 2 dat

r =

II. DISCRETE-TIME OPERATORS

Applying the energy operators to sampled signals requires
replacing derivatives with differences. This leads to a variety
of discrete energy operators for each order k, because there are
many different ways of discretizing derivatives. The simplest
approach is to first discretize the Lie bracket by replacing
derivatives with time shifts. Namely, replacing continuous-
time signals z(¢) with sequences z,, = z(nT') of their samples,
also denoted as z[n), and first-order derivatives Z(t) with
backward differences Apz{n] = (z[n] — z[n — 1])/T converts
the continuous-time operator [z,y](¢) into the discrete-time
operator

C(z[n],y[n]) = zlnly(n - 1} - z[n - 1]y[n]

where we henceforth assume T = 1. (Using symmetric
differences A z[n] = (z[n + 1] — z[n ~ 1])/2 to replace
time derivatives yields a symmetric discrete operator equal to
the average of C at two consecutive samples.) Using y[n] =
z[n+1] makes C identical to the discrete Teager—Kaiser energy
operator [1]

¥(z[n]) = 2%[n] — z[n - 1]z[n + 1] = C(z[n}, z[n + 1]).

Generalizing the above result by using y[n] = z[n + k]
in C leads us to develop discrete-time higher order energy
measurements for a signal z[n]. For example, we define the
kth-order discrete! energy operator

Ti(zn])) = C(zn},zln+k-1]) , £=0,1,2,3,---
=znjzln + k- 2] — z[n — lz[n + k — 1].

For k = 1, we always get zero since T; = 0. For k = 2,
we obtain the standard discrete energy operatorY, = V. For

! For notational simplicity, we use the same symbol for both the continuous-
and discrete-time higher order operators Y and the Teager—Kaiser energy
operator ¥ since the input signal can reveal this aspect of the operator.

k = 3, we obtain an asymmetric discrete energy velocity
operator

T3(1'n) = ZnTn4l — Tn-1Tn42
whereas k = 4 yields a discrete energy acceleration operator;
T4(1‘n) = ZTnTn+2 — Tn-1Tn+3-

Important aspects of each T, are the length of its correspond-
ing index window and its time alignment (a)symmetry. Next,
we investigate these issues for ¥ = 3. Since T3 requires
a four-sample moving window [n — 1,7 + 2], its output at
the window’s center occurs at the continuous time instant
t = (n + 0.5)T. One simple approach to eliminate this time
misalignment is to replace Y3(z,) with its average over two
consecutive samples and thus have a symmetric third-order
energy operator

T3(-Tn) + Ts(l’n‘l)
2

Tgs(zn) =

with a five-sample window [n — 2,n + 2].
Applying the operators T to discrete (possibly damped)
cosines yields discrete energy equations

Yk[Ar™ cos(Qn + )] = A%r?" k=2 5in(Q) sin[(k — 1)

which are useful for parameter estimation in sinusoids. In
addition, these energy equations hold approximately when the
cosine has time-varying amplitude and frequency that do not
vary too fast or too much with respect to the carrier, i.e.,
when the input is a sampled AM-FM signal. This allows us to
find discrete AM-FM demodulation algorithms by combining
the above energy equations of various orders. For example,
by using T3, T3, and the undamped cosine energy equations
Yr[Acos(n + )] = A%sin(Q)sin[(k — 1)Q)] for k = 2,3,
a discrete algorithm was proposed in [6] for instantaneous
frequency tracking, which is closely related to the discrete
energy separation algorithm in [5].

We conclude by noting that, all the above discrete higher
order energy operators can be unified as special cases of a
class of quadratic energy operators Qgnm, or their weighted
linear combinations, where

Qim(z[n]) = z(n]z[n + k] — z[n — m]z{n + k +m]

for £k = 0,1,2,---, m = 1,2,.--. Similar operators have
also been studied independently by Kaiser [7]. The class Q
contains all the discrete higher order energy operators T since
Qi1 = Tryo; €8, Qo1 = ¥ and Q11 = T3. For k = 0 the
operators Qo can also be viewed as special cases of the class
of quadratic detectors Y, hmz[n + m]z[n — m] proposed
in (8]. The general operators Q, provide some interesting
energy equations:

Qim[A7™ cos(m + 0)] = A2r2HE 5in(mQ) sin[(m + k)Q).

In addition, each Qg,, can be generated recursively from
operators of lower orders k,m.
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III. ALTERNATIVE DISCRETIZATIONS

Instead of discretizing the Lie bracket and replacing deriva-
tives with time shifts, an alternative approach to discretizing
Ty is to replace each mith-order signal derivative involved
in its expression with backward difference operators A,™ =
Ab(Ab’"_l) or symmetric differences A;," = AS(AE"‘_I).
For k = 2 the asymmetric difference yields a one-sample
shifted version of the discrete energy operator ¥, whereas
the symmetric difference yields a three-point average of ¥,
as shown in [4]. For £ = 3 using the A, difference yields
another asymmetric discrete energy velocity operator

Yap(zn) = Ts(l'){dm/dtm,_,Abm (nT)
=2Y9(2n-1) — Ta(Tn_2)

which is computationally more complicated than Y3. The only
slight advantage of Y3, over Y3 is that when the input is
a discrete cosine z, = Acos(Qn + ), it gives as output
4A%sin?(Q) sin?(€/2), which for Q@ < 1 is much closer to
zero than the output A2 sin(€2)sin(292) of T;. Recall that the
continuous-time third-order energy of a cosine is zero. Using
the A, difference for k = 3 yields another symmetric discrete
energy velocity operator

Tis(zn) = T3(-7’)|dm/dcm._.As"‘ (nT) =
%(T3(xn+1) + TS(zn) - TS("En—l) - T3(£H—2))

which yields a zero when the input is a discrete cosine
(consistent with the continuous-time result) but has a longer
window than the symmetric operator Y3,, i.e., it needs a
seven-sample window [n — 3,n + 3|. For k > 3, we get even
more complicated expressions, using either the A, or the A,
differences.

A final approach we have considered for discretizing the
continuous Y, operators is to i) replace derivatives 2 with
differences Ay*z; and ii) shift the differences by any required
number of samples so that the two terms zz(*~1 and z2(*) are
computed at the same time location after discretization. Odd-
order derivatives are centered at time instants (n F 0.5)T; if
k is even, this is balanced by the other odd derivative in the
product that is centered at (n & 0.5)T. This approach yields
the same discrete operator for £ = 2 but creates alternative
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discrete Y operators with interesting properties for k > 2.
Thus, for k = 2,3, 4, we obtain the alternative operators T,

Tou(2s) = ¥(zy)

Tsa(2n) = ¥(xn) — U(zn-1) = ApT24(zn)

Tsa(@n) = [U(znt1) = 2¥(2n) + U(zn-1)]
—U(zp = Tp-1)

= AbTSa($n+1) - TZa(Abxn)-

For example, to obtain Y3, (z,,) from Y3(z) = @4 -z, the
odd order derivatives %, (3 are discretized (using backward
differences) and centered at time (n — 0.5)7, whereas the
discretization of & is centered at time nT (so that £% and zz(®
are computed at the same time instant). Note that T3, yields
zero when the input is a discrete cosine, as in the continuous-
time case. The above discrete Y, operators require a small
window and satisfy recursive formulas of the same type as
the recursion Yi(z) = dYe_1(z)/dt — Tr_2(Z) satisfied
by their continuous counterparts (with derivatives mapped to
differences A;). This is their main advantage. In general, the
best type of discretization of higher order energies depends on
the specific application.
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