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Two-Dimensional  Linear  Prediction and Its 
Application  to  Adaptive  Predictive 

Coding of Images 

Mwstmct-This paper summarizes  a study  on  two-dimensional  linear 
prediction of images and  its  application  to  adaptive  predictive  coding 
of monochrome images. The  study was focused  on  three  major areas: 
two-dimensional  linear  prediction of images  and its  performance,  imple- 
mentation of an adaptive  predictor  and  adaptive  quantizer  for use in 
image coding,  and  linear  prediction  and  adaptive  predictive  coding of 
density  (logarithm of intensity) images. 

Among  the issues  investigated  are:  autoregressive  modeling of 2-D 
image sequences,  estimation of the  nonzero average bias of the image 
samples,  stability  of  the  inverse  prediction  error  filter,  and  estimation 
of the  parameters  of  a 2-D separable  linear  predictor. The  implementa- 
tion of the  adaptive  predictor  is based on the  results of linear  predictive 
analysis. The  adaptive  quantization  of  the  prediction  error signal is 
done  by using a flexible  three-level  quantizer  for  code  words of fixed  or 
variable  length. The  above ideas  are further  applied  to  density images 
for  exploiting  the  multiplicative  structure of  images. 

The  results of this  research  indicate that by using adaptive  prediction 
and quantization,  intensity  and  density  coded images of high quality 
can  be obtained at  information  rates as low  as 0.7 bits/pixel. 

I. INTRODUCTION 

T HE techniques  of linear prediction have been applied with 
great success in many  problems of speech processing [ I ]  - 

[4]. Linear prediction is established as the predominant  tech- 
nique for  extracting  speech  parameters  and  for speech coding 
at low bit rates [5] . This success in processing speech signals 
suggests that similar techniques might be useful in modeling 
and coding of 2-D image  signals. Due  to  the extensive compu- 
tation  required  for  its  implementation in two dimensions, only 
the simplest forms of linear prediction have.received much  at- 
tention in image coding [ 6 ] ,  [7]. However, current  reduc- 
tions in cost and increases in speed  of  digital  signal  processing 
hardware suggest that  it is no longer  necessary to limit our 
attention to simple  processing schemes for image modeling and 
coding. Thus, this paper consists of two parts. The first part 
is concerned with autoregressive modeling of 2-D,image sig- 
nals, and  the use of two-dimensional linear predictive analysis 
for  extracting  the parameters of this  model. The second part 
reports  the performance of an  adaptive predictive image cod- 
ing scheme which uses adaptive two-dimensional linear predic- 
tion  and  an  adaptive three-level quantizer to quantize the pre- 
diction error signal at low bit  rates. 
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11. 2-D LINEAR PREDICTION 
A. Image Model 

Various autoregressive image models have been examined by 
different researchers [S] aiming at different goals.  Our objec- 
tive  is to introduce an autoregressive model  which will account 
for  the spatial variability of image sequences and  for  the  fact 
that  intensity image samples possess a .  nonzero average  bias 
since they always assume nonnegative values. Hence, let us 
consider the image model  in Fig.  ](a), where x(m,   n)  denotes 
the 2-D sequence of intensity image samples and a, represents 
a locally constant bias coefficient added to the  input of the 
feedback  system. This feedback  system, which accounts  for 
the autoregressive nature of our model, is  called the  predictor, 
and its corresponding transfer function is 

P(z l ,  zz)  = a(k, I) ~ ; ~ z ; '  (1) 
k d  

(k, 0 E n 

where a(k, I )  is a 2-D  prediction coefficient array  and n is a 
set of integer pairs to be specified later. Fig. l(a) implies the 
following difference  equation relating the  output x(m, n)  and 
input u(m, n): 

x(m, n)  = a(k, I) x(m - k ,  n - I )  + a, + u(m, n). 
k l  

The 2-D input sequence u(m, B) may  be  thought of as either a 
zero mean  white noise field or  as a 2-D unit impulse, depend- 
ing upon whether we  view the problem from a stochastic  or 
from a deterministic  point of  view. 

An equivalent image model could result if we think of the 
2-D sequence x(m, n)  as being the sum of a zero mean auto- 
regressive sequence y(m, n) and a locally constant  dc  offset B. 
Then,  as Fig. 1 (b) implies, 

x(m,  n)  =y(m,  n) + B  = a(k, I)y(m - k ,  n - I) 
k I  

( k ,  0 En 
+ B + u(m, n). (3)  

Comparing the equivalent difference  equations (2) and (3) we 
can find a relation  between a, and B 

(4) 
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The bias coefficient a, can be  thought of as a bias at  the  input, 
whereas B represents a bias at  the  output.  In  both cases, the 
inclusion  of a bias  param.eter accounts for the  fact  that  the in- 
tensity image samples x ( m ,  ti) are explicitly biased, since they 
are always nonnegative. The advantage of ( 2 )  contahing (lo is 
the  linearity of the normal  equations  which a.re jnvolvecl in the 
estimation of the parameters of the model. The difference 
equation (2) represents either a means for synthesizing the 
image  signal x(m,  n )  if we  know the model  coefficients  and  the 
excitation u(rn, n),  or a means for  extracting  the  model parram- 
eters if  we have  available the signal x(m,  n )  and rnake some 
assumptions about  the  input u(m, n). 

The set n of integer pairs spanned by  the indexes ( k ,  I) of 
the  prediction coefficient array a(k, 1) is  called the region o f  
support of the predictor or  the prediction mask. This set de- 
termines the spatial causality of the model.  Spatial causality is 
not  inherent  in image formation. However, it  may be imposed 
by the scanning mechanism for a raster of image  samples.  Our 
ultimate objective is to use the  optimal estimates of the model 
coefficients for resynthesizing the image  signal x(rrz, n> at  the 
decoder of the image  codi.ng scheme. Therefore, (2) must be 
recursively computable.  This  limits the possible prediction 
masks [9] only  to causal, nonsymmetric half-plane masks. 
Sacrificing some generality, we  have limited our study to 
causal prediction masks which possess a Q X Q quartex-plane 
region of support; namely masks where (a, I) range  over  all in- 
teger pairs in the set 

I1 = { ( k ,  Z):O < k ,  I < Q - 1 and ( k ,  1 )  .jc (0,O)). (5) 

The  number  of  prediction coefficients included in a Q X .Q 
quarter-plane  prediction mask, also called predictor order, i s  

P =  (22 -- 1. ( 6 )  

B. 2-L) Linear Prediction o f h t e n s i v  Image's 

The parameters of the image model (a(k ,  I) and uo> can be 
estimated by  the method of  linear predictive analysis in which 
it  is assumed that  the model coefficients are  those which mini- 
mize the  nmmsqaared value of the 2-69 prediction error 
sequence 

e(m, n )  = x(m, n)  -- a(k, E )  x(wz - k ,  n - I) - ao. 
k I  

(k, I )  ~n 

The mean-squared  prediction  error residual is defined as 

E =  e2 (m,  n) 
u u  

m = I .  n = k  

where the  limits L ,  U will be specified later.  The  prediction 
error filter i s  a linear system with corresponding transfer 
function 

A@, ,  z2 )  = 1 -- qz,, z2)  (9) 

where P(zl, z 2 )  is defiaed in (I). The  spticnal  model coeffi- 
cients  are  those  which minimize E,  and consequently they sat- 
isfy the normal equations 

a(k, E) @(IC, 1 : i ,  j >  + a0S(i, j )  
k l  

( k ,  I )  E n 

= q ! @ , O : i , j ) ,  (i,j)EII[ (1 0 4  

a(k,  I) S(k,  E )  + aoN, = S(0, a) (lob) 

(IC, I )  E I1 
k l  

where 

u u  
I@, 1 :  i, j )  3 x(m - k ,  n - l> x(m - i, n j >  

m = L  n = L  

(1 la) 

S(k,  I )  = x x(m - k ,  n - I) (1 1 b) 
u u  

m = L i? = L  

and Ns is the number of samples in the region of  support of 
the 2-D sequence e(m, n). In (1 1) m and n range  over a set of 
integers corresponding to a particular M X M region of the 
image, called the analysis frume. Over each analysis frame we 
assume that  the model  coefficients  are  fixed,  and we compen- 
sate for  the  nonstationarity of the image by using  small analy- 
sis frames and computing a different  model  for  each  frame. 

The minimum prediction error residual  can be shown to be 
given by 

&,in = @(O, 0 : 0,O) - x a(k, 1 )  @(O, 0 : k ,  I) 
k I  

( k ,  I )  E I3 

- aoS(0, 0). (12) 

In  order to adopt a matrix  representation for (IO), a one- 
dimensional indexing [9] of the prediction coefficient array 
a@, I) is defined as follows: 

I(k,  I) = i = 1 Q + k. 

The above indexing corresponds to a rowwise  scanning  of 
u(k ,  E ) ,  and it  is not  the  only possible one. For ( k ,  E )  E I1 U 
(0, 0) the index i = I (k ,  I) ranges  over the integers 0 < i < P  in 
a one-to-one re1ationshi.p with the integer  pair (IC, I). 'Thus,  we 
can recover the integer pair (k, 2 )  = I - -*  (i), and the  four-index 
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dependence of @(k, 1:  i, j )  can be written as a  two-index  depen- In  this case the signal x(m, n) is assumed to be zero  every- 
dence  by  writing @@, Z: i, ]) = @(q : r), where q = I (k ,  1) and r = where  outside  the M X M frame  and  the  summation  for  the 
I(i, ]). Similarly, S(k, I )  = S(q). At  this  point, (10) can  be re- squared error E involves all the  nonzero values of e(m, n); Le., 
written  in  matrix  form as L = O a n d U = M t Q - 2 i n ( S ) w h e r e Q X Q i s t h e s i z e o f t h e  

prediction  mask.  Therefore, we  ‘must  set Ns = (M t Q - I ) ~  
(13) in (lob).  In  the  autocorrelation case it can  be  proven easily 

where that  the  correlation lags @(k, E:i, ]) possess the following 

ca= c 

C =  

p ( 1 :  1) r$(2 : 1) * * * @(P: 1) I S(l)] 

@(I : 2 )  9(2 : 2 )  . * * 9(P:  2) / S(2)  

@ ( 1 : P )   9 ( 2 : P ) * * * @ ( P : P ) p ( P )  

. I .  

* I  
I .  

. I .  

S(1) S(2) * .  .S(P) IN, 
_ _ _ _ _  - -  7-- -- 
- I -  

For  reasons  explained  later, we denote by R the upper  left P X 
P principal  submatrix  of C which  contains  only  correlation lags 
as entries,  and 

a= [a(I-’(l)), - . . , a(I-‘(P))/, a,] (1 5) 

= [aT, a,] 

c =  [9(0:1);..,9(O:P)~,S(O)I~ (1 6) 

= [r T ,  ~(011 
where [ j denotes  the transpose  of  a  vector.  The (P X P) 
matrix R and  the (PX 1) vectors a and r are called, respec- 
tively, the  correlation  matrix,  the  prediction coefficient vec- 
tor,  and  the  correlation vector. 

Bias Estimation: There  are several  issues to be considered  in 
the  computation of the  model coefficients. One  concern is 
the way the bias B is estimated.  The  derivation of the normal 
equations  in (IO) assumed that  the bias remains  constant over 
each  analysis  frame.  There are three  ways to handle  the bias: 
1) Estimate a. by solving the (P t 1) X (P + 1) system Ca = c, 
and  then  exploit  the  relation (4) between a. and B. This ap- 
proach is henceforth  denoted  by TBLP (true bias linear pre- 
diction). 2 )  Estimate  the local mean  of the signal  over the 
M X M frame  as being an  approximation  to B, subtract it from 
x(m, n)  and  then use only (loa) with a, = 0, solving a (P X P) 
system. We denote  this  approach  as LMLP (local mean linear 
prediction). 3 )  Do not  subtract  any  estimate  of  the bias Band 
use only  (loa)  with a. = 0; i.e.,  solve only  the (PX P) sys- 
tem Ra = r.  This last approach is simply  denoted LP (linear 
prediction). 

Covariance  Versus Autocorrelation: Another  concern is the 
determination  of  the range  of summation  in (8) and (1 1). One 
approach is to limit the  summation  to  the M X M analysis 
frame.  This  implies setting L = 0 and U =  M - 1 in (8), (1 l ) ,  
and N, = M 2  in (lob),  and it results in  bringing inside the 
analysis frame  samples from  the borders of the  frame  to be 
supplied  as  needed in the  computation of (1 1). We call this 
the “covariance method” as in one-dimensional linear predic- 
tive analysis [5]. Since @(IC, I: i, j )  = @(i, j :  k ,  2 )  [see (1 la)], 
the  matrix C in (14) is symmetric.  Moreover, C is almost 
always positive-definite, except  for  some  degenerative cases 
where it is positive-semidefinite. Therefore, it can be inverted 
using Cholesky  decomposition [5]. 

Another  approach is the so-called “autocorrelation  method.” 

\ if ( k -  i ) ( ~  - j ) < o .  

Therefore, we can  replace @(k, E :  i ,  j )  with R( I k - 
where 

R(k, 1 )  2 
m i n ( M - I , k + M - l )   m i n ( M - I , I + M - l )  

m =may (0, k) n = max (O! I )  
c c 

-xfm,n)x(m-k ,n-Z) .  (1 8) 

From (17), (18) it can be shown that R(k, 1) =R(-k; -I). 
Also, in the  autocorrelation  method  the  sums S(k, I )  defined 
in ( l l b )  assume the same value for all different lags (k,  a ) .  
Therefore, the P + 1 equations of the system (IO) are decou- 
pled in a  system of P equations  in P unknowns,  plus  an  extra 
decoupled equation for a, in the TBLP  case.  More precisely, 
the  equations  in (IO) now take  the  form 

r 1 

where R ,  a, and r are  defined in (14), (IS), and (16), respec- 
tively, and y, B are  known  constants 

y = B . [2 . S(0,O) - B N,] (204  

with 

S(O,O)/N,, for TBLP 

B = S(0, O)/M2,  for LMLP 

{ O Y  for LP. 
Thus, in the  autocorrelation  method  the  optimum bias B will 
always be a  little  smaller  than  the local mean, and  the system 
of  normal  equations to be  solved  will always consist of P equa- 
tions  regardless  of the way the bias  is handled. 

The matrix of the system of equations  in  (19a) is a PX P 
symmetric  block  Toeplitz  matrix  which is always positive- 
definite.  There exist methods for the inversion of such  ma- 
trices which are more efficient than  the Cholesky  decomposi- 
tion  [IO]. The  storage  requirements  for the  autocorrelation 
method,  both  for  the signal x(m, n) and for the  entries of the 
correlation matrix,  are fewer than  in  the covariance method. 
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In  addition,  by comparing (1 la) and (1 8) we can infer that 
the covariance method  requires a greater number of multi- 
plications and  additions  for  the  computation of each corre- 
lation lag, In  the one-dimensional case, if the  autocorrelation 
method is used,  the  stability of the inverse prediction  error  fil- 
ter is guaranteed,  but  with  the covariance method  it is not. 
In  the two-dimensional case neither approach can guarantee 
stability, as shown in [ 1 11 . 

Prediction Error: To examine the performance of two- 
dimensional linear prediction, we computed  the  total normal- 
ized prediction  error  by  partitioning  the image into  an integer 
number of nonoverlapping frames, summing the mean-squared 
prediction error (8) from each individual frame, and dividing 
the  total error by  the energy of the image  signal x(m, n) over 
the whole image.  All the following results refer to  the “Girl” 
image of Fig.  2(a), but similar results were obtained  for other 
images as well. 

Table I shows a comparison  among the different  approaches 
for handling the bias  using the covariance method  and various 
predictor  orders  and  frame sizes. In  the column headings of 
Table I,  the first digit P refers to the  predictor  order  and A4 
refers to the size  of the MX M analysis frame.  Although the 
results give a slight superiority to  the TBLP method, all three 
methods yield comparable  prediction  errors,  This is not  un- 
expected since the available test images were oversampled, and 
thus  there was enough  correlation  between samples for all of 
the  methods to work satisfactorily. However, as shown later, 
we found a significant difference  in the stability of the result- 
ing models. 

A prediction  error image  is shown in Fig.  2(b), where the 
prediction error samples (which are  both positive and negative) 
were mapped linearly onto  the range 1-256 (8 bits/pixel) so 
that  the  prediction error sequence e(m, n)  could be displayed 
as an image. It is obvious that linear prediction removes much 
of the  redundant information from  the image, leaving only in- 
formation  about  the edges. 

Perspective plots of the magnitude of the 2-D Fourier  trans- 
form of the original image and  its  prediction error are illus- 
trated  in Fig.  3(a) and (b). We see that  in  the  frequency  do- 
main the linear prediction  flattens the original low-pass image 
spectrum. 

Figs. 4 and 5 provide us with  an informative comparison be- 
tween the performance of the covariance and  autocorrelation 
method.  In  both figures the  ordinate gives the mean-squared 
prediction error (per frame, using the TBLP method) normal- 
ized by  the energy of the image  signal x(m, n )  over each analy- 
sis frame, and averaged  over 64 frames  uniformly  distributed 
over the whole image of Fig. 2(a). In Fig. 4 the variation of 
the  error versus the size M of the M X M frame is illustrated. 
The covariance method is shown to give a consistently smaller 
prediction error and to  be almost insensitive to  frame size  vari- 
ations  for a fixed  predictor  order P =  3. The error resulting 
from  the  autocorrelation  method is reduced significantly by 
increasing the frame size, which implies that  for large frames 
both  methods yield identical results. Fig. 5 shows the varia- 
tion of the error versus the size Q of the Q X Q prediction 
mask for a fixed  frame size M = 32. Again the covariance 
method performs better  than  the  autocorrelation  method. 
The size of the  prediction mask  has  little  effect upon  the per- 

(b) 
Fig. 2. (a) Original 8 bit/pixel image (256 X 256 pixels). (b) Prediction 

error image (P = 8, M = 32). 

TABLE I 
TOTAL  XORMALIZED  PREDICTION  ERROR  (PERCENT) FOR 

LINEAR  PREDICTION OF INTENSITY  IMAGES 

Method/Conditions (P, M )  3,32  3,   16 8, 32 

TBLP 
LMLP 
LP 

0.707 0.643 0.622 
0.710 0.655 0.6 24 
0.715 0.669 0.633 

formance of either method  for  this image. Prediction masks 
bigger than 3 X 3 or 4 X 4 coefficients do not significantly im- 
prove the  prediction  error. 

C. Predictor Stability 
Another very important consideration concerning the all- 

pole image model of Fig. 1 is its  stability, because the model is 
a fundamental  component of both  the coder and  the decoder 
in an adaptive predictive coding system [ l ]  , [2] and instabili- 
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(b) 
Fig. 3. Perspective plots of the  magnitude of the 2-D Fourier  trans- 

form (a) of the original image, and (b) of the  prediction error signal 
(P = 8, M = 32) (the  prediction error is magnified throe times relative 
to  the original image). 

A N A L Y S I S  ON I N T E N S I T Y   I M A G E  
1 

' PREO. ORDER = 3 

AUTOCORRELATION ' 

' COVARIANCE 2 L :  
a 

0 10 20 30 40 50 
- M - ( FRAME SIZE = M X M > 

Fig. 4. Variation of prediction error versus  frame size  for  intensity 
images (P = 3). 

ties  could lead to large errors  upon  reconstructing  the image 
signal. 

The  system, about whose stability we must  be  concerned, 
is the inverse prediction  error  filter. Its transfer  function i s  
I/A(z,,  z2), where A(z,,  z2) is  given by (9). The  impulse  re- 
sponse  of A(z,, z 2 )  has,  support  only on the  first  quadrant, 
because we used a quarter-plane  prediction  mask.  Therefore, 
the inverse prediction  error  filter is recursively computable, 
and  conditions for its  stability can be found  in Huang's theo- 
rem [12], from which we can  derive the following necessary 
condition. 

Theorem: A necessary  condition  for  the  stability  of the first 
quadrant  recursive  filter l/A(zl, z 2 )  is 

A N A L Y S I S  ON I N T E N S I T Y   I M A G E  

FRAME SIZE = 32 x 32 

I _ _ _ . - . .  

t 
2 6 a 
- Q - ( PREDICTION MASK SIZE = Q X Q 1 

Fig. 5.  Variation of prediction error versus size of prediction mask for 
intensity  images (M = 32). 

A(1, 1) = 1 - a(k, I )  > 0. 
k I  

(k, I )  E n 
The proof  for the above  condition is given in the Appendix. 
Let us now  recall that P(1, 1) = 1 - A(l , 1). If P(l , l )>  1, 
we conclude  from  (21) that  the model is necessarily unstable. 
If P(1, 1)< 1, then  the predictor  might  be  stable since its 
coefficients  are  away  from  the  point  of  marginal  instability: 
81, 1) = 1. Also recall  from (4) that a. = B [l - P(1, l)]. 
Thus, the bias  interacts  with  the  stability of the  model. For 
positive image signals, the bias B must be  a  positive  number. 
Thus,  comparing (4) and (9) with (21), we can say that if a,, < 
0 then  the predictor is unstable. If a. > 0, the  predictor  might 
be stable. 

When we arbitrarily  require a. = 0 in  the (LP) method,  by 
not  estimating  any bias, we force P(1, 1) = 1 whenever B is 
nonzero,  and  thus  force  the model  always to be marginally  un- 
stable.  This is consistent  with the  fact  that when we add  a 
constant (a bias) to  the impulse  response of an all-pole auto- 
regressive model, then  the resulting biased sequence has a 
rational  z-transform whose prediction  coefficients  of the de- 
nominator  polynomial sum up exactly to one. This is because 
the  added  constant  has  a  z-transform  with  a  pole on  the  unit 
surface. 

The occurrence  of an unstable  model, to which  Table I1 re- 
fers, is judged  only by  the  criterion a. d 0. However, for  the 
(LP) method,  the few times  when  the  sum  was less than I 
could be attributed  to roundoff  errors,  because  it  has  been 
noticed  experimentally that  the (LP) method almost  always 
results in coefficients whose sum, P(l , l), is  very close to unity. 
This last observation  indicates that  there is indeed  a  bias  in- 
herent in the image data. 

D. 2-0 Linear  Prediction of Density  Images 
Linear prediction of a signal can be viewed as  a  linear  opera- 

tor acting upon  the signal. Since linear operators  obey  the 
principle  of  additive  superposition,  linear  prediction  is  espe- 
cially well suited to analysis of  signals which possess additive 
structure.  Therefore, if linear prediction is to be applied to 
images, the question  arises, can images be  modeled  properly by 
a linear system? 
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TABLE I1 
AVERAGE  NUMBER OF UNSTABLE  MODELS  (PERCENT)  OBTAIYED BY 

DIFFERENT  APPROACHES TO LINEAR  PREDICTION OF 
INTENSITY  IMAGES 

Method/Analysis Conditions 
(P,  M) 3,16   3 ,32   8 ,32  

TBLP 22.3 17.2 4.7 
LMLP 19.5 11.2 4.7 
LP 42.5  37.5 28.1 

Images are  formed  by iight energy from  an  illumination 
source being reflected by physical objects.  Thus,  Stockham 
[13] was led to  model an image  signal as a product of two 
basic parts. For discrete intensity image arrays, 

x I (m ,   n )  = il(m, n )  . q ( m ,   n )  (22)  

where xl(m, n)  is the discrete intensity image array, iI(m, n )  is 
the  illumination,  and rI(m,  n) is the  reflectance  component. 
The subscript “I” refers to intensity signals. Both the  inten- 
sity  and  the  illumination signals are spatial patterns of light 
energy that  must  be positive and nonzero. The reflectance is 
additionally  constrained to be less than  unity  [13] . These two 
basic components have distinctly  different characteristics and 
convey different  kinds of information. The  illumination  com- 
ponent models the lighting of the scene and  it varies  slowly 
across the scene, except in the case  of shadows. The reflec- 
tance  depends upon  the  nature of the  objects in the scene and 
thus it may vary more  rapidly  across  the scene. 

Stockham [13] , [14] has  shown that signals modeled as a 
product of two  components can be processed  using a homo- 
morphic system for  multiplication wherein a logarithmic  trans- 
formation is used to convert the multiplicative superposition 
into  an additive superposition of  signals, tc which a linear pre- 
diction system may be more  compatible. In the  context of 
image  signals, the logarithm of an  intensity sample is termed a 
“density sample” [ 131 . Taking the logarithm of  image intensi- 
ties  does  not cause any mathematical difficulties, because the 
intensities are always positive. Thus, the discrete density 
image array is 

xD(m,  n) = 1% [xZ(m, n)1 

= 1% [ir(m, n)l f 1% [ r h ,  n>l 

= iD(m, n)  t rD(m, n)  (23) 

where iD(m, n)  and rD(m, n)  represent  the  illumination  den- 
sity.and  the reflectance density signals, respectively. The sub- 
script “D” refers to density signals. The base  of the logarithm 
does  not play any role since a change  of this base would just 
multiply both sides of (23) by a scaling factor.  Equation (23) 
reveals the additive structure of the  density image  signal.  More- 
over, assuming that  the illumination density, which is a slowly 
varying spatial pattern,  does  not vary appreciably over each 
small  image region or analysis frame, we can write 

xD(m,  n) = iD + rD(m, n )  (24) 

where io represents the  more or less constant  illumination 
density over each small analysis frame. Comparing (3) and 
(24) we can relate  the  illumination  density to  the average  bias 
over each  frame and  the reflectance density to  the unbiased 

density signal. The additive structure of the  density image 
suggests that linear prediction  may be better matched to den- 
sity signals than to intensity signals. 

The experimental  results of applying linear prediction to 
density images supports  this  notion. For  an 8 bit/pixel  inten- 
sity image the  intensity samples  assume  values from  the  finite 
range 1 to 256. Thus, the values  of the corresponding density 
samples  will range from log (1) = 0 to log (256) = 5.545, if the 
natural  logarithm is considered. Linear predictive analysis was 
applied to such  density samples in exactly  the same  way  as  was 
done in the case  of intensity images. 

The resulting total normalized prediction error over the 
whole “Girl” image is  shown in Table 111, whereas Fig. 6 shows 
the average normalized prediction error per frame. In  both 
cases the normalization was done  by dividing by  the energy of 
the  density image  signal. Table 111 compares the TBLP, LMLP, 
and LP cases for  the covariance method. Fig. 6 compares the 
covariance  versus autocorrelation  method  for various frame 
sizes for a fixed  predictor  order in the TBLP case. The varia- 
tion of the  predicticn error versus predictor order  for a fixed 
frame size was found  to  be small, as in the  intensity case  (see 
Fig. 5 ) .  

The  results in Table 111 and Fig. 6 indicate  that  the TBLP 
method  for bias removal is slightly to be preferred,  and  that 
the covariance formulation is superior t o  the  autocorrelation 
formulation. Comparing the above results  with  the  compar- 
able  results  in  the  intensity case  (see Table I and Fig. 4) we can 
conclude that linear prediction on the  density image always 
gives a smaller normalized prediction error than  on  the  inten- 
sity image. For  the covariance method,  the normalized pre- 
diction  error is approximately seven to eight times smaller. 

E. 2-0 Separable  Linear  Predictor 
As mentioned  above,  stability is a very important issue in 

linear prediction,  and neither the covariance nor the  autocorre- 
lation  method can  guarantee the  stability of the resulting in- 
verse prediction error filter in two-dimensional linear predic- 
tive analysis [ 111 . Only in  the one-dimensional case can the 
autocorrelation  method  guarantee  stability [5]. Thus, if the 
prediction error filter is structured as the  product of two 1-D 
prediction error filters-each one predicting along a different 
direction in the (m, n)  plane-then, by using the I-D autocor- 
relation  method,  the parameters of each individual filter can 
be found so that  stability is guaranteed.  For  example, suppose 
that we desire a Q X Q 2-D separable prediction  mask.  Its cor- 
responding prediction  error  filter  and  prediction error  se- 
quence will be respectively 

c(m, n)  = x(m, n)  - a(k) x(m - k ,  n)  
8 - 1  

k = l  

- b(Z)x(m, IZ - I )  
e - 1  

I =  1 

n-1 n-1 
t a(k) b(Z) x(m - k ,  n - 1). (26) 

k = l  Z=1 
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TABLE 111 
.TOTAL N O R M A L I Z E D  PREDICTlON ERROR (PERCENT) FOR LINEAR 

PREDICTION OF 1)ENSITY IMAGES 

Methodlhnalysis  Conditions 
(P, M )  3,32  3,16  8,32 

TBLP 
LMLP 
LP 

0.0993 0.0885 0.084 1 
0.0998 0.0903 0.0843 
0.1008 0.0932 0.0860 

N ANALYSIS ON DENSITY IMAGE 
4 

I COVARIANCE I 
- M - C FRAME SIZE = M X M ) 

Fig. 6 .  Variation of prediction error versus frame size for density 
images (P = 3). 

In general, to find the coefficients  of  a  separable  predictor, 
{a(k), b(k), k = 1, . * 1 , Q - l}, we must  minimize the square 
norm  of e(m, n)  by taking  partial derivatives with  respect to 
the  coefficients,  setting  equations  equal to zero,  and solving 
the  resulting  system. However, this will be a  formidable  task 
since it is evident  from  (26) that  the resulting  system  of  equa- 
tions is nonlinear. A suboptimum  solution i s  obtained  when 
the  2-D separable  filter i s  realized as  a cascade of two filters 
with the error  sequence being minimized at  the  output of  each 
filter  separately.  In  other  words,  prediction is done  first along 
one  direction  and then along the  other. If s(m, n )  is the  out- 
put  of  the  first  prediction  error  filter 

can be  found  by using the  autocorrelation  method on a M X M 
frame  of the signal s(m, n). Again, 1-D Levinson recursion can 
be  employed to give a  stable  filter. 

At this  point, we should  emphasize that  the procedure is 
suboptimum; i.e., E2 > E ,  where E given by (8) represents the 
error  of the general 2-D predictor  and Ez represents the error 
of the  suboptimum 2-D separable  predictor.  Throughout  all 
the  above discussion we omitted  the problem  of  estimating the 
bias, because for  the  autocorrelation  method [see (19) and 
(20)] this problem is decoupled from  the problem of estimat- 
ing the  optimal prediction  coefficients. 

Example: For  the 2 X 2 separable  predictor  there  are  only 
two  unknown  prediction coefficients: {a, b). The  2-D predic- 
tion error  filter  and  the corresponding  error  sequence will be 

A @ ,  ,z2) = (1 - lZz;')(l - bz,') (31) 

e(m, n)  = s(m, n) - bs(m, n - 1) 
where 

s(m, n)  = x(m, n) - ax(m - 1 ,  n). 

The  optimal  coefficients (a, b) will be 

R x ( 1 7 O )  b -  RS(0, 1) lZ= 
RAO, 0)  Rs(O7 0) 

(34) 

where the 2-D autocorrelation lags R x ( . ,  .) are given by (18), 
from  which R,(. , e )  is also given if we replace the signal 
x(m, n) by s(k, n). Using the Cauchy-Schwarz  inequality, it 
i s  easy to prove that la1 < 1 and 161 < 1 .  Therefore, the sep- 
arable  prediction  error  filter  of (31) has  a  stable inverse. 

Fig. 7 shows the variation  of the average normalized  predic- 
tion  error versus different  frame sizes, using a  2-D  separable 
linear predictor  with the  autocorrelation  method  for  a  fixed 
predictor  order P =  3. By comparing Figs. 4  and  7, we see 
that, in the  autocorrelation  method,  both  the separable  and 
the nonseparable  predictor have the same performance,  except 
for  a small increase (3-4 percent) of the prediction  error  in  the 
separable case. However, the  separable  predictor  still gives a 
two to four  times  greater  prediction  error than  the predictor 
in the covariance method. 

~ ( m ,  n)  = ~ ( m ,  n)  - a(k) ~ ( m  - k ,  n)  
e - 1  111. ADAPTIVE PREDICTIVE IMAGE CODING 

&I (27' So far, we have discussed several theoretical issues concern- 
ing the modeling,  performance,  and  stability of 2-D linear 

then  the  optimal {a@)} which  minimizes  prediction  applied to monochromatic image signals. One- 

El  =x s2(m, n )  (28)  dimensional  linear  prediction  constitutes  the  framework  for 
m n  the very effective  predictive  coding  of  speech at low bit  rates 

can be found  by using the  autocorrelation  method on  an M X 
M frame of the signal x(m, n). The well-known Levinson re- 
cursion [ 5 ]  can be  used to find the a(k)'s, and  the  resulting 
1-D prediction  error  filter will  be stable.  Similarly  the output 

[ l5] .  Following  a similar approach, we applied  2-D linear pre- 
diction to predictive  coding  of  still monochromatic images in 
an  intraframe ADPCM with  both adaptive  prediction  and  adap- 
tive quantgation. 

of the second 1 -D prediction  error  filter  is given by A. Adaptive Prediction 

e(m, n) = s(m, n) - z b(2) s(m, n - I) 
Q The  system  studied is illustrated  in Fig. 8. The  heart  of  this 

(29) system is a basic DPCM system. Its predictor  forms an esti- 
mate, x"(&, n), of an image sample to be  coded, x(m, n), from 

ference  between x(m, n)  and  its  estimate ."(m, n)  is the dif- 
E2 = e 2 ( m , n )  (30) ference signal d(m, n), which is quantized  and  encoded for 

m n  transmission.  In  adaptive  systems, the predictor is adapted to 

I =  1 

where s (m7  n, is given by  (27). The Optimal coefficients (b(l)]  past reconstructed samples at  the receiVer,'?(m, n). The  dif- 
which  minimize the error 
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g .  
ANALYSIS ON INTENSITY IMAGE 

a SEPARABLE PREDICTOR 
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Fig. 7. Variation  of prediction error versus frame size for a 2-D separa- 
ble predictor on intensity images (P = 3). 
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Fig. 8. (a) Adaptive DPCM coder for images. @) Decoder for ADPCM. 

the  nonstationarity  of  the image by using 2-D linear predictive 
analysis to obtain  estimates of the LPC coefficients in (1) over 
small  image regions. It should be noted that,  although  the 
optimal coefficients are  obtained from  the unquantized sam- 
ples x(m, n), the  predictor  operates  on  the  reconstructed Sam- 
ples x^(m, n) (see  Fig. 8). However, this  results  in  only a small 
loss in  optimality when the  quantization error is small;  i.e., 
x(m, n)  = ?(m, a). 

Stabilizing Technique: At the receiver of Fig. 8, the quan- 

tized difference signal $(m, n)  excites the inverse predic- 
tion error filter and  generates  the reconstructed image  signal 
?(m, n). Therefore, the  stability of this filter must be some- 
how guaranteed.  This  can be achieved by using a 2-D separ- 
able linear predictor, as discussed earlier, but  this sacrifices the 
full generality of 2-D linear prediction.  Thus,  another  ap- 
proach  which we  have followed with good success  is to use a 
suboptimal  stable  model  obtained by multiplying each predic- 
tion coefficient by a constant /3 such  that /3 . P(1, 1) < 1, in 
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cases where  P(1,  1) 2 1  and the model was necessarily unstable 
according to  (21). The value chosen  for p was  approximately 
%0.99/P(1, l ) ,  and  it varied for  each  frame of the image. 
When the stabilizing  constant is used,  the bias coefficient a. 
must  be  corrected so that (4) still  holds  for B as  originally 
estimated 

a: =B[1 - PP(1, I)]. (35) 

We have always  found the resulting  model to be  stable even 
though  (21) is only  a necessary condition.  Indeed, since sta- 
bilizing the model  results in higher prediction  error in the 
coder, we have found  it  best  to  place  a lower limit on D(flrnin = 
0.75),  and  accept an unstable  model  for very few regions  of 
the image. 

With  this  modification, the difference  equations  which  de- 
scribe the  operation of the coder  and  decoder.in  Fig. 8 become 

d ( m , n ) = x ( m , n ) - f l  * a ( k , I ) x ^ ( m - k , n - I ) - a :  
k l  

( k ,  1 )  En 

(36) 

x^(m,n)=fl * a ( k , E ) x ^ ( m - k , n - I ) t $ t d ^ ( m , n ) .  

( k ,  0 En 
k I  

(37) 

B. Adaptive Quantization 
In  order to achieve bit  rates below 1  bit/pixel,  the  difference 

signal d(m, n )  was quantized  with  a  three-level  center-clipping 
quantizer. Similar quantizers have been used in  speech  and 
image quantization  as  reported  in [ 163 and [ 171 , respectively. 
The  input-output  characteristic of this  three-level  quantizer  is 
illustrated  in  Fig. 9, and it is given by the  equation 

A, d(m, n) 2 0 1 d(m, n) = 0,  -8 < d(m, n) < 0 (38) 

-A, d(m,n)< -8. 

The  threshold 0 determines the percentage of the dynamic 
range of the  input signal to  the quantizer to be  assigned a  zero 
value. The behavior of  the quantizer can be varied by varying 
0 proportionally to  the step-size A. For  instance, if 0 = 0, the 
quantizer  has  only two levels, while 0 = A/;! corresponds to a 
uniform  three-level  quantizer.  Finally,  for 0 > A/2 we have a 
three-level  center-clipping  quantizer.  In  order to achieve a bit 
rate  for  the difference signal of at most  1  bitlpixel using code- 
words of fixed  length,  it is necessary to use a  two-level  quan- 
tizer.  However, the  dynamic range of the difference signal is 
often  too large to be  handled  properly by  a two-level  quan- 
tizer.  Such  a  coarse  quantization is a major source  of visible 
distortions  in  the  reconstructed image. With only two levels 
it is ‘difficult to avoid both peak-clipping of the  difference sig- 
nal and  granular  distortion.  Peak-clipping  results  in  smeared 
edges in the  reconstructed image, while  a large step-size  chosen 
to avoid peak-clipping  introduces large amounts of  granular 
noise. In  contrast,  a three-level  quantizer  offers  the  alternative 
of having the zero  middle level for small amplitudes  of the dif- 
ference signal plus two side-levels for handling the large ampli- 

t A  d(m,n)=(l[d(m,n)l 

- PEAK-TO-PEAK RANGE 
I 

I - 
Fig. 9. (-): Input-output characteristic of a three-level center- 

clipping  quantizer. (- - -): Three-level uniform quantizer. 

tude  portion of the difference signal. The  first-order entropy 
of the  output signal from  a  two-level  quantizer  in ADPCM  is 
very nearly  equal to 1 bit/pixel. However, by increasing the 
threshold 0 of the three-level  quantizer,  a large number of zero 
values  is produced at  the  output, and  the entropy of  the  quan- 
tized  difference signal can be made  significantly smaller than 
1 bitlpixel.  This can be  exploited by employing  block-coding 
techniques  and  encoding  efficiently at average bit  rates below 
1 bit/pixel. 

The 2-D quantization  error  sequence q(m, n)  is  defined  as 
the  difference  between‘the  input  and output signals to  the 
quantizer. Due to  the feedback  loop  around the quantizer  of 
Fig. 8, the  reconstruction  error  between x(m, n)  and $(m, n) is 
equal to  the quantization  error q(m, n). Therefore,  for  high 
fidelity image transmission, q(m, n) must be as small as possi- 
ble. This  can be done  by  first  adapting  the  parameters  of  the 
quantizer over each MX M image frame,  and  second,  by  de- 
signing an  “optimum” quantizer  which  takes into consid- 
eration  the  amplitude  distribution of the difference signal. 
Neglecting the stabilizing  factor /.3 and  manipulating the  equa- 
tions of the ADPCM loop, we can  write 

d(m, n)  = e(m, n) - c a(k, I )  q(m - k ,  n - I ) .  (39) 
k l  

( k ,  0 En 
Thus, we  see that  the difference signal  is equal.to  the predic- 
tion  error signal e(m, n )  plus a  filtered version of the  quantiza- 
tion error signal 4(m, 8). This  fact  makes it impossible to re- 
late  the  parameters of  the quantizer  (step-size  and  threshold) 
directly to  the variation of d(m, n),  since 4(m, n)  is unknown 
in advance. One possible solution is to relate them  to  the var- 
iation of the  prediction  error signal e(m, n), which can be 
obtained in advance. The motivation  for  this was the experi- 
mental  observation that  both d(m, n)  and e(m, n) possess a 
Laplacian amplitude  distribution.  Thus,  the  adaptation  pro- 
cedure  for  each M X M image frame is defined  as 

A = D * o e  (40) 

8 = K * o ,  (41 1 
where ue denotes  the standard  deviation of the  zero-mean  pre- 
diction  error signal e(m, n )  over the M X M image frame.  The 
parameter D controls  the dynamic range of the quantizer  and 
the tradeoff  between  granular noise and  peak-clipping. In- 
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creasing the value of parameter K reduces the  entropy of the 
quantized  difference signal. For a certain  fixed K ,  the  opti- 
mum choice of D for minimum  quantization  error can be 
guided by knowledge of the amplitude  distribution of dim, n )  
and e(m,  n). An empirically determined  estimate for D is D = 
1.5 for K = 0 (two-level quantizer)  and D = 2  for K/D > 0.5 
(three-level center-clipping quantizer) [18] . 

Encoding of the Quantized Difference Signal and the  Side 
Infomation: For a three-level quantizer,  the quantized differ- 
ence signal contains at  most  three  amplitude levels: -A,  0, and 
A. If  we consider this as a source  alphabet  of  three letters (- 1, 
0 ,  1 )  and segment the  entire quantized  difference image into 
1-D or 2-D nonoverlapping and touching  blocks  of L samples, 
then  the  Lth-order  joint  entropy  in  bits per sample of the 
image is 

HL = -(1/L) - * e p(x1 ,  * - * , XL] 
X I , . . .  , X I ,  

* log2 P ( X *  9 - . . Y XL)  (42) 

where xi represents  an  encoded  quantized difference sample 
whose value is - 1,0 ,  or 1 and p ( x l ,  . * , XL) denotes the  Lth- 
order  joint  probability  of the L samples x l ,  * , xL of one 
block.  In practice we measure histograms instead of probabil- 
ity distributions.  It is  well known  [I91  that  by using opti- 
mum  Huffman encoding of the blocks we can achieve an aver- 
age bit  rate R H ~ J F  which is arbitrarily close to HL for large L :  

If 8 = 0, we  have only  two  quantization levels. Therefore, 
we can use codewords of fixed  length to encode the quantized 
difference image at 1 bit/sample. Alternatively, we could use 
Huffman  codewords of  variable length to  encode  blocks  of 
L samples. In  our ADPCM coder,  the  first-order  entropy  of 
binary  quantized  difference images  was found to be ~1 bit/ 
sample. However, their  16th-order  entropy was equal to about 
~ 0 . 7  bits/sample. Thus,  by using Huffman coding for 2-D 
blocks with 4 X 4 samples  we can  encode this binary quan- 
tiz,ed difference signal at  an average rate Rd very close to 0.7 
bits/sample: 0.7 < Rd < 0.7 t (A). 

If 8 # 0, we  have three  quantization levels. To use in  this 
case Huffman coding for blocks of 16 samples would be highly 
impractical, because the Huffman  table  would  contain 3 1 6  en- 
tries. Therefore, to  encode the quantized  difference image,  we 
used the coding procedure described in [16], which  exploits 
the  fact  that,  due to the large number  of  zero values in  the 
output  from  the  quantizer,  the  first-order  entropy  in (42) is 
very often smaller than 1 bit/sample. That is, code  words  of 
variable length were assigned to blocks having a fixed  length 
of I, samples. The average number of bits required per sample 
is 

HL < R H ~ J F  < HL t l/L. 

L 
Rd = (l/L) x Pr(n) b(n) (43) 

where b(n) denotes  the number of bits  required  for a block 
with n zeros  and Pr(n) is the  probability that a block of L sam- 
ples contains n zero samples. The following example will  clar- 
ify the efficiency of the above procedure. An image was 
coded through  the simulated ADPCM system of  Fig. 8 with a 

n = o  

three-level center-clipping quantizer yielding a first-order en- 
tropy of H I  = 0.701 bits/sdmple which  corresponds to a per- 
centage of  zero-valued samples equal to 86 percent. By en- 
coding blocks of L = 4 samples long, an average bit  rate  of 
0.734  bitslsample  resulted  for  the  quantized  difference signal. 
This  bit-rate is only 1 .OS times the  entropy. By  using  larger 
blocks  of I, = 8 samples the average bit  rate was further  re- 
duced to only  0.709 bitslsample, which is consistent  with  the 
noiseless coding theorem  for binary transmission [I91 . 

The above proposed block-coding schemes have the advan- 
tage that  they achieve high coding efficiency, enabling trans- 
mission  of  images at rates below 1 bitlpixel. Their  disadvan- 
tage is that  they make use of variable-length codes so that a 
buffer  must  be provided between the variable length  codes  and 
a uniform  bit rate channel. Also, the variable-length codes 
must be designed so as to provide protection against a loss of 
synchronization in  the presence of channel errors. Also note 
that a change of the source probabilities would require a new 
code mapping to ensure minimal average length. 

In  addition to the above bit  rate Rd for  the quantized differ- 
ence signal,  we must also transmit  information about  the P +- 1 
predictor  parameters (a@, I), ao}  and the  step size A (also re- 
ferred to as “side information”). The dynamic range of the 
prediction  coefficients a(k, 2) of a stable 2 X 2 predictor is 
necessarily (- 1, 1). For 3 X 3 predictors, we experimentally 
found  that  the  prediction Coefficients were always absolutely 
less than 1. Motivated by  the established techniques in  the 
area of speech coding [5] for  quantizing reflection coeffi- 
cients, instead of  directly  quantizing a prediction coeffi- 
cients a(k, 1)9 we  quantized the  quantity log [(l - a(k, 1))/(1 t 
a(k, Z))] for all ( k ,  E )  E I1 using a uniform  quantizer in the im- 
plied  range. We found that by using quantized coefficients 
with 6-10 bits/coefficient,  the SNR of the resulting coded 
images  was about 0.2 dB less than  the resulting SNR when 
using unquantized coefficients. To quantize the bias coeffi- 
cient ao, we can quantize instead the bias B whose dynamic 
range is  known  (0-255  for 8 bit/phel  intensity images) and 
then  obtain a. using  (4). The dynamic range for  the  step size 
was experimentally set equal to half the range for  the bias B. 
Both  the bias and  the  step size were quantized using logarith- 
mic  uniform  quantizers. A typical  bit allocation used in OUT 

ADPCM scheme was: 6 bits  for each prediction  coefficient, 7 
bits  for  the bias, and 6 bits  for th.e step size on every analy- 
sis frame. If n, denotes  the average number of bits per  side- 
information  parameter, then  the  total average bit  rate of the 
coded image  is 

R = R d + ( P + 2 ) - n , / M 2 .  (44) 

For  the above bit  allocation,  the side information  for 32 X 32 
frames  requires 0.03 and 0.06 bits/pixel  for  predictor  orders 
of P = 3 and P = 8, respecthely.  For  16 X 16 frames,  the 
above rates  for  the side information increase to 8.12  and 0.24 
bitslpixel. 

C. Experimental  Results 
The ADPCM scheme of Fig. 8 with  both  adaptive  prediction 

and  adaptive  quantization was applied in coding monochro- 
matic  still images. For simplicity, all  the following results will 
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Fig. 10.  Coded  intensity images using  a  two-level  quantizer (D = 1.5). 
(a) P = 8, M = 16, R = 0.96 bit/pel.  (b) P = 8, M = 32, R = 0.78 bit/ 
pel. (c) P = 3, M = 16, R = 0.84 bit/pel. (d) P = 3, M = 32, R = 0.75 
bit/pel. 

refer to  the head-and-shoulders image of Fig. 2(a), but similar 
results  were  obtained for  other images as well. The  adaptation 
took place by dividing the whole image in M X M frames 
where M was equal to 16 or 32. The  coefficients  of the 2-D 
linear  predictor for each  frame  were  obtained by using the  co- 
variance method,  with  the bias being estimated  together  with 
the  predictor  coefficients (TBLP method).  The  adaptive  quan- 
tizer was used with  either two or three  quantization levels. 

For  measuring  the  fidelity  of  the  reconstructed images, we 
employed  a  widely used [7]  version of signal-to-noise  ratio  de- 
fined  as 

SNR = 10 log,, 
(Peak-to-peak value of original image data)2 . n T  nr 

where N 2  represents the number  of  pixels  of the original 
image. At the receiver of Fig. 8, a  clipper was used after  the 
reconstruction  procedure.  The  clipper  resets  the values of the 
reconstructed image samples 2(m, n) to within the limits  of 
the  dynamic range of an 8 bit imaging system (i.e., 0-255). 
The need for  the clipper arises because the nonlinearities  of 
the  quantizer  and the numerical  instabilities  of  the  predictor 
always  create a small percentage  of samples (x1 percent)  ex- 
ceeding the specified dynamic  range.  Alternatively,  inserting 
a  clipper  before the  predictor-both  at  the  transmitter and at 
the receiver results  in  a  slightly  lower SNR and  a  greater  per- 
centage  of  clipped levels. 

Coding of Intensity Images: By applying  adaptive  predictive 
coding to  the intensity image signal, reconstructed images of 
full  intelligibility  and  good  fidelity  resulted. Fig. 10 shows  a 
set of  four  reconstructed images which  were  coded by using a 
two-level  quantizer  and  different  frame sizes as well as differ- 
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TABLE I V  
S N R  FOR CODED INTENSITY  IMAGES USING 

A TWO-LEVEL QUANTIZER (SEE  FIG. I O )  

Predictor Frame SNR 
Order Size (dB) 

3 32 X 32 30.6 
8 32 X 32 
3 

31.1 
16 X 16 31.2 

8 16 X 16 32.2 

Fig. 11. Quantization error images for the respective coded images of 
Fig. 10. ( a ) P  = 8.M= 16. rO)P= 8 , M =  32. ( c ) P =   3 , M =  16. (d) 
P = 3 , M = 3 2 .  

ent  predictor  orders.  Table IV contains  the resulting SNR’s. 
The  corresponding  quantization error images are shown  in 
Fig. 11.  They were  formed  by  mapping  the  difference  be- 
tween original and  reconstructed images onto  the original 
range from  0-255  for display. Table IV indicates  that using 
both smaller frames  and higher predictor  orders gives a higher 
SNR. However, the  16 X 16 frames  require  a  bit  rate  for  the 

side information whch is four  times higher than  for  32 X 32 
frames.  Subjective image quality  tests  indicate  that  the 3 X 3 
predictor gives  images with sharper  edges than  a  2 X 2 predic- 
tor,  without significantly increasing the  additional  required 
bit rate. 

Fig. 12 illustrates a set of four  reconstructed images which 
were  obtained by fixing the  predictor order at P = 3 and the 
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Fig. 12. Coded intensity images using a three-level center-clipping 
quantizer (D = 2, P = 3, M = 32). (a) R = 1.03 bitlpel. (b) R = 0.93 
bit/pel.  (c) R = 0.83 bit/pel. (d) R = 0.74 bitlpel. 

TABLE V 
SNR OF CODED INTENSITY  IMAGES VERSUS ENTROPY 
OF DIFFERENCE S I G N A L  FOR THREE-LEVEL  QUANTIZER 

WITH D = 2, hi' = 32, f' = 3 (SEE FIG. 12) 

K 
First-Order Entropy 

@its/pixel) SNR (dB) 

2.0 0.707 
1.7 0.804 
1.5 0.900 
1.3 1.002 

30.3 
31.6 
32.6 
33.4 

frame size at M =  32, by using a  three-level  center-clipping 
quantizer,  and  by varying its threshold so that  entropies of ap- 
proximately 0.7, 0.8, 0.9, and 1 bit/pixel  result.  The  major 
observation of Fig. 12 is that contouring  effects  become ob- 
vious as the  entropy is reduced.  Consistent  with  this  observa- 
tion is the  fact  that  the SNR becomes smaller at lower en- 
tropies, as shown  in  Table V. Comparing Figs. 10 and 12 leads 

to  the following  conclusions.  a)  For the same average bit  rate 
of =0.7 bits/pixel,  predictor  order,  and  frame size, both  the 
three-level  and the two-level  quantizers  result  in  the same 
SNR. Moreover, in  the case of  three  quantization levels, the 
reconstructed image appears to have sharper edges, less granu- 
lar noise,  but some contouring  effects. b) For the same bit 
rate  of 1 bit/pixel using codewords  of variable length for  the 
three-level  and  of  fixed  length  for the two-level  quantizer,  the 
three-level  quantizer gives images with  almost  no  contouring 
effects  and  some  aspects of superior  fidelity,  such  as  sharper 
edges, less granular  noise,  and higher SNR (approximately 
3 dB more). 

Coding of Density Images: Recall that linear  prediction  per- 
formed  better  on  density images than  on  intensity images. It 
is therefore of interest to apply ADPCM coding to density 
images. This procedure  is  summarized  in  Fig. 13, where the 
image density signal xD(m, n)  is coded by  an ADPCM configu- 
ration  identical to  the one  in Fig. 8. The  reconstructed  den- 
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intensities 1 densities - densities  intensities 

Fig. 13. ADPCM on the density representation of images. 

sity image 2 ~ ( m ,  n)  yields after  exponentiation  the  recon- 
structed  intensity image $ ~ ( m ,  n). There exist two  different 
reconstruction errors: the  one  between  the original and  the  re- 
constructed  intensity image which is expressed by  the  “inten- 
sity  SNR”  in (45), and  the error between original and  recon- 
structed  density image which  can  be  expressed  by the  “density 
SNR,” given by (45) if  we substitute  density values. The  den- 
sity  SNR  measures  the  performance  of ADPCM on  the density 
image. The  intensity  SNR  measures  the  performance of the 
overall coding  scheme of  Fig. 13. 

As far  as  the  density SNR is concerned,  the  experimental 
results  were  in  agreement  with  the  very  good  performance of 
linear prediction on the  density image. Namely, for P = 8 and 
M =  32,  the resulting density  SNR was about  32.5 dB. How- 
ever, of greater  importance is the visible SNR  which is the  in- 
tensity  SNR,  which was about 28.5  dB.  The  reconstructed in- 
tensity image  is shown  in Fig. 14, where  some  “black  spots” 
disturb the uniformity  of the image and  make it appear that 
the image  is  being  seen through  a  “dirty  window.”  The  dif- 
ference  in  SNR upon moving from densities to intensities is 
not  yet well understood. A reason  might be that  the  quanti- 
zation  errors  are  magnified  nonlinearly  by  the  exponentiation. 
One  advantage  of  coding the  density image  is that  the  recon- 
structed  intensity image is guaranteed to be positive, as  a  true 
image  signal should  be,  because  of the  exponentiation  of  the 
reconstructed  density  image. 

Coding of the Perceptual Visual Domain: Stockham 1131 , 
motivated by a  model for  the early portions of the  human 
visual system  depicted  in Fig. 15, suggests that image process- 
ing be  done  after  the image has  been  transformed by  the visual 
model.  This  model  assumes that  the eye is logarithmically sen- 
sitive. Moreover, the densities are linearly processed by a high- 
pass spatial linear filter V(F). Stockham’s  empirical  best esti- 
mate  for V(F) was 

V(F) = 742/(661 -t F 2 )  - 2.463/(2.459 -t F 2 )  (44) 

where F is the radial spatial frequency in cycles per degree, 
and  the 2-D  frequency  response  of  the  eye is assumed to be 
circularly symmetric. 

Motivated by Stockham’s  argument  we  applied ADPCM to 
the  representation  of  the image that results from processing 
the image with  this visual model,  the  “perceptual visual do- 
main.” As summarized  in Fig. 16,  the above  procedure  con- 
sists of  transforming the intensities to densities, filtering the 
densities by  the high-pass spatial filter V(F), coding the fil- 
tered densities by using the scheme of  Fig. 8, inverse filtering 
the  reconstructed densities by  the inverse low-pass spatial fil- 
ter V-’(F),  and finally exponentiating to end up  with  recon- 
structed intensities. To implement digitally a  sampled version 
of V(F), we  used  sampling  frequencies at  20  or  40 samples/” 
corresponding to cutoff  frequencies  for V(F) of about F,, = 

Fig. 14. Reconstructed image from ADPCM of the density  representa- 
tion (K = 0 ,D  = 1.5,P= 8 , M =  32, R = 0.78 bit/pel, SNR = 28.5  dB). 

logarithmic high-pass spatial saturation 

sensitivity linear filter 

Fig. 15. An approximate  model  for  the processing characteristics of 
early portions  of  the  human system (after [ 131). 

10 or 20 samples/O, respectively. These  choices  resulted from 
the  assumption  that a convenient viewing  angle for  a  256 X 
256 image is 6”, yielding  a spatial sampling frequency  of  about 
40 samples/”. 

The  reconstructed images from  coding the  perceptual visual 
domain  are  shown  in Fig. 17, where  a  two-level  quantizer 
and  various  predictor  orders  and  cutoff  frequencies for V(F) 
were  used.  The  corresponding  intensity  SNR was about 26.7- 
28.2  dB.  Hence,  from the viewpoint  of  SNR,  coding in the 
perceptual visual domain  instead of the  density domain  does 
not offer any advantage.  From the viewpoint of fidelity,  how- 
ever, the black  spots of the  density coded image  (see also Fig. 
14)  disappeared, verifying indeed  Stockham’s  hypothesis that 
the visual-model  transformation of an image increases  toler- 
ance to quantization  distortions.  Indeed, Fig. 18 compared 
with Fig. 12(d) shows that  the  contouring  effects, which  ap- 
peared  in the intensity  coded images by using a three-level 
center-clipping  quantizer  at bit rates  below 4 bit/pixel, are not 
evident if the  output of the visual model is coded. However, 
the  reconstructed image  of  Fig. I8  has  another  kind of coding 
distortion:  there  are  some small regions of the image where the 
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perceptual visual domain 

reconstructed  reconstructed 
intensities 

EXP B- 

high-pass 
spatial  linear filter 

low-pass 

spatial linear filter 

Fig. 16. ADPCM on the perceptual visual representation of images. 

Fig. 17. Reconstructed images from ADPCM of the  perceptual visual 
representation  (two-level  quantizer, I) = 1.5, M = 32). (a) P = 3, 
F,, = samples/0, SNR = 26.7 dB. (b) P =  8, Fco = 20 samples/", 

P= 8, F,, = 10 samples/O, SNR = 28.1 dB. 
SNR = 28.2 dB. (c) P = 3, F,, = 10 ~ m p l e ~ / " ,  SNR = 27.2 dB. (d) 

scene seems sort  of "washed out." These spots  may  be  ac- 
counted  for  by losses in  amplitude  of  the  reflectance  compo- 
nent  because  of the center-clipping  operation. 

Comparison to Plain  DPCM: All the previodsly discussed 
experimental  results  referred to ADPCM with  both adaptive 
predictor  and  adaptive  quantization. A natural  question to 
ask at  this  point is: how  much of image quality is  sacrificed by 

using simple DPCM without  adapting the predictor  and/or the 
quantizer? 

First, we considered the performance  of DPCM with  only 
adaptive  quantization.  The  predictor  was  fixed,  and its param- 
eters  were  obtained by applying  2-D linear prediction to  the 
entire image, which  can be considered  as  a 256 X 256 frame. 
The  resulting SNR's were  approximately  the same (about 1 dB 
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Fig. 18. Reconstructed image from ADPCM of the perceptual visual 
representation using a three-level quantizer (K = 2, D = 2, P = 3,  M = 
32, R = 0.73 bit/pel, SNR = 25.3 dB). 

lower) as  in  the case  of  ADPCM. However, the subjective 
quality of the DPCM reconstructed images was inferior due to 
granular noise, which was particularly  annoying  at  bit  rates 
below 1 bit/pixel  with a three-level quantizer.  Unfortunately, 
the superior performance of ADPCM over DPCM with  only 
adaptive  quantization can be seen only  on high-quality image 
display systems, and it could not be reproduced on printed 
photographs in this  paper.  Furthermore, if other  than  the 
optimal  fixed  prediction coefficients were used, both  the SNR 
and  the image quality  dropped drastically. 

Some  experiments were also done  with a simple DPCM with 
fixed  predictor  and a nonadaptive  quantizer. The  fixed  step- 
size of the  quantizer was  proportional to  the rms value  of the 
prediction error over the entire image obtained  by using the 
coefficients of the  optimum  fixed  predictor. With a two-level 
quantizer  the resulting reconstructed images had about a 2 dB 
lower SNR than  for ADPCM and severe  granular  noise.  With a 
three-level quantizer  and  bit  rates lower than 1 bit/pixel, 
severe, unacceptable  distortions of the scene texture became 
apparent in the reconstructed image. 

IV. CONCLUSIONS 
Two-dimensional linear prediction removes much  of  the  re- 

dundancy  in monochromatic 2-D  image  signals, For positive 
image  samples, linear prediction  performs  better if the bias  is 
subtracted  from  the samples. The  stability of the inverse pre- 
diction  error filter interacts  with  the  estimation of the  opti- 
mum bias. Stability  can be guaranteed only in the case  of  2-D 
separable linear prediction,  which yields approximately the 
same performance as  in  the nonseparable case when using the 
autocorrelation  method. Linear prediction yields a smaller 
normalized prediction error when applied to density images 
than when applied to intensity images. 

Linear prediction  of images  can be satisfactorily applied to 
adaptive predictive image coding. By using an ADPCM scheme 
of the same complexity as the  ones used  in predictive coding 

of speech, reconstructed monochrome images of high fidelity 
can be obtained  at  an approximate rate of 1 bit/pixel.  For  bit 
rates below 1 bit/pixel, a three-level center-clipping quantizer 
may be used to yield  images  possessing  less granular noise and 
sharper edges, but  with some “contouring”  effects, which can 
be avoided if the coding takes place in  the  perceptual visual 
domain (high-pass filtered densities)  of the image. In general, 
good image quality  has been obtained at  rates  as low as 0.7 
bits/pixel,  which  corresponds to a compression factor of 8 to 
0.7  or approximately 11 to 1. 

APPENDIX 
Theorem: Consider the  first  quadrant recursive filter l/B(zl, 

z2) with 

where Q, R 2 0, max (Q, R )  2 I ,  and b(0, 0) # 0. This filter 
is stable only if (necessary condition) 

b(0,O) * B(1,l) > 0. (A21 

Proof: Huang’s Theorem  for  stability [9] says that  the  re- 
cursive filter l/B(z,,  z2) is stable  only if 

B(z, ,u)#O,   lz l l>l , foranyusuchthat  I u 1 2 1 .  

(-43) 
For u = 1, B(zl , u )  reduces to 

B(z1 , 1) = z P  [ 2 5 b(k,Z) z’-k] . 
k = 0  I = o  

Lemma: The 1-D polynomialP(x) = aOxN t alxN t . * . t 
UN with real coefficients has all its  roots inside the  unit circle 
only if a. * P(1) > 0. The proof of this lemma is  very  easy and 
therefore will not be given. 

To satisfy condition (A3) it is sufficient to require that  the 
1-D polynomial in z1 of degree Q inside the  brackets of  (A4) 
have  all its  roots inside the  unit circle. According to  the above 
lemma, this is true  only if 

B(1,l) * b(O,Z)>O. 
R 

I = 0  

Let  us now interchange the roles of z1  and  z2 in (A3) and  con- 
sider the case u = 00, then 

B(m, z2) = ziR [ f b(0, Z) z,” -‘] . 
z=o 

Similarly, to satisfy (A3), the  roots of the 1-D  polynomial in 
z2 inside the  brackets of  (A6) must be inside the  unit circle, 
which according to  the lemma happens only if 

b(0,O) . ,f b(O,Z)>O. 
z=o 

By combining (A5) and (A7), the proof of  (A2)  is completed. 
This theorem  is  stated  for  the case where B(zl,  z2) has a rect- 
angular Q X R first quadrant region of support; however, the 
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theorem is also true when B(z,  , zz) has  an arbitrary  first  quad- Ph.D. degree in the  area of digital image  processing. His research interests 
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tion (A21 reduces to B(1 I 1) > 0, to which the necessary con- Mr.  Maragos is a member  of  the  Technical Chamber of Commerce of 
dition (21) of  Section I1 refers. Greece. 

processing, as well as digital communications  and  pattern  recognition. 
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