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This paper reviews the basic theory and applications of a set the-
oretic approach to image analysis called mathematical morphol-
ogy. The goals of the paper are: (1) to show how the concepts of
mathematical morphology can quantify geometrical structure in
signals and (2) to illuminate the ways that morphological systems
can enrich the theory and applications of multidimensional signal
processing. The topics covered include: applications to non-linear
filtering (morphological and rank-order filters, multiscale smooth-
ing, morphological sampling, morphological correlation); applica-
tions to image analysis (feature extraction, shape representation
and description, size distributions, and fractals); and representa-
tion theorems, which show how a large class of nonlinear and lin-
ear signal operators can be realized as a combination of simple
morphological operations.

I.  INTRODUCTION

Multidimensional signal processing has been based tra-
ditionally on the concepts and theory of linear systems and
Fourier analysis (or other related transforms) {10], [11], [27],
[136]. Although these classical approaches have been very
fruitful in many applications, they are often of limited use
for image-like signals because they do not address directly
the fundamental issues of how to quantify shape or geo-
metrical structure in signals. In contrast, mathematical mor-
phology, which is a set-theoretical methodology for image
analysis, can rigorously quantify many aspects of the geo-
metrical structure of signals in away that agrees with human
intuition and perception. This method, which has its math-
ematical origins in set theory, integral geometry, convex
analysis, stereology, and geometrical probabilities, was
developed mainly by Matheron [80], [81] and Serra [115] in
the 1960s.

The techniques of mathematical morphology are based
on set-theoretic concepts, on nonlinear superpositions of
signals, and on aclass of nonlinear systems that we call mor-
phological systems. We consider the term mathematical
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morphology to be a more general designation, referring to
the entire body of fundamental theory of morphological
systems and to the heuristics and algorithms associated with
application of the theory to specific areas. Mathematical
morphology has been widely used for biomedical and elec-
tron microscopy image analysis, and it has been a valuable
tool in many computer vision applications, especially in the
area of automated visual inspection. Industrial applications
of these techniques have been spurred by the continuous
development and improvement of novel computer archi-
tectures for implementing morphological signal transfor-
mations. However, in spite of its many successful appli-
cations and its deep and elegant mathematical structure,
mathematical morphology has only recently become a topic
of interest for academic research, and the breadth and gen-
erality of the approach are not yet widely appreciated.

A comprehensive survey of the entire field of mathe-
matical morphology would necessarily be very superficial
even if much more space were available. instead, we focus
on morphological systems, with the goals of showing how
these systems can enrich the mathematical tools of mul-
tidimensional signal processing and illustrating how they
can be applied to fields of growing interest such as com-
puter vision, nonlinear filtering, and structural signal anal-
ysis. Thus, we provide a review of the fundamentals of mor-
phological system theory and we give an introduction to
some of the elegant theorems that are available for rep-
resentation and analysis of morphological systems. We also
attempt to illustrate ways that morphological systems can
be applied by showingalimited number of examples drawn
primarily from our own past and current research [64]-[74].
While limited space precludes a detailed review of all pre-
vious work in the field of mathematical morphology, we
have provided an extensive bibliography and have cited rel-
evant contributions from other researchers wherever pos-
sible.

The paper is organized as follows. Section 1l reviews the
basic concepts behind morphological systems. Section HI
contains applications to nonlinear filtering: relationships
between morphological and rank-order/median filters,
multiscale morphological smoothing, morphological sam-
pling, and morphological correlation. Section IV covers
some applications to image analysis: edge/blob feature
extraction, shape representation via skeleton transforms,
shape description via shape-size distributions, and descrip-
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tion/modeling of fractal images. Section V shows that sim-
ple morphological operations are the representational pro-
totypes of a large class of nonlinear and linear signal
operators.

Il.  GeNErAL CONCEPTS

The basis for this approach to multidimensional signal
processing is the representation of signals and systems in
terms of sets and set transformations. This is the key to rep-
resenting and manipulating geometric structure in images
and other signals.

A. Signal Representations

Let R and Z denote, respectively, the set of real and inte-
ger numbers, and let E be the d-dimensional (henceforth
denoted d-dim) continuous space R%(d = 1,2, - - -) or the
discrete space Z°. Then a d-dim signal can be represented
as a function whose domain is either R (continuous) or Z°

EROSION

(discrete), and whose range is either R (continuous ampli-
tude) or Z (quantized amplitude).

Binary signals can be represented by sets. For example,
the image at the top left of Fig. 1is a binary signal, where
the white background region could be represented by 0
and the shaded foreground could be represented by 1.
Clearly the signal may also be represented by the set X of
points corresponding to the shaded region. Binary images
are often obtained by thresholding a gray-level image.
Thresholding can also be used to represent gray-level
images by binary signals and therefore, by sets. Serra[114],
[115] uses the representation of a real-valued d-dim func-
tion f(x) (x is a d-dim vector) by the ensemble of its d-dim
threshold sets defined by

T,(fy = {x: f(x) = a},

where the amplitude a spans all of R or Z depending on
whether the signal f has a continuous or quantized range.
The threshold sets have two important properties: They are

—o < a< o, M

Fig. 1. Erosion, dilation, opening, and closing of X (binary image of an island) by a disk
B centered at the origin. The shaded areas correspond to the interior of the sets, the dark
solid curve to the boundary of the transformed sets, and the dashed curve to the boundary

of the original set X. (From [73))
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linearly ordered sincea < b = To(f) 2 Ty(f), and they can
reconstruct the signal f uniquely since

fi) = max {a: x € T,(f)}, wx. 2)

This representation is illustrated for a 1-dim signal by the
example of Table 1. The signal f(x), shown in the second row
of the table, has only four amplitude levels, and thus can
be represented by the four threshold sets, each of which
includes only the points indicated by dots in the next four
rows of the table. (A continuous-amplitude signal would
require an infinite number of threshold sets.) The final four
rows show the threshold binary signals corresponding to
the threshold sets where f,(x) = 1if f(x) = a [i.e., xe T,(f)]
and f,(x) = 0 if f(x) < a[i.e., x & T,(f)], where a spans the
range of f(x). Obviously, the signals £,(x) convey the same
information as the threshold sets T,(f). Hence, f can be
reconstructed from the f,’s since

fx) = max {a: f,(x) = 1},  wx. 3)

The validity of (2) and (3) is easily seen for the example of
Table 1.

Table 1 Threshold Representation of a Discrete,
Quantized Signal

X 0 1 2 3 4 5 6 7 8 9 10
f(x) 1 1 2 1 3 0 0 1 0 2 3
T3(f) . .
T, ( f) . 3 . .
T:() . . . .
To( f) . . . 3 . . 0
f3(x) 0 0 0 0 1 0 0 0 0 0 1
f,(x) 0 0 1 0 1 0 0 0 0 1 1
f1(x) 1 1 1 1 1 0 0 1 0 1 1
folx) 1 1 1 1 1 1 1 1 1 1 1

B. Signal Transformations

The signal transformations of mathematical morphology,
which we call morphological filters, are nonlinear signal
operators that locally modify the geometrical features of
multidimensional signals. We consider first the case of
binary signals. Let X < E be the set representation of a binary
input signal, and let B < E be a compact set of small size
and simple shape (e.g. a d-dim ball). The set B is called a
structuring element. Let X + b = {x + b: x € X} denote the
vector translate of X by +b € E. The fundamental mor-
phological operators for sets are dilation ® and erosion o
of X by B, which are defined as follows:

XeB= UX+b={x+b:xeXandbeB}, 4)
beB

XeB=MNX-b={zB+2cX). )
beB

From these definitions, it can be shown that the output of

the dilation operator is the set of translation points such

that the translate of the reflected structuring element B =

{~b: beB} has anonempty intersection with the input set;

ie, X @ B={z(B+2 N X=+ @} Similarly, the output

"In [56), [116] the term “morphological filters’ refers only to a
special class of morphological transformations (algebraic gener-
alizations of openings), whereas we use itinterchangeably with the
broader term morphological systems.
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of the erosion operator is the set of translation points such
that the translated structuring element is contained in the
input set.

Other operators can be defined as combinations of ero-
sions and dilations. For example, two additional funda-
mental operators are opening © and closing * of X by B
defined as follows:

XoB=(Xeo B) e B, (6)
XeB=(X®o B) e B. (7)

To visualize the geometrical behavior of these operators
itis helpful to consider 2-dim sets such as the set X and the
structuring element 8 shown at the top of Fig. 1. Figure 1
shows that erosion shrinks the set X, whereas dilation
expands X. The opening suppresses the sharp capes and
cuts the narrow isthmuses of X, whereas the closing fills in
the thin gulfs and small holes, in a way such that Xo B ©
X € X ¢ B. Thus, if the structuring element B has a regular
shape, both opening and closing can be thought of as non-
linear filters which smooth the contours of the input signal.
Clearly, the shape and size of the structuring element will
determine the nature and the degree of smoothing.

The above set operators can be extended to multilevel
(i.e., non-binary) signals, represented by real-valued func-
tions, in various ways [114], [115], [82], [89], [121], [122], [100].
Serra used the representation of a d-dim function f(x) by
the collection of its threshold sets in (1). Then, dilating all
threshold sets of fby the same compact set B yields the sets
T.(f) @ B, which are the threshold sets of a new function
f ® B, called the dilation of f by B. This new function can
be computed either from (2) as (f ® B)(x) = max {a: xe T,( f)
® B} or, from the equivalent direct formula:

(fo B(x) = max {fix — )} ®)
ye

Similarly, eroding all threshold sets of f by the same set B
and superimposing al! output sets via (2) yields a new func-
tion, the erosion of f by B, which can also be computed by
the equivalent formula

(f ® BYx) = min { f(x + y)}. 9
yeB

The opening © and closing ® of f by B are defined as f© B
=(fe B)e BandfeB=(fe B) e B.The results of applying
the erosion, dilation, opening and closing operations to the
discrete quantized signal in Table 1are given in Table 2 for
the structuring set B = {—1, 0, 1}. Note that the endpoints
of the outputs are undetermined because the shifts by the
points of the symmetric structuring element require points
outside the given domain [0, 10]. An alternative would be
to assume some value for the signal outside the given inter-
val. It is instructive to verify the results of Table 2 by using
(8) and (9) and by applying the set-theoretic definitions to
the threshold set representation of 7(x) in Table 1.

Table 2 Dilation, Erosion, Opening, and Closing of a
Discrete, Quantized Signal

X 0 1 2 3 4 5 6 7 8 9 10
f(x) 1 1 2 1 3 0 0 1 0 2 3
fix) ® B - 2 2 3 3 3 1 1 2 3 -
fxye B - 1 1 1 0 0 0 0 0 0 -
fix)° B - - 1 1 1 0 0 [V] - B
f(x)® B - - 2 2 3 1 1 1 1 - -
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Fig. 2. Erosion, dilation, opening, and closing of a 1-dim discrete signal of 80 samples by
al1-dim set B = {-2, —1,0,1,2}. The shaded region is the umbra of the input signal, and
the dashed curves in the lower four plots are the input signal. (From [73))

Figure 2 shows another set of results of applying the basic
morphological operators to a 1-dim signal. In Fig. 2 we see
that erosion of a function f by a small convex set B reduces
the peaks and enlarges the minima of the function. The dila-
tion of fby B increases the valleys and enlarges the maxima
of the function. The opening by B smoothes the graph of
f from below by cutting down its peaks, and the closing
smoothes the graph of ffrom above by filling up its valleys.
Clearly, a larger 1-dim structuring set would have a greater
smoothing effect.

Another extension of morphological operators to func-
tions is due to Sternberg [121], [122], who uses the repre-
sentation of a d-dim function f(x) by a (d + 1)-dim set, its
umbra

U(f) = {(x, a): a < f(x)}; (10)

i.e., the umbra is the set of points below the surface rep-
resented by f(x). In Fig. 2, the umbra of f(x) is the shaded
region. Likewise, the umbrae of the outputs of the erosion,
dilation, opening, and closing would be the regions below
the solid curves in respective plots in Fig. 2. In general, the
umbra set extends to a = — 0. The function can be recon-
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structed from its umbra since

f(x) = max {a: (x, @) € U(f)}, vX. 1)

Dilating or eroding the umbra of f by the umbra of g yields
the umbrae of new functions, i.e., the dilation or erosion
of fby g. These two new functions can be computed from
the direct formulae:

(f @ g)(x) = max { f(y) + glx — »)} (12)
y

(f o gx) = min {f(y) — gly — x)} (13)
y

where for each x, y ranges over the intersection of the “sup-

port” of fand the (shifted by x) support of g. By support of

f here we mean the set of x at which f(x) # — .2 The func-

tion g is assumed to possess a compact support and plays

the role of a structuring element. The opening and closing

2For max/min operations, — o plays a similar role to that played
by 0 for additions/multiplications. Thus, to define morphological
operators on functions it helps to set their values outside their sup-
ports as equal to —oo.

693



of f by g are, respectively, the functions f o g=(feg e
gandfeg=(fo g o g

In this paper we have presented the various theoretical
concepts in a way that emphasizes intelligibility at the
expense of absolute mathematical correctness. Thus, the
mathematically inclined reader may find fault with some of
the above definitions. For example, some of the above max/
min operations may have to be replaced by sup/inf, and the
assumption about real-valued signals may have to be sup-
plemented by also allowing the signals to assume + oo val-
ues. Note that, for signals that assume the extreme values
+ o0, the maximum in (2), (3) and (11) must be replaced with
supremum. A more rigorous treatment of the morpho-
logical operators and their properties can be found in [28],
[43], [47], [68], [73], [110], [115]. )

In [116, ch. 1, 2] Serra has extended the morphological
operators to more abstract spaces such as /attices. Serra’s
lattice framework has been further investigated by Heij-
mans and Ronse [47], [110]. Whereas all the morphological
operators discussed in this paper are translation-invariant,
in [109] dilations and erosions on the Euclidean plane are
considered thatare invariant under rotation and scalar mul-
tiplication.

C. Historical Notes

Considerable confusion has arisen regarding the defi-
nitions of the basic operations of mathematical morphol-
ogy. This confusion is primarily due to usage of the symbols
@ and e by different authors to mean different things. The
Appendix gives a discussion of the different definitions and
shows how they are related.

Parallel to the evolution of the morphological operations
that we have discussed, many other researchers studied
image processing techniques based on cellular array com-
puters and similar operations of the shrink/expand type.
Early papers include [40], [53], [86], [99], [113], [133]. Recent
surveys of such approaches can be found in [101],[112]. Most
of these efforts dealt with binary images. The extension to
gray-level images was done by using concepts from fuzzy
set theory [52], [142]. Nakagawa and Rosenfeld [89] intro-
duced the local min/max operators on digital gray-level
images as an extension of the shrink/expand operators on
binary images. Goetcherian [39] extended many binary
image processing algorithms to gray-level images. Preston
[100] used an umbra-like approach to extend the mor-
phological operators to gray-level signals by operating on
binary representations of the signals’ umbrae with thresh-
old logic operators. All these related contributions can be
formalized under the rich theoretical framework of math-
ematical morphology, as we outline in this paper.

D. Nonlinear Superpositions

Linear operators commute with additive superposition
(i.e., pointwise addition) of signals. Morphological opera-
tors commute with some nonlinear signal superpositions,
which are induced by set operations (unions/intersections)
among the threshold sets or umbrae of two signals f and
8- Specifically, for all a, it is easily shown that T,(fA g) =
TAf) N T(g and T(fv g) = T,(f) U T,(g), where the oper-
ations A and V are defined by (f A &) = min { f(x), g(x)}
and (fV g)(x) = max { f(x), g(x)}. Likewise, the umbrae of
fagand fv gare, respectively, the intersection and union
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of U(f) and U(g). Therefore ditation commutes with v and
erosion commutes with A:

(fvgge h=(fe hyv(g e h
(fAgieh=(fehA(geh) (14)

These results can be generalized for an infinite number of
signals by using A and Vv to generally denote pointwise infi-
mum and supremum,

Parallel superposition of morphological operators is pos-
sible by using the nonlinear signal combinations of point-
wise max/min. Specifically, let ¥,( f) and ¥,( f) be the out-
put signals from two morphological operators when the
inputis f. Then, the operator ¥, ( f) = ¥,(f) vV ¥,( f)is the
max-superposition of the operators ¥, and ¥,. We can also
define the min-superposition operator ¥,,,,(f) = ¥,(f) A
¥,( f). For morphological set operators these parallel super-
positions still apply if we replace pointwise max/min of sig-
nals with union/intersection of sets. Finally, two morpho-
logical operators can be cascaded by applying one of the
operators to the output of the other; e.g., the opening is the
cascade of an erosion and a dilation.

A helpful classification of morphological operators results
by focusing on a specific characteristic of the input/output
signals: whether they are binary (sets) or multilevel (func-
tions). We call the operators of (12) and (13) and their cas-
cade or parallel (using A, V) combinations function-pro-
cessing (FP) operators, because they accept as inputs d-dim
functions and produce as outputs d-dim functions. Like-
wise, the morphological set operators (4)-(7) and their cas-
cade or parallel (using N, U) combinations are set-pro-
cessing (SP) operators. A subclass of FP operators are called
function- and set-processing (FSP) because they can pro-
cess d-dim binary signals without changing this (binary) sig-
nal characteristic; thus FSP operators can switch between
two modes of operations, FP or SP. Examples of FSP oper-
ators are the FSP dilation and erosion of fby Bin (8) and (9);
these are special cases of the FP dilation and erosion of f
by g in (12), (13) if B is equal to the support of g, and g is
equal to 0 inside B and — o outside B.

E. Implementations

The evolution of the theory of mathematical morphology
has closely followed the evolution of many generations of
novel (pipelined or parallel) computer architectures
designed to implement morphological operations. Most of
these architectures were developed as cellular automata
machines to extract pictorial information. Early examples
include [31], [54], [61], [120]. For relative comparisons see
[23]. More recent architectures can be found in [49], [50],
[77], [144], [145] and in the long list of papers on morpho-
logical systems presented in [102].

The scope of this paper does not permit explaining any
of these architectures in any length. Instead we briefly dis-
cuss a parallel implementation of binary erosions and dila-
tions [120] to illustrate some major issues. As (4) and (5)
imply, a global approach to obtaining the dilation or ero-
sion, respectively, of a binary image X by a structuring ele-
ment B is to take the union or intersection of translates of
X by vector points in B. Figure 3 shows an implementation
of this idea, where two bit planes are needed to hold X and
B and a third accumulator bit plane for the resulting trans-
formed image. The image plane is shifted in parallel to the
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Fig. 3. Parallel implementation of binary erosion and dila-
tion. (Adapted from [120])

accumulator plane, and the amount of shifting is controlled
by the points belonging to the structuring element. The
accumulator holds the parallel Boolean OR or AND of all
the shifted versions of the image plane, and after all the
points of B have been spanned, it will contain the dilation
orerosion, respectively, of X. Alternatively, alocal approach
to compute the erosion and dilation is to shift the window
B everywhere in the image plane and simultaneously per-
form local neighborhood operations of the Boolean type.
The efficiency and scope of these simple implementations
can be greatly enriched by using the rich set of algebraic
properties of morphological operators. They can also be
extended to gray-level images by using either max/min
operations or threshold superposition (see Section 11-B).

IH.  APPLICATIONS TO NONLUINEAR FILTERING

Morphological systems, composed (at their lowest level)
of erosions and dilations, can be used to modify multidi-
mensional signals in ways that are analogous to linear fil-
tering. The definitions of erosion and dilation indicate that
these operations are similar in complexity to convolution
with a finite® duration impulse response in the sense that
the output at a given point is dependent on input values
in a neighborhood of that point. However, morphological
filters are nonlinear and have distinctly different properties
and capabilities from linear filters. In this section we con-
sider several types of morphological and related nonlinear
filters.

A. Rank-Order and FSP Morphological Operators

Median filters and, their generalization, rank-order filters
are nonlinear discrete? operators that have become popular
for smoothing and enhancement of image and other sig-
nals. (See [2], [12], [17], [38], [51], [58], [91], [127], [129), for var-
ious properties and applications.) In this section, we review
from [74] some interesting interrelationships among rank-
order and FSP morphological operators.

The similarity between morphological filters and rank-
order filters is illustrated by Fig. 4. Median filters are attrac-

*The computational structure of all the morphological and rank-
order filters examined in this paper is similar to that of non-recur-
sive linear filters. Recursive erosions and dilations have been used
in [9], [112], [113] for fast computations of distance transforms.
Recursive rank-order filters are defined in [91).

*For analog rank-order filters see [37], [60].

tive for removing impulsive (or salt-and-pepper) noise in
images since they can remove the noise without blurring
edges aswould be the case for linear filtering. Figure 4 shows
that in this application, the median behaves like a com-
bined opening and closing, i.e., an open-closing (fo B) e
B, by a set B of size about half the size of the median win-
dow. In addition, the open-closing, while requiring less
computation than the median, decomposes the noise
suppression task into two steps; i.e., the opening sup-
presses the positive noise impulses, and the closing sup-
presses the negative noise impulses. The median filter does
not discriminate between positive and negative impulses.

Let W € Z9 be a finite set called the window of the rank-
order filter. Assume that |W| = n points, where | - | denotes
set cardinality. Forr = 1,2, - - - , n, the output RO, ( f; W)(x)
of the rth rank-order filter with window W is obtained atany
location x € Z¢ by sorting into descending order the n values
of the input function finside the shifted window W + x and
picking the rth number from the sorted list. If n is odd and
r = (n + 1)/2 we have the special case of the median filter
med(f; W) of f with window W. Rank-order filters are FSP
operators. To define their corresponding SP operators con-
sider discrete input sets X € Z9. The rth SP rank-order filter
is the set operator whose output is

ROMX; W) = {p: [ X N (W + p)| = r}. (15)

Note that computing the output from an SP rank-order filter
involves only counting of points and no sorting. Thus, an
equivalent way to implement the binary rank-order filters
is to linearly convolve the binary input signal with a binary
impulse response whose domain is W and then threshold
the result at a level corresponding to the rank r.

The theoretical analysis of these useful filters is difficult
because they are nonlinear and have nonzero memory.
However, by using mathematical morphology, the frame-
work presented in [74] facilitates the theoretical analysis of
these filters, relates them to morphological filters, and pro-
vides some new realizations for them. Specifically, from the
definition it is clear that the last rank-order filter (r = n) is
identical to the erosion by W. Likewise, the first rank-order
filter (r = 1) with window W is identical to the FSP or SP dila-
tion by W. Further, all rank-order filters commute with
thresholding [36], [51], [74], [89], [115], [130]; i.e.,

TIRO(f; W) = ROIT,(f); W],  va. (16)

This property is also shared by many FSP morphological
operators. Further, if we combine it with (2), it implies that,
if ¥ is any FSP operator commuting with thresholding, then

(¥ = max {a: x € YT} vx. 17)

Therefore, as developed in [115] and [74], to transform a
multilevel signal f by ¥ is equivalent to decomposing finto
all its threshold sets, transforming each set by the binary
counterpartof ¥, and reconstructing the outputsignal ¥( f)
via the threshold-max superposition of (17). This allows us
to study all rank-order filters (which include erosion and
dilation) and their cascade (e.g., opening and closing) or
parallel (using v, A) combinations by focusing on their cor-
responding binary filters. Such representations are much
simpler to analyze and they suggest alternative implemen-
tations that do not involve numeric comparisons or sorting.

Using this approach, many interesting and useful rela-
tionships between rank-order filters and morphological fil-
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Fig. 4. (a) A 256 x 256-pixel (8-bit/pixel) gray-level image f corrupted with salt-and-pepper
noise; SNR = 15.1 dB. (Probability of occurrence of noisy samples is 0.1.) (b) Opening f
° Bof fby a2 x 2-pixel square set B; SNR = 19.5 dB. (c) Open-closing (f° B) ® B; SNR =
25.8dB. (d) Median of fby a3 x 3-pixel window; SNR = 29.1 dB. The SNRs were computed
by 20 log,y(255/e,,,,), where e, was the rms-value of the difference between the original

and the noisy or restored images. (From (74])

ters were obtained in [74]. For example, it was shown that
any rank-order filter can be represented as either a max-
superposition of erosions or a min-superposition of dila-
tions. Such implementations avoid sorting and require a
fixed computation to compute each output sample. Ref-
erence [74] also presents a number of properties of median
root signals and relations between median roots and close-
openings and open-closings.

B. Threshold Superposition and Stack Filters

In Section I1-A we showed that a function f(x) can be rep-
resented exactly by the set of its threshold binary signals
f,(). If fis nonnegative and, say for simplicity, has integer

uniformly spaced amplitudesa=0,1,2 - - -, then fcan also
be reconstructed as the pointwise sum of the £,’s; i.e.,
fix) = 21 £,(x) (18)
az=

Fitch et al. [36] showed that for nonnegative digital signals
f, rank-order operators ¥ obey a threshold-sum superpo-
sition of the form:

¥(f) = 2 ¥(f,). (19)

This weak form of linear superposition holds because the
f,’s are binary and linearly ordered; i.e.,a < b = f, = f,.
Note that(19) is a special case of (17) since the former applies
only to nonnegative signals. Both types of threshold super-
position for rank-order filters have proved to be important
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for VLSI [46] and optical-electronic implementations [49],
[92].

Serra’s general approach [114], [115, ch. XII] of creating
amultilevel signal operator f — ¥( f)fromabinary operator
X = ¥(X) requires that ¥ has two properties: it must be
increasing [X € Y = ¥(X) € ¥(Y)] and it must be upper
semicontinuous [for any decreasing set sequence (X,)) with
Xni1 € X ¥(N,X,) = N,¥(X,).] If these conditions hold
for an arbitrary SP operator ¥, then the ¥[T,(f)] are legit-
imate threshold sets of an output function ¥( f) synthesized
via(17); hence, an FSP operator is created. In [74] we applied
(17) to rank-order and FSP morphological operators.

Wendt et al. [134] defined stack filters by using similar
concepts as in [115] and [74], but from a different viewpoint,
and their result was applicable only to discrete filters. In
their work, the role of the set operator ¥ was played by a
positive Boolean function 8, which, due to its monotonicity,
is increasing [88]. The “increasing” property is called
“stacking’’ in [134]. Further, by filtering all threshold binary
signals f, with 8 and using the threshold-sum superposition
(19), they defined a stack filter STz as

ST4(f) = Z B(f,). (20)

In [74] we showed that all stack filters are finite pointwise
maxima or minima of moving local min/max operators, and
vice-versa.

All the previous discussion about threshold superposi-
tion referred to FSP operators. Serra [115, p. 444] obtained
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analogous resuits for FP dilations and erosions. Similar
decompositions of gray-level dilations into multiple binary
dilations have been developed in [117] for VLSI architec-
tures.

C. Multiscale Nonlinear Smoothing

In computer vision research [78] it has become apparent
that various image analysis tasks have to be performed not
atasingle image scale butat multiple scales, because image
features occur on a variety of scales. One approach to quan-
tifying scale [16], [79], [111], [137], [140] involves varying the
average “width” o of the impulse response (e.g., a Gauss-
ian) of a linear low-pass filter that smoothes the image.
Despite the mathematical tractability of this linear filtering
approach, linear filters shift and blur important image fea-
tures such as edges. Alternatively, there is a large class of
nonlinear filters including median and opening/closing fil-
ters that avoid this problem, because they can provide sig-
nal smoothing by eliminating impulses or narrow peaks/val-
leys while preserving its edges. In [65], [66], [69] Maragos
investigated an approach for multiscale nonlinear image
smoothing based on openings and closings. Some of the
reasons for focusing on openings/closings are the follow-
ing:

1. As developed in Matheron [81], openings and clos-
ings of sets in Euclidean spaces by convex sets of vary-
ing size (scale) can formalize the concept of size.

2. A new definition of scale is possible based on open-
ings. Specifically, let B € Z2be afinite connected set.
If B is of size (by convention) one, the sets

nB=BeBe - ---e8B (21)
-

ntimes

define binary structuring elements of discrete size n
=0,1,2,---.If Bis convex, then nB is shaped like
B but has size n. The multiscale opening of a binary
image X by Batscalen =0, 1,2, - - - is defined [69]
by
XonB=[Xe B eB- - eB]
N

ntimes

e BeB--- & B. (22)
- >
ntimes

A dual multiscale filter is the closing X ® nB = (X &
nB) e nB. If n = 0, then nB = {0}, the origin point,
and X ° nB = X * nB = X. The opening X © nB elimi-
nates from X all objects of size < n (with respect to
B), that s, objects inside which nB cannot fit, because,
as can be shown,

Xeng= U

nB+2&X

(nB + 2). (23)

That is why, the size n of nB can be considered to be
synonymous to the scale at which the filter X © nB
operates. Equation (23) implies that scale could be
defined as the smallest size n of a prototype pattern
B that can fit inside the image X. This definition of
scale is more rigorous than the approximate defini-
tion in linear smoothing.

3. Animportant property of the multiscale Gaussian fil-
ters for edge detection is that they do not introduce
additional zero-crossings as the scale (o) increases.

Chen and Yan [18] have proved something similar for
the multiscale openings; specifically, they showed
that openings of 1-D boundary curvature functions
of continuous binary images by disks do not intro-
duce additional zero-crossings at coarser scales
(larger disk radii).

4. Finally, Brockett [14] found a nonlinear partial differ-
ential equation that models the continuous multi-
scale FSP openings as a dynamical system.

The multiscale openings can be extended [69] to gray-level
images f(x), x € 7?2, as follows. Let g(x) be a gray-level struc-
turing function-element, with a finite connected support of
size one. Then

ng=gege  '-eg 29
[ .
ntimes
defines structuring functions of sizen =0,1,2, - - - . The
multiscale opening of fby gatscalen =0,1,2, - - - isdefined
as

fong=[(fegog--oglegog---ag (25

ntimes ntimes

Likewise, f® ng = (f ® ng) e ng is the multiscale closing
of f by g. See Fig. 5 for examples.

If the image contains 1-dim line structures to be pre-
served, then the opening by ng will eliminate them if g has
a 2-dim support. This can be avoided by using a max-super-
position of openings or closings by 1-dim structuring ele-
ments oriented at various angles. Thus, for preserving edge/
line features that have a predominant 1-dim structure the
following multiscale morphological smoothing operators
can be used:

[0, OIx) = mgax { fo ngyx)} (26)
(G = min {fe* g0}, 27)

where g,is a 1-dim structuring element (binary or gray-level)
rotated at angle 6. For digital implementations 6 spans only
a finite set of different orientations, e.g., 0°, 45°, 90°, 135°.)
Applications of these paralle! superpositions of oriented
openings can be found in [69], [104], [115], [116], [124].

D. Morphological Sampling

Digitalization of continuous binary images by sampling
them on periodic grids causes some loss of information.
The issue of which morphological operators are “digital-
izable,” i.e., satisfy a continuity condition in the transition
from the continuous to discrete domain was analyzed in
[115]. The errors of derived measurements were examined
in [29].

Another aspect of sampling involves multiresolution
techniques [16], [111], [128], which have proven to be very
useful in computer vision. Creating a multiresolution pyr-
amid requires multiple steps of smoothing the image and
sub-sampling it. Such concepts are very similar to the ones
encountered in classical signal decimation/interpolation
[93]. Most research in image pyramids has been based on
linear smoothers. However, since morphological filters
preserve essential shape features, they may be superior in
many applications. Further research is required to dem-
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(e) - (d)

b ©

Fig. 5. Multiscale openings and closings. (a) Graytone image f (256 X 256 pixels). (b) f©
ng, n = 1, 2, 3 (top to bottom). The pattern g is defined on Z as g(x, y) =
55 —x* —y3 0= X +y* < 5,and glx,y) = —» ifx* + y* > 5.(c) fong, n = 4,5, 6 (top
to bottom). (d) fe ng, n = 1, 2, 3 (top to bottom). (e) f® ng, n = 4, 5, 6 (top to bottom).

(From [69])

onstrate the utility of morphological filters in forming mul-
tiresolution imagery.

Haralick, Lin, Lee and Zhuang [44], [45] have addressed
some of these issues and developed a theory of morpho-
logical sampling. Their work provides a number of inter-
esting results on reconstructing a signal after morpho-
logical smoothing and decimation. For example, they
showed that if a binary signal represented by a set F has
been smoothed firstto X = F o K by opening it with a struc-
turing element K and then down-sampled to X N S by inter-
secting itwith aperiodicsampling set S[ Sand K must satisfy
certain conditions], then the Hausdorff distance between
the smoothed signal X and its reconstruction (X N S) & K
viadilation does not exceed the radius of K. By representing
functions by umbrae, they have also extended these results
to multilevel signals.

E. Morphological Correlation

Consider two real-valued d-dim discrete signals f(n) and
g(n). Assume that g is a signal pattern to be found in f. To
find which shifted version of g ’best’” matches fa standard
approach has been to search for the shift lag k that mini-
mizes the mean squared error Exk) = L, cwl f(n + k) — g(n)]2
over some subset W of Z%. Under certain assumptions, this
matching criterion is equivalent to maximizing the linear
cross-correlation y(k) = L.y f(n + k)g(n) between fand g.
Such ideas have provided the foundations for many de-
cades of research in matched filtering and signal detection.
Although less mathematical tractable than the mean
squared error criterion, a statistically more robust criterion
is to minimize the mean absolute error

E(k) = nZW | f(n + k) — g(n)].

Mean absolute error criteria have been applied to template

698

matching problems in image/signal processing and recently
[20] to solving optimization problems in rank-order filter-
ing.

In [67] Maragos linked the mean absolute error criterion
with a nonlinear signal correlation used for signal match-
ing. Specifically, since Ja — b| = a + b — 2 min(a, b), under
certain assumptions (e.g., if the error norm and the cor-
relation is normalized by dividing it with the average area
under the signals fand g), minimizing £,(k) is equivalent to
maximizing the nonlinear cross-correlation

ulk) = EW min[ f(n + k), g(m].

It was shown experimentally and theoretically that the
detection of g in fis indicated by a sharper matching peak
in u(k) than in (k). This is illustrated in Fig. 6. In addition,
the nonlinear correlation x (a sum of minima) is often faster
than the linear (sum of products) correlation . These two
advantages of the nonlinear correlation coupled with the
relative robustness of the mean absolute error criterion
make p promising for general signal matching.

IV. APPLICATIONS TO IMAGE ANALYSIS

The applications of morphological filters in image pro-
cessing and analysis are numerous. Next we shall review
some of these applications to specific problems in feature
extraction, shape representation and description. Addi-
tional areas of applications (not further elaborated in this
paper) include biomedical image processing [1], [19], 83],
[108], [115], [118], [121]; geological image processing [34];
automated industrial inspection [24], [63], [123], [138]; shape
recognition [21]; shape smoothing [69], [115], [126];
enhancement and noise suppression [39], [115], [112]; tex-
ture analysis [115], [135]; radar object detection [125]; and
range imagery [33].
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Fig. 6. (a) Animage signal f(digitized from A. Adams’ “Orchard”’) and a template g inside
the window. (b) Linear correlation y normalized by dividing it by the product of the rms
value of g and the local rms value of f. (c) Morphological correlation x normalized by divid-
ing it by the average of the area under g and the local area under f. (From [67])
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A. Feature Extraction

1) Edge/Line Enhancement and Detection: If W is a small
2-dim symmetric binary structuring element, then the set
difference X\(X e W) gives the boundary of a binary image
X, and the algebraic difference

EG(f)=f—-(fe W), (28)

which we may call an erosion gradient, enhances the edges
of a gray-level image f[39], [71], [82], [115]. A similar edge-
enhancing operator is the dilation gradient

DG(f) =(fe W) - f. (29)

By combining the two operators, new edge operators can
be obtained that treat more symmetrically the image and
its background. Examples include: 1) Beucher’s morpho-
logical gradient £G( f) + DG(f)in[115, p- 441] (see Fig. 7 for
an example); 2) the morphological edge-strength operators
min[EG( ), DG(f)] and max[EG( f), DG(f) by Lee et al. [57];
and 3)the nonlinear Laplace operator DG(f) — EG(f)in [131].

These morphological edge operators can be made more
robustfor edge detection by first smoothing theinputimage
signal feitherwith alinear blur [57]orwithanalpha-trimmed

filter [35]. Another approach [131] invoives combining the
nonlinear Laplace filter for zero-crossing with the mor-
phological edge-strength operators. As thoroughly inves-
tigated in [57], [131], these hybrid edge detection schemes,
largely based on morphological gradients, perform com-
parably and in some cases better than several conventional
schemes based only on linear gradients/filters; further, the
morphological gradients are computationally more effi-
cient.

In [76] it was shown that the edge operators £G(f) and
DG(f) obey a threshold-sum superposition:

EG(f) = X EG(f,). 30)
Thus the gray-level edge operator EG(f) can be analyzed
and implemented by focusing on the much simpler binary
edge operator EG(f,) = f, — (f, © W) applied to the thresh-
old binary images f,.

2) Peak, Valley, and Blob Detection: Opening and clos-
ings offer an intuitively simple and mathematically formal
way for peak or valley detection. As suggested by the exam-
ple of Fig. 2 subtracting the opening of a signal f by a set
B from the input signal yields an output consisting of the

Fig. 7. Facial feature enhancement via morphological filtering. Top left: original 300 x
260-pixel image f. Top right: Edges(f e B) - (f e B), whereBisa 21-pixel discrete octagon.

Bottom left: Peaks f — (fo 3B). Bottom right: Valleys (f# 3B) — f.
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signal peaks whose support cannot contain B. This is Mey-
er's top-hat transformation [82], [83], [115],

P(f)y=1f—(foB). (31

Since fo B < f, P(f) is always a nonnegative signal, which
guarantees that it contains only peaks. If the objective is to
detect a blob, defined as a region with significantly brighter
intensities relative to the surroundings, then we can iden-
tify the blob as a binary shape, a set 8, which is the support
of a corresponding peak in the intensity image function.
The shape of the peak’s support obtained by (31) is con-
trolled by the shape of B, whereas the scale of the peak is
controlled by the size of B. An example of application of the
top-hat transformation is given in [104].

Similarly, if the blob to be detected occurs as an intensity
valley, then we can approach the problem of blob detection
by detecting a valley in f with a spatial support shaped like
B. Thus, the operator

V(f)y=(feB) —f (32)

works as a general valley generating process. The ability of
the morphological gradients to enhance edges and of the
opening or closing residues to extract peaks or valleys is
illustrated in Fig. 7. An example of applying these operators
can be found in[141] as a pre-processing stage for extracting
features such as eyes and mouth from images of human
faces. Noble [90] has analyzed similar morphological fea-
ture detectors from the viewpoint of differential geometry.

In the computer vision literature there are also curvature-
based approaches to extract peaks and valleys. The mor-
phological peak/valley extractors, in addition to their being
simple and efficient, have the following advantages [139]
over the curvature-based approaches: 1) Curvature is an
intrinsic property of 3-dim objects, which should remain
invariant after 3-dim rotations. However, image functions
cannot be arbitrarily rotated. Hence, the curvature esti-
mates derived on functions are biased. 2) Using the cur-
vature extrema to find the peak/valley boundaries may give
results that do not agree with the visual perception of these
boundaries. 3) Curvature requires 2nd-order derivatives,
which amplify noise and are not well defined on discrete
signals.

B. Shape Representation

Since the medial axis transform (also known as symmetric
axis or skeleton transform) was first introduced by Blum (7],
8], it has been studied extensively for shape representation
and description, which are very important issues in com-
puter vision. A survey on skeletonization can be found in
[112]. Next we explain how such transformations can be rep-
resented in terms of morphological systems.

Binary Images: Among the many approaches (i.e., via dis-
tance transforms [113]) to obtain the medial axis transform,
it can also be obtained via erosions and openings [55], [72],
[87],[115). Let X € Z*represent afinite discrete binary image
and let B € Z? be a binary structuring element containing
the origin. The nth skeleton component of X with respect
to B is the set

S, =(X e nB)\ [(X e nB)° B], n=01...,N, (33

where N = max{n: X e nB # @} and \ denotes set dif-
ference. The S, are disjoint subsets of X, whose union isthe
morphological skeleton of X. We define the morphological
skeleton transform of X to be the finite sequence (Sy, Sy,
- -+, S\). From this sequence we can reconstruct openings
of X; i.e.,

U S, @ nB,

ksnsN

XokB = 0=<sk=<N. (34)
Thus, if k = 0 (i.e., if we use all the skeleton subsets), X ©
kB = X and we have exact reconstruction. If 1 < k = N, we
obtain a partial reconstruction, i.e., the opening (smoothed
version) of X by kB. The larger the size index k, the larger
the degree of smoothing. Figure 8 shows adetailed descrip-
tion of the skeletal decomposition and reconstruction of
animage. Note that by varying kinthe reconstruction phase,
multiscale smoothed versions of X (its openings) can be
obtained. Thus, we can view the S, as “shape components.”
That is, skeleton components of small size indices n are
associated with the lack of smoothness of the boundary of
X, whereas skeleton components of large indices n are
related to the bulky interior parts of X that are shaped sim-
ilarly to nB.

Avariety of skeletons results from varying the structuring
element, consistent with the ability of morphological sys-

0 Ae A | ] sk | A
= o e .
mO sD = | ma
1 o = o = < &' 8 | i = o &
n=
mi]- g |-=0 \ma
s - - o® | - - | 6@
n=2
- - s |- (=
n=3
- = - - [
(a) (b) (d) (e) (4]

Fig. 8. Morphological skeletonization of a binary image X (top left image) with respect
to a21-pixel octagon structuring element B. (a) Erosions X @ nB,n =0, 1,2, 3. (b) Openings
of erosions (X ® nB) © B. (c) Skeleton subsets S,,. (d) Dilated skeleton subsets S, @ nB.
(e) Partial unions of skeleton subsets Uy . « » » Sk (f) Partial unions of dilated skeleton sub-

sets Uy.i=nSe ® kB. (From [72])
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tems to extract different structural information by using dif-
ferentstructuring elements. One application for producing
multiple skeletons each with respect to a different struc-
turing element was described in [72], where searching for
the element that gives the skeleton with fewest points
yielded the lowest information rate required to encode the
image from its skeleton.

The morphological skeleton may be redundant. Thus, at
the expense of producing a skeleton that may not look like
askeletal axis, we define the minimal skeleton to be a proper
subset of the original skeleton whose points are sufficient
for exact reconstruction, but removal of just one point
would result in partial reconstruction; see Fig. 9 for an
example. In[72] an algorithm was provided that finds a min-
imal skeleton, if it exists. Subsequent encoding of the min-
imal skeleton transform using Elias codes resulted in higher
compression than either optimum block-Huffman or opti-
mum runlength-Huffman coding of the original image.

A generalization of the morphological skeleton trans-
form uses different structuring elements A, for each
skeletonization step [64, p. 191]. In this case, nB in (33) and
(34)isreplacedwithAy © A; @ - - - @ A,. Ageneral approach
for morphological skefeton-like image representations with
varying structuring elements was developed in [41]. Some
recent research related to morphological skeletonization
includes: shape decomposition based on iterative differ-
ences between image parts and maximal openings [97];
shape matching based on features extracted from the S,
[143]; symbolic image modeling [66]; vectorized skeleton
coding [13]; and extension of binary skeleton coding ideas
to coding gray-level images by first decomposing them into
a collection of threshold binary images [103]. Finally, note
that the morphological skeleton defined above is not nec-
essarily connected; for connected skeletons see [3].

Gray-level Images: In [96] the skeleton transform has been
extended to gray-level images. We describe this algorithm
using terminology analogous to that for binary morpho-
logical skeletons. Namely, the nth skeleton component of
fwith respect to a binary structuring element B is the non-
negative function

So(fy=(fenB)y—[(fenB)oBlL,0<n =< N, (35)

where N = max{n: f © nB # 0}. A skeleton of f can be
defined as the pointwise sum

N
SK(f) = ;0 sy(f). (36)

As for binary images, f can be reconstructed from its com-
ponents s, either exactly or partially (its openings) [64], [69].
In [76] it was shown that the above skeleton obeys a thresh-
old sum-superposition

SK(f) = 23 SK(f), (37)

As in (30), this result reduces the analysis and implemen-
tation of gray-level skeletons to the much simpler binary
skeletons SK(f,) of threshold binary images f,.

For more general gray-level skeletons see [64], [66], [69]
and for thinning gray-level images see [32], [39].

C. Shaped-Size Distributions

Matheron [80], [81] considered families of openings and
closings of compact sets X < R? by convex compact struc-

(a)

(b)

©)

Fig. 9. (a) Original binary image (256 X 256 pixels). (b) Mor-
phological skeleton with respect to a 3 x 3-pixel square
structuring element. (c) Minimal skeleton. (From {72])
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turing elements, e.g., disks rD of radius r, for unifying all
sizing (sieving) operations in Euclidean spaces. He called
these parametric openings granulometries and their areas
size distributions. The decreasing function A(X © rD)/A(X),
r = 0, where A (+) denotes area, was related in [80], [81] to
probabilistic measures of the size distribution in X. Serra
and his co-workers [115, ch. 10] have used extensively these
size distributions in image analysis applications to petrog-
raphy and biology. In [64], [65], [69] Maragos related these
size distributions to a concept of a pattern spectrum. Next
we discuss these ideas only for discrete binary images.

The pattern spectrum of a discrete binary finite image X
¢ 7% relative to a structuring element B < Z” is defined [69]
as the differential size distribution function

PSx(n, B) = A[X°onB\ X°(n + 1)B]
=AXonB) — A[Xo(n + NB] (38)

The rationale behind the symbolic term “’pattern spec-
trum” is the fact that the opening X © nB is the union of all
(nB + 2) with (nB + 2) € X, that is, of all shifted patterns
B of size n that can fit inside X. Thus A(X © nB} is a measure
of the pattern content of X relative to the pattern nB, and
(38) measures the change of such pattern content with
respect to n. In actuality, the pattern spectrum, which is a
nonnegative function for all B and n, is a shape-size his-
togram. It also has some conceptual similarities with the
Fourier spectrum. The pattern spectrum conveys several
types of information useful for shape description and mul-
tiscale image analysis. For example, the boundary rough-
ness of X relative to B manifests itself as contributions in
the lower-size part of the pattern spectrum. Long capes or
bulky protruding parts in X that consist of patterns sB show
up asisolated impulses in the pattern spectrum around pos-
itive n = s. Finally, the pattern spectrum can be defined for
“‘negative” sizes by using closings instead of openings; in
this case impulses at negative sizes indicate the existence
of prominent intruding gulfs or holes in X.

Observe from (34) that S, = ¢ implies that X o nB = X
o (n + 1B; further, for 1 < k < N,

X=XokB ® PS5(n,B)=0 0=n<k (39)

Thus X is smooth to a degree k relative to B (i.e., X = X ©
kB) if and only if its first k pattern spectrum samples are
zero, or if its first k skeleton components are empty.

In the theory [81], [115] of random stationary sets X < 72,
the size function \(z) = max{n: ze X © nB}, z ¢ X, can be
viewed as a random variable. Its probability function p, =
Prob{\z) = k} is equal to PS,(k, B)A(X). As explained in
[69],

N

H(X/B) = — 20 pn log p, (40)

is the average uncertainty (entropy) of A. It can be viewed
as the average roughness of X relative to B, because it quan-
tifies the shape-size complexity of X by measuring its
boundary roughness averaged over all depths that B
reaches. Thus H(X/B) is maximum (log (N + 1)) iff X contains
maximal patterns nB at equal area portionsin all sizes n, and
minimum (0) iff X is the union of maximal patterns of only
one size.

All the above ideas can be extended to gray-level images
[65], [69]. In [15] the normalized pattern spectrum (called

“pecstrum”’) was used for binary and gray-level shape rec-
ognition by computing Euclidean distances between pat-
tern spectra of test images and reference images. Some
work related to morphological size distributions can also
be found in [132], [135]).

C. Fractals

1) Estimating Fractal Dimension: A large variety of natu-
ral image objects (e.g., clouds, coastlines, mountains,
islands, trees, leaves, etc.) can be modeled very well with
fractals [62]. Fractals are mathematical sets with very high
level of geometrical complexity; formally, their Hausdorff
dimension is larger than their topological dimension. An
important characteristic of fractals to measure for purposes
of shape description or classification is their fractal dimen-
sion. Among the various methods [62] to estimate the fractal
dimension D of the fractal surface of a 3-dim set F, the cov-
ering method is based conceptually on Minkowski’s idea
of finding the area of irregular sets: dilate them with spheres
of radius r, find the volume V(» of the dilated set, and set
its area equal to lim, _. (A(), where A(r) = V(n)/2r. If the sur-
face of Fis a pure fractal, then its area A(r) at different scales
r behaves as

log A(n =2 - D) log (N + constant. (41)

Thus, the fractal dimension D can be estimated by fitting
a straight line to a log-log plot of A(. Digital implemen-
tations and variations of the above method can be found
in [25], [26], {75], [95], [119] where morphological dilations
and erosions are used to create a volume-blanket as a layer
either covering or being peeled off from the intensity image
surface at various scales.

Similarly, if F is a 2-dim set, e.g., the graph of a 1-dim sig-
nal, we can dilate it with disks of radius r, find the area A(r)
of the dilated set, and compute a multiscale length L(r) =
A(n)/2r; then, for pure fractals.

log L(n = (1 — D) log (1 + constant. (42)

Figure 10(a) shows an intensity image profile (the solid line)
and two layers of dilations (2 dotted lines) and erosions (2
dashed lines), both at scales r = 10 and 20. For “‘real world"”
signals with some fractal structure, the assumption of exact
self-similarity at all scales is not true. Hence, to estimate a
fractal dimension for the 1-dim signal of Fig. 10(a) we fit
locally line segments on the log-log plot of L(r). Figure 10b
shows the local fractal dimension, which for each ris equal
to one minus the slope of a line segment fitted (using linear
regression) to the log-log plot of L(r) over a moving window
{r, r + 9] of 10 scales. The relative variation of these local
estimates indicate that, for real world signals relation (42)
is only approximately true; hence, it is more meaningful to
estimate their fractal dimension over a small finite range of
scales.

2) Modeling Fractals: Currently, there are many com-
puter algorithms to generate fractals. However, the inverse
problem, i.e., given a fractal image find a signal model and
an algorithm to generate it, is much more important and
very difficult. Toward solving this inverse problem,
Barnsley [5]and his co-workers developed the theory of iter-
ated function systems. A key idea is their collage theorem,
which states that if we can ““closely’” cover a binary fractal
image F with a collage of m small patches that are reduced
distorted copies of F, then we can reconstruct F (within arbi-
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Fig. 10. (a) Discrete intensity image profile f(in solid line) with its erosions f & rg (dashed
lines) and dilations f @ rg (dotted lines) at scales r = 10, 20. The structuring function g

was equal to g(0) = 0.5, g(—-1) = g =0,and g(n) = —o forn # —1,0, 1. (b) Local fractal

dimensions over a moving window of 10 scales.

trary accuracy) as the attractor of a set of m contractive affine
maps (each map is responsible for one patch). Simple
choices for these mapsw;, 1 < i < m, are

<x> [cos 6, —sin 6, l:x} t

w; =r-| + .

y sin 6; cos ;| Ly tyi

Each w;, operating on all points (x, y) of F, gives a version
of F that is rotated by angle 6, shrunk by a scale factor r;,
and translated by the vector (t,; t,)- This theorem and a
related synthesis algorithm have been very successful for
fractal image modeling [5]. However, they require consid-

erable human intervention. The difficulty lies in finding
appropriate maps w;, which (by variation of their scaling,
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rotation, and translation parameters) can collage Fwell. An
approximate solution to this problem has been provided
by Libeskind-Hadas and Maragos [59] who used the mor-
phological skeleton transform to efficiently extract the
parameters of these affine maps. In their work, a major skel-
eton branch was associated with each map w;. The rotation
angle 6; was found as the angle that the skeleton branch
forms with the horizontal. The translation vector (tyi) ty;) was
taken as the vector of pixel coordinates of the skeleton
branch point b. Finally, the scaling factor was set equal to
r = n/IN, where n is the index of the skeleton subset con-
taining b. This algorithm can model images F that exhibit
some degree of self-similarity; i.e., when local details of F
closely resemble F as a whole.
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V. REPRESENTATION THEOREMS

Several mathematical structures, known as image alge-
bras, have been developed in [21], [30], [50], [84], and {105]-
[107]. Their purpose is to represent many image processing
operators as a finite composition of a few basic operations
including erosions and dilations. Theimage algebras in [30],
[105],[107] encompass all linear (e.g., matrix operations) and
many nonlinear image operators. Although erosions and
dilations are insufficient by themselves to representall pos-
sible image operations[107], it is abundantly clear from Sec-
tions Il and IV that morphological operations can be com-
bined in many ways to solve problems in a wide variety of
applications. Hence, it is interesting to know which signal
processing systems can be represented morphologically.
Toward this goal, a theory was introduced in [64], [68], [70]
that unifies many concepts encountered in signal pro-
cessing or image analysis and represents a broad class of
nonlinear and linear operators as a minimal combination
of morphological erosions or dilations. Here we summarize
the main results of this theory, in a simplified way, restrict-
ing our discussion only to signals with discrete domain E
= Z° (The corresponding part of the theory for continuous-
domain signals is contained in [64], [68)).

Consider an SP operator ¥ defined on the class 8 of all
subsets of E. ¥ is called translation-invariant iff ¥ (X + p) =
¥ (X) + p, for all X € 8 and p € E. Any such ¥ is uniquely
characterized by its kernel that is defined in [81] as the sub-
class K (¥) = {X € 8:0 € ¥(X)} of input sets. That is, the
kernel is a collection of input sets such that their corre-
sponding outputs contain the origin. ¥ is called increasing
iff A S B = ¥(A) € ¥(B). The dual SP operator of ¥ is defined
as ¥I(X) = [¥ (X, X € S, where (-)° denotes set comple-
mentation. In [64], [68], [70], the kernel representation was
extended to FP operators. A d-dim FP operator v is called
translation-invariant iff Y[ f(x —y) + c] = [Y(Hl(x —y) + ¢,
for all (y, ¢) e E X R and f(x) € &, where & is the class of all
functions with domain E and range R U { + o}. That is, ¥
is translation-invariant iff it commutes with a shift of both
theargumentand the amplitude of its input functions. Such
ay is uniquely characterized by its kernel, which is defined
as the subclass X () = { fe F: [ (N1(0) = 0} of input func-
tions. Further, y is increasing iff f < g = ¥ (f) < ¥(g). The
dual operator of ¢ is defined as y9(f) = —y(—f), where
(—f)(x) = —f(x). The class of translation-invariant increas-
ing SP or FP operators are useful because of the following
two representation theorems.

THEOREM 1 (Matheron [81]. Any translation-invariant
increasing SP operator ¥: § — § can be represented exactly
as the union of erosions by its kernel sets and as the inter-
section of dilations by the reflected kernel sets of its dual
operator ¥°.

THEOREM 2 (Maragos [64], [68]). Any translation-invariant
increasing FP operator y: § — & can be represented exactly
as the pointwise supremum of erosions by its kernel func-
tions, and as the pointwise infimum of dilations by the
reflected kernel functions of its dual operator y°.

The two theorems above require an infinite number of
erosions to represent a given system. However, we can find
more efficient (requiring fewer erosions) theorems by using
only a substructure of the kernel. The pair (X(¥), €)isa
partially ordered set with respectto setinclusion. A minimal

elementof (X (¥), ) is any set in X (¥) that is not preceded
(with respect to <) by any other kernel set. The basis B (¥)
of the translation-invariant operator ¥ is defined as the set
of all its minimal kernel elements. It was shown in [64], [68]
that ®(¥) exists (i.e., is nonempty) if ¥ is increasing and
upper semicontinuous. [An increasing SP operator ¥ is
upper semicontinuous iff, for any decreasing set sequence
(X)) with X, 41 € Xn, ¥ (N, X,) = N, ¥(X,).]Similarly, the pair
(X (¥), =) is a partially ordered set with respect to the func-
tion ordering <. A minimal function-element of (X)), =)
is any function in X () that is not preceded (with respect
to function <) by any other kernel function. Then, the basis
® () of ¥ is defined as the set of its minimal kernel func-
tions, and it exists if ¢ is increasing and upper semicontin-
uous [64], [68]. [An increasing FP operator ¢ is upper
semicontinuous iff, for any decreasing function sequence
(f) with f, .1 < f,, ¥(A, f,) = A,¥(f,).] The importance of
the basis for SP of FP operators is revealed by the following
two representation theorems.

THEOREM 3 (Maragos [64], [68]). Any translation-invariant,
increasing and upper semicontinuous SP operator ¥:§ —
$ can be represented exactly as the union of erosions by its
basis sets. If the dual ¥¢ is upper semicontinuous, then ¥
can also be represented as the intersection of dilations by
the reflected basis sets of ¥°.

THEOREM 4 (Maragos [64], [68]). (a)-(FP systems): Any trans-
lation-invariant, increasing and upper semicontinuous FP
operator y:F — § can be represented exactly as the point-
wise supremum of erosions by its basis functions. If the
dual ¥ is upper semicontinuous, then  can also be rep-
resented as the pointwise infimum of dilations by the
reflected basis functions of 4°.

(b)-(FSP systems). Let ¢:F — & be an FSP translation-in-
variant operator that commutes with thresholding, and let
® be its respective SP operator. Then ¢ is exactly repre-
sented as the supremum of erosions by the basis sets of .
If the dual SP operator ®° is upper semicontinuous, then ¢
can also be represented as the infimum of dilations by the
reflected basis sets of &°.

In[73), [74] these very general theorems have been applied
to various filters such as linear shift-invariant, morpho-
logical, median, rank-order, linear combinations of rank-
order, and stack filters. Below we give some simple exam-
ples.

Example 1 (Linear Filters). A linear filter is translation-
invariant and increasing iff its impulse response is every-
where nonnegative and has area equal to one. Consider the
2-point FIR filter [ (H1(n) = af(n) + (1 — a) f(n — 1), where
0 < a < 1. Then the basis of ¥ consists of all functions g(n)
with g(0) = reR, g(—1) = —ar/(1 — a),and g(n) = —o0 for
n # 0, —1. Then Theorem 4(a) yields

afn) + (1 —aftn — 1)

= sup [min {f(n) —rfh -1+ —ai—ﬂ (@3)
reR 1-a
which expresses a linear convolution as asupremum of ero-
sions. FIR linear filters have an infinite basis, which forms
a finite-dimensional vector space.

Example 2 (Median filters). Many discrete FSP increasing
morphological filters and all rank-order fiiters have a finite
number of minimal elements; hence, they can be expressed
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as afinite max-of-erosions or min-of-dilations. Further, they
commute with thresholding, which allows us to focus only
on the SP versions of such filters. For example, the FSP
median by the window W = {—1, 0, 1} has an SP version
of ®(X) = {peZ:|XN W+ p| = 2}, X € Z. & has 3 basis
sets: {—1, 0}, {—1, 1}, and {0, 1}. Hence, Theorem 4(b)
yields

med [ f(x - 1), f(x), f(x + 1)]
min [f(x — 1), f(x)],
= max{ min [f(x — 1), fix + 1], ;. (44)
min [f(x), f(x + 1)]

Example 3 (Stack Filters). The definition of stack filters in
(20) requires a positive Boolean function 8(xy, - - + , x,,). Such
a function has an irreducible sum-of-products expression
as Boolean sum of its prime implicants and an irreducible
product-of-sums expression as Boolean product of its prime
implicates [88]. In [134] all the 20 different stack filters with
a B of n = 3 variables were examined in detail. For n > 3
there was not a direct way to find a functional definition of
arbitrary stack filters. However, by using morphological
concepts in{74] a general functional definition was obtained
as follows. The positive Boolean function 8 corresponds
uniquely to a translation-invariant increasing and upper
semicontinuous SP operator ¢, which in turn defines
uniquely an FSP operator ¢ that commutes with thresh-
olding. That s, stack filters are the class of all discrete trans-
lation-invariant FSP finite-window filters that commute with
thresholding. Given 8, & is found by replacing Boolean
AND/OR with set N/U; then, ¢ is obtained by replacing set
N/U in & with min/max. Further, as shown in [74], stack
filters have a finite number of basis sets that are in one-to-
one correspondence with the prime implicants of 8. Thus
the basis can be used to find the irreducible forms of 3, and
vice-versa. For example, the FSP opening ¢ (f) = fo A, A =
{—1,0,1}, can be viewed as a stack filter, whose functional
definition is associated with the window W = {-2,-1,0,
1, 2}. Its dual filter is the FSP closing f e A. Let #(X) = X o
Aand 7(X) = X ® Abe its respective SP operator and dual
SP operator. The basis sets of & are [64], [68] the 3 subsets
G =A-1,G,=A,G; = A + 10f W; the basis sets of &°
are the 4 subsets H, = {0}, H, = {—2,1}, Hy = {-1, 2},
Hy = {—1,1} of W. Thus, from Theorem 4(b), ¢ can be real-
ized as

3 4
fo A(x) = max {min fix + y)} = min {max fix + y)}.

i=1 v€eG, k=1 yeHx
(45)

The 8 corresponding to ® and ¢ is B(x;, * + -, x;5) = X1X9X3
T X2X3X4 + X3X4Xs = X3(X1 + Xg) (X, + X4) (X, + X5). Thus there
is one-to-one correspondence between the 3 prime impli-
cants of 8 and the erosions (local min) by the basis sets of
®, as well as between the 4 prime implicates of 8 and the
dilations (local max) by the basis sets of °. Thus stack filters
can be expressed as minimal forms of max-min operations
based either on irreducible forms of their Boolean function
orontheir minimal kernel elements. In [74] both approaches
were compared, and their theoretical equivalence was
established.

Example 4 (Hybrid Linear/Nonlinear filters). There are
many nonlinear filters that have both a linear and nonlinear
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(i.e., rank-order) component, e.g., [4], [6], [12], [22], [48], [94],
[127]. They are useful because they combine desirable char-
acteristics of both linear and nonlinear filters. The repre-
sentation theory in this section applies to these filters too,
if their linear parts contain positive coefficients which sum
to one. A simple such filter is the Wilcoxon filter [22]

[W(HIn) = median {[f(n — 2) + f(n + 2))/2,
[fin — 1) + f(n + D2, F(M)}, (46)

whose basis is obtained by combining results (43) and (44);
see also [64, p. 157].

The above examples show the power of the general rep-
resentation theorems. An interesting area of current
research is concerned with using these results as a basis for
a design methodology for morphological systems.

CONCLUSIONS

Inthis paper we have attempted to show how awide range
of multidimensional signal processing problems can be
addressed using morphological systems. We have shown
that simple nonlinear operators such as erosion and dila-
tion can be combined to create many different types of sig-
nal processing and analysis operators. A major advantage
of morphological systems is their built-in ability to repre-
sentand extract shape in multidimensional signals. Another
advantage is that they are well suited for simple and effi-
cient implementations using parallel or sequential com-
putation.

So far, many of the signal processing algorithms and anal-
ysistechniques based on morphological systems have been
derived heuristically or experimentally. However, the exis-
tence of powerful representation theorems for morpho-
logical systems suggests that much more can be done to
develop methodologies for designing systems of this class.
The results of research in this area will impact many areas
of application of multidimensional signal processing.

APPENDIX
Historical Notes on Definitions and Notation

Considerable confusion has arisen regarding the defi-
nitions of the basic operations of mathematical morphol-
ogy. This confusion is primarily due to usage of the symbols
@ and o by different authors to mean different things. In
[42] Hadwiger’s definition of Minkowski set addition [85]
was identical to our definition (4) of set dilation. Our def-
inition of set erosion (5) is identical to an operation intro-
duced by Hadwiger [42] and called Minkowski set subtrac-
tion. Thus, in this paper, set dilation and erosion are
identical to the classical Minkowski set addition and Min-
kowski set subtraction. These definitions were used by
Sternberg [120]-[122] in his contributions to the field.

Matheron [81] and Serra [115] used the reflection B =
{—b:b e B} of B to define the set of basic operations of
mathematical morphology in a somewhat different way.
Minkowski addition was defined identically to Hadwiger’s
definition, and the symbol @ was used for this operation.
Minkowski subtraction was redefined as X @ B = N, 5(X
+b) = {z:(B + z) € X}, which is the same as Hadwiger’s
definition except the structuring set is reflected. Matheron
and Serra defined the dilation of Xby Bas X @ B = {z:(B
+2) N X # 0} where @ means Minkowski set addition.
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They defined erosion of Xby Bas X e B = {z:(B + 2) €
X}, where e means their redefined Minkowski set sub-
traction (i.e., with the reflected set), thereby creating part
of the confusion. Thus the two reflections cancel and the
Matheron/Serra definition of erosion turns out to be iden-
tical to the classical Minkowski set subtraction, and thus,
identical to the definition of this paper. Serra introduced
also the hit-or-miss transform, which is a generalization of
erosion as a Boolean matched filter. The Matheron/Serra
definitions of opening and closing of X by Bare Xz = (X o
B) @ Band X® = (X @ B) e B. Their opening involves the
same operations and gives identical result to the definition
that we have presented; i.e., Xz = X © B. However, their clos-
ing by B is equivalent to our closing by the reflected B; i.e.,
X8 =xeB

In [70]-{74] we used Matheron and Serra’s definitions.
However, in this paper we have adopted Sternberg’s def-
initions and his terminology (i.e., defining dilation and ero-
sion identically to Minkowski addition and subtraction),
because they are somewhat simpler. (The Matheron and
Serradefinitions have certain advantages in terms of duality
properties). Note that Matheron and Serra’s definitions
become identical to Sternberg’s if B = B, i.e., if the struc-
turing element is symmetric. In addition we use the nota-
tion cand e for opening and closing as in [43], and the group-
theoretic notation X + b for set translation as in [28].
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