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Abstract. In this paper we use concepts from the lattice-based theory
of morphological operators and fuzzy sets to develop generalized lattice
image operators that are nonlinear convolutions that can be expressed as
supremum (resp. infimum) of fuzzy intersection (resp. union) norms. Our
emphasis and differences with many previous works is the construction
of pairs of fuzzy dilation (sup of fuzzy intersection) and erosion (inf of
fuzzy implication) operators that form lattice adjunctions. This guaran-
tees that their composition will be a valid algebraic opening or closing.
We have experimented with applying these fuzzy operators to various
nonlinear filtering and image analysis tasks, attempting to understand
the effect that the type of fuzzy norm and the shape-size of structuring
function have on the resulting new image operators. We also present some
theoretical and experimental results on using the lattice fuzzy operators,
in combination with morphological systems or by themselves, to develop
some new edge detection gradients which show improved performance in
noise.

1 Introduction

Mathematical morphology (MM) and fuzzy sets share many common theoreti-
cal concepts. As an earlier example, the use of min/max to extend the intersec-
tion/union of ordinary (crisp) sets to fuzzy sets [14] has also been used to extend
the set-theoretic morphological shrink/expand operations on binary images to
min/max filtering on graylevel images [11, 3]. While the field of morphological
image analysis was maturing, several researchers developed various other ap-
proaches using fuzzy logic ideas for extending or generalizing the morphological
image operations [13, 1]. The main ingredients of these approaches have been
to (1) map the max-plus structure of Minkowski signal dilation to a sup-T sig-
nal convolution, where T is some fuzzy intersection norm, and (2) use duality
to map the inf-minus structure of Minkowski signal erosion to a inf-T ′ convo-
lution, where T ′ is a dual fuzzy union norm. The main disadvantage of these
approaches is that composition of the operators from steps (1) and (2) is not
guaranteed to be an algebraic opening or closing. (Openings and closing are the
basic morphological smoothing filters.)
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Meanwhile MM was extended using lattice theory [12, 4] to more general
operators that shared with the standard dilation, erosion, opening and closing
only a few algebraic properties. One such fundamental algebraic structure is a
pair of erosion/dilation operators that form an adjunction. This guarantees the
formation of openings and closings.

In a previous work [7, 8] some of us used lattice theory to develop general-
izations of morphological signal and vector operations based on fuzzy norms.
These operations were used in fuzzy dynamical systems to represent the map-
ping between input and ouput signals (via nonlinear fuzzy-based convolutions)
and the mapping between state vectors (via generalized fuzzy-based products
of matrices and vectors) as a generalized dilation or erosion acting on signal or
vector lattices. In this paper, which is a sequel of [9], we continue this work and
apply our general theoretical results from [7] to developing useful nonlinear oper-
ators for image/signal analysis based on lattices and fuzzy set operations. From
fuzzy set theory [6] we use t-norms and t-conorms to extend intersection and
union of crisp sets to signal convolutions. To form openings and closings we use
pairs of t-norms and fuzzy implications. (A work similar to our theoretical anal-
ysis appeared recently in [2]. Also, some recent work in fuzzy MM includes [5,
10].) First, we discuss the theoretical development of the new operators. We also
present some results on using the lattice fuzzy operators, in combination with
morphological systems or by themselves, to develop some new edge detection
gradients which show improved performance in noise. Proofs of our theoretical
results will be given in a longer paper.

2 Background: Lattice Morphological Operators

A poset L is any set equipped with a partial ordering ≤. The supremum (
∨

)
and infimum (

∧
) of any subset of L is its lowest upper bound and greatest

lower bound, respectively, induced by the partial order; both are unique if they
exist. The algebra (L,∨,∧) is called a complete lattice if the supremum and
infimum of any (finite or infinite) collection of its elements exists. An operator
ψ on a complete lattice L is called: increasing if it preserves the partial ordering
[f ≤ g =⇒ ψ(f) ≤ ψ(g)]; idempotent if ψ2 = ψ; antiextensive (resp. extensive)
if ψ(f) ≤ f (resp. f ≤ ψ(f)). An operator ε (resp. δ) on a complete lattice
is called an erosion (resp. dilation) if it distributes over the infimum (resp.
supremum) of any collection of lattice elements; namely δ(

∨
i fi) =

∨
i δ(fi)

and ε(
∧

i fi) =
∧

i ε(fi). An operator is called an opening (resp. closing) if it
is increasing, antiextensive (resp. extensive) and idempotent. An operator pair
(ε, δ) is called an adjunction iff δ(f) ≤ g ⇐⇒ f ≤ ε(g), ∀f, g ∈ L. Given a
dilation δ, there is a unique erosion ε(g) =

∨{f : δ(f) ≤ g} such that (ε, δ) is
adjunction, and vice-versa.

Proposition 1 ([12], [4]). Let (ε, δ) be an adjunction. Then: (i) δ is a dilation
and ε is an erosion. (ii) δε is an opening, and εδ is a closing.

For lattice-based image/signal processing, the signal space is the collection
L = V

E of all images/signals f : E → V, (a continuous or discrete) domain
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E where E = R
m or Z

m, m = 1, 2, ...,, and assuming values in V ⊆ R where
R = R ∪ {−∞,∞}. The value set V must be a complete lattice under the
usual ordering ≤ of real numbers, with corresponding sup (∨) and inf (∧) the
usual supremum and infimum in R. The signal space L also becomes a complete
distributive lattice if we define on it the standard pointwise partial ordering ≤,
supremum ∨, and infimum ∧ induced by V.

Proposition 2 ([4]). The pair (ε, δ) is an adjunction on the signal lattice V
E

iff for every x, y ∈ E there exists a scalar adjunction (εy,x, δx,y) on V such that

δ(f)(x) =
∨
y∈E

δx,y(f(y)), ε(g)(y) =
∧
x∈E

εy,x(g(x)) (1)

3 Lattice Operators using Fuzzy Norms

In this paper we shall work on the complete signal lattice L = V
E where the

range of all signals is the complete scalar lattice V = [0, 1].
The classic translation-invariant (TI) dilations and erosions on R

E

are built
as sup of signal translations of the type τ y,v(f)(x) = v + f(x − y). In this
paper we shall use new translations where the binary operation a + b will be
replaced by fuzzy norms. Specifically, we build generalized TI image dilations
and erosions by defining the scalar dilations (erosions) δx,y (εy,x) of (1) via
some fuzzy intersection (union) between the values of the image signal f and a
structuring function h. First we define fuzzy norms.

A fuzzy intersection norm, in short a Tnorm, is a binary operation T :
[0, 1]2 → [0, 1] that satisfies the following conditions [6]: For all a, b, c ∈ [0, 1]

F1. T (a, 1) = a and T (a, 0) = 0 (boundary conditions).
F2. T (a, T (b, c)) = T (T (a, b), c) (associativity).
F3. T (a, b) = T (b, a) (commutativity).
F4. b ≤ c =⇒ T (a, b) ≤ T (a, c) (increasing).

For the Tnorm to be a scalar dilation (with respect to any argument) on V, it
must also satisfy [7]:

F5. T is a continuous function.
A fuzzy union norm [6] is a binary operation U : [0, 1]2 → [0, 1] that satisfies
F2-F5 and a dual boundary condition:

F1′. U(a, 0) = a and U(a, 1) = 1.
Clearly, U is an erosion on V.

Now the new signal translations on L = [0, 1]E are the operators τ y,v(f)(x) =
T (v, f(x − y)), where (y, v) ∈ E × V and f(x) is an arbitrary input signal.
A signal operator on is called translation invariant (TI) iff it commutes with
any such translation. Similarly, we define dual signal translations τ ′

y,v(f)(x) =
U(v, f(x − y)). Consider now two elementary signals, called the impulse q and
the dual impulse q′:

q(x) �
{

1, x = 0
0, x �= 0 , q′(x) �

{
0, x = 0
1, x �= 0
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Then every signal f can be represented as a sup of translated impulses or as inf
of dual-translated dual impulses:

f(x) =
∨
y

T [f(y), q(x− y)] =
∧
y

U [f(y), q′(x− y)]

General TI signal dilation and erosion can result, respectively, from the sup-
T convolution ©T and the inf-U convolution ©′

U of two signals f and g defined
by

(f ©T g)(x) �
∨
y

T [f(y), g(x− y)], (f ©′
U g)(x) �

∧
y

U [f(y), g(x− y)] (2)

The following theorem characterizes all TI signal dilation or erosion operators
as nonlinear convolutions of the above type.

Theorem 1. ([7]). An operator ∆ (resp. E) on the signal lattice [0, 1]E is a
translation invariant dilation (resp. erosion) iff it can be represented as the sup-
T (resp. inf-U) convolution of the input signal with the operator’s (resp. dual)
impulse response h = ∆(q) [resp. h′ = E(q′)].

However, the erosion E of the above theorem may not be the adjoint of the
dilation ∆. To form an adjunction, we first define a signal fuzzy dilation as
the previous sup-T convolution

δ(f)(x) �
∨
y∈E

T [f(y), h(x− y)] = (f ©T h)(x) (3)

By recognizing T [f(y), h(x− y)] as the scalar dilations δx,y(f(y)) in the general
decomposition (1) of δ, it follows that the adjoint signal fuzzy erosion is

ε(g)(y) �
∧
x∈E

Ω[g(x), h(x− y)] (4)

where Ω represents the adjoint scalar erosions (εy,x) in (1) and is actually the
adjoint of the fuzzy Tnorm:

T (v, a) ≤ w ⇐⇒ v ≤ Ω(w, a) (5)

Given T we can find its adjoint function Ω by

Ω(w, a) � sup{v ∈ [0, 1] : T (v, a) ≤ w} (6)

The norm T can be interpreted as a logical conjunction, whereas its correspond-
ing adjoint can be interpreted as a logical implication [6].

Three examples of Tnorms are:

Min : T1(v, a) = min(v, a), Product : T2(v, a) = v · a
Yager : T3(v, a) = 1 − (1 ∧ [(1 − v)p + (1 − a)p]1/p), p > 0.
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The corresponding three adjoint functions are:

Ω1(w, a) =
{
w, w < a
1, w ≥ a

, Ω2(w, a) =
{

min(w/a, 1), a > 0
1, a = 0

Ω3(w, a) =
{

1 − [(1 − w)p − (1 − a)p]1/p, w < a
1, w ≥ a

The generalized fuzzy opening α and fuzzy closing β are

α(f) � δ(ε(f)), β(f) � ε(δ(f)) (7)

If we define an alternative erosion operator (as an inf-U convolution) by

ε′(f)(y) =
∧
x

U [f(x), h(y − x)] (8)

where U(a, b) = 1 − T (1 − a, 1 − b) is a fuzzy union that is dual to T , then
ε′(f) = 1 − δ(1 − f); i.e., this second erosion ε′ is the dual of the first dilation
δ. Further, the adjoint dilation δ′ of ε′ is an operator that is dual of the first
erosion ε. Many previous works used pairs (ε′, δ) which are duality pairs but
not adjunctions and hence cannot form openings/closings via compositions.

4 Morphological, Fuzzy and Hybrid Edge Gradients

In this section we present some theoretical and experimental results on using
the lattice fuzzy operators, in combination with morphological systems or by
themselves, to develop some new edge gradients based on fuzzy operators.

Morphological Gradient: In the continuous case (images defined on R
2),

if δs(f) = f ⊕ sB and εs(f) = f � sB are the flat dilation and erosion of f by
multiscale disks sB, it is well-known that

lim
s↓0

[δs(f)(x) − εs(f)(x)]/(2s) = ||∇f(x)|| (9)

for a differentiable function f .
Hybrid Gradient: We have proven that a similar result holds if we replace

in (9) the morphological dilation with a multiscale fuzzy dilation as follows:

δs(f)(x) =
∨
y

T (f(x− y), h(y/s)) (10)

Specifically, assuming that f and T are differentiable, we have proven that

lim
s↓0

[δs(f)(x) − f(x)]/s = K · ||∇f(x)||, K =
∨
y

∂1T [f(x), h(y)] · y (11)

where ∂1 denotes partial derivative w.r.t. first argument. Further, for the fuzzy
edge gradients, the unit-scale structuring function h(x) must be a unimodal
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symmetric structuring function with a global maximum at x = 0, h(0) = 1. Sim-
ilarly we can define an adjoint multiscale fuzzy erosion εs and a corresponding
symmetric fuzzy gradient lims↓0[δs(f)(x) − εs(f)(x)]/(2s).

Discrete versions of the above gradients results by replacing the above scale-
normalized limits with differences δ(f) − ε(f), where δ and ε represent: i) (in
the classic morphological case) a morphological dilation and erosion of f by
a 3 × 3-pixel flat structuring element, or ii) (in the hybrid case) a fuzzy dila-
tion and erosion by a small structuring element (at scale s = 1). The hybrid
(morphological-fuzzy) gradient showed a small improvement over the morpho-
logical one.

Fuzzy Gradient: We also propose a new and different type of discrete edge
gradient:

FuzzyEdgemin(f) = min[δs(f), 1 − εs(f)] (12)

where δs and εs are the same fuzzy dilation and erosion as above with s = 1. A
dual type of fuzzy edge gradient, FuzzyEdgemax, results when the min is replaced
with max. The last two types of edge gradients were inspired by the standard
discrete morphological gradient δ(f) − ε(f), but to make the gradient operator
more consistent with fuzzy set theory we replaced the difference between dilation
and erosion with min (or max) of the dilation and the fuzzy complement of the
erosion.

In Fig. 1 we present some experimental results illustrating the differences
between the classical morphological operators and the generalized lattice-fuzzy
operators. Rows 1 and 2 show the dilation, erosion, opening and closing of 1D
images. In general, we have observed that, the fuzzy operators are more adap-
tive and track closer the peaks/valleys of the signal than the corresponding
flat morphological operators of the same scale. Similar conclusions were reached
during our experiments with 2D images. In Rows 3 and 4, we investigate the
performance of the fuzzy operators in edge enhancement-detection. As shown in
Fig. 1(h,i), the new fuzzy gradient operators have a quite promising behavior
since they yied clean and sharper edges than the morphological gradient. Fur-
ther, the fuzzy operators are less influenced by noise than the morphological
operators. The morphological operators seem to detect more edges in non-noisy
images (Fig. 1(n,i)); however, the fuzzy operators may also be designed to detect
more edges by optimally tuning the parameter of the Tnorm [9]. The last three
rows of Fig. 1 clearly illustrate the superior performance of the fuzzy operators
for edge detection in noise. The results are demonstrated by using a test 1D signal
with known derivative and edge location. The noisy signal versions are formed
by adding ‘gray salt and pepper’ noise at different SNRs; see Figs. 1(m,n,o).
In both the morphological and fuzzy case, the performance, in the presence of
noise, is improved with larger size structuring elements.

5 Conclusions

The power but also the difficulty in applying the lattice-based fuzzy operators
to image analysis is the huge variety of fuzzy norms and the absence of some
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practical experience or systematic ways in selecting them. In general, having
a parameter in the Tnorm offers flexibility for the fuzzy operators that use
it. The scale (support size) and the shape of the structuring function are also
important factors, which can influence the behavior of the fuzzy operators. By
tuning these parameters we can find the optimum solution depending on the
type of application, such as edge detection in the presence of noise or other
feature detection in images with low contrast [9]. In our on-going work we are
investigating various methods to design these new operators for various nonlinear
filtering and image analysis tasks. Finally, by combining lattice MM and fuzzy set
theory, we can create new operators, like the fuzzy edge gradients, that extend
and improve the capabilities of the standard morphological operators.
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Fig. 1. Rows 1 and 2, left to right: flat, minimum, Yager. Row 1: original signal (solid
line), dilation (dashed line), erosion (dotted line). Row 2: closing (dashed line), opening
(dotted line). Row 3: Edges in images. Row 4: Edges in noisy images Row 5: step
edge function, signal with low noise, signal with high noise. Rows 6,7: performance of
morphological and fuzzy edge operators, respectively.
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