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ABSTRACT

In this paper we use concepts from the lattice-based theory
of morphological operators and fuzzy sets to develop generalized
lattice image operators that can be expressed as nonlinear convo-
lutions that are suprema or infima of fuzzy intersection or union
norms. Our emphasis (and differences with previous works) is the
construction of pairs of fuzzy dilation and erosion operators that
form lattice adjunctions. This guarantees that their composition
will be a valid algebraic opening or closing. The power but also the
difficulty in applying these fuzzy operators to image analysis is the
large variety of fuzzy norms and the absence of systematic ways
in selecting them. Towards this goal, we have performed extensive
experiments in applying these fuzzy operators to various nonlinear
filtering and image analysis tasks, attempting first to understand the
effect that the type of fuzzy norm and the shape-size of structuring
function have on the resulting new image operators. Further, we
have developed some new fuzzy edge gradients and optimized their
usage for edge detection on test problems via a parametric fuzzy
norm.

1. INTRODUCTION

Mathematical morphology (MM) and fuzzy sets share many com-
mon theoretical concepts. As an earlier example, the use of min/max
to extend the intersection/union of ordinary (crisp) sets to fuzzy sets
[12] has also been used to extend the set-theoretic morphological
shrink/expand operations on binary images to min/max filtering on
graylevel images [9, 3]. While the field of morphological image
analysis was maturing, several researchers developed various other
approaches in using fuzzy logic ideas for extending or generalizing
the morphological image operations [11, 1]. The main ingredients
of these approaches have been to (1) map the max-plus structure
of signal dilation to a sup-T signal convolution, whereT is some
fuzzy intersection norm, and (2) use duality to map the inf-plus
structure of signal erosion to a inf-T ′ convolution, whereT ′ is a
dual fuzzy union norm. The main disadvantage of these approaches
is that composition of the operators from steps (1) and (2) is not
guaranteed to be an algebraic opening or closing. (Openings and
closing are the basic morphological smoothing filters.) Another
difficulty in applying fuzzy-based operators to various image anal-
ysis problems is the huge variety of fuzzy norms and the absence of
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some practical experience or systematic ways in selecting the best
of them for certain image applications.

Meanwhile MM was extended using lattice theory [10, 4] to
more general operators that shared with the standard dilation, ero-
sion, opening and closing only a few algebraic properties. One
such fundamental algebraic structure is a pair of erosion/dilation
operators that form anadjunction. This guarantees the formation
of openings and closings.

In a previous work [7, 8] some of us used lattice theory to
develop generalizations of morphological signal/vector operations
for based on fuzzy norms. These operations were used in fuzzy dy-
namical systems to represent the mapping between input and ouput
signals (via nonlinear fuzzy-based convolutions) and the mapping
between state vectors (via generalized fuzzy-based products of ma-
trices and vectors) as a generalized dilation or erosion acting on
signal or vector lattices. In this paper we continue this work and
apply our general theoretical results from [7] to developing useful
nonlinear image operators for image analysis. (A work similar to
our theoretical analysis appeared recently in [2].) First, we discuss
the theoretical development of the new operators. Then, we present
our results from extensive experiments in applying these fuzzy op-
erators to various nonlinear filtering and detection tasks applied to
soilsection images. The emhasis in our experimental work is to
understand the effect that the algebraic type of fuzzy norm and the
shape and size of the structuring function have on the resulting new
image operators. Finally, we present some new fuzzy edge gradi-
ents and show how to optimize a parametric fuzzy norm used in a
1D edge detection problem.

2. LATTICE OPERATORS USING FUZZY NORMS

A posetL is any set equipped with a partial ordering≤. The
supremum(

∨
) and infimum(

∧
) of any subset ofL is its lowest

upper bound and greatest lower bound, respectively, induced by the
partial order; both are unique if they exist. The algebra(L,∨,∧)
is called acomplete latticeif the supremum and infimum of any
(finite or infinite) collection of its elements exists. An operator
ψ on a complete latticeL is called: increasingif it preserves the
partial ordering [F ≤ G =⇒ ψ(F ) ≤ ψ(G)]; idempotent if
ψ2 = ψ; antiextensive (extensive) ifψ(F ) ≤ F (F ≤ ψ(F )).
An operatorε (δ) on a complete semilattice is called anerosion
(dilation ) if it distributes over the infimum (supremum) of any
collection of lattice elements; namelyδ(

∨
i Fi) =

∨
i δ(Fi) and

ε(
∧

i Fi) =
∧

i ε(Fi). An operator is called anopening(closing)
if it is increasing, antiextensive (extensive) and idempotent. An
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operator pair(ε,δ) is called anadjunction iff δ(F ) ≤ G ⇐⇒
F ≤ ε(G), ∀F,G ∈ L.

Given a dilationδ, there is a unique erosionε(G) =
∨{F :

δ(F ) ≤ G} such that(ε,δ) is adjunction, and vice-versa. Given
an adjunction(ε,δ), it can be shown [4] that: (i)δ is a dilation
andε is an erosion. (ii)δε is an opening, andεδ is a closing.

In this paper, the signal space is the collectionL = V
E of all

images/signalsF : E → V, whereE = R
d or Z

d, d = 1, 2, ...,,
andV = [0, 1]. The value setV, equipped with the usual ordering
≤ becomes a complete lattice. The signal spaceL also becomes a
complete distributive lattice if we define on it the standardpointwise
partial ordering≤, supremum∨, and infimum∧ induced byV. It
has been shown [4] that a pair(ε,δ) is an adjunction on the image
lattice V

E iff for every x, y ∈ E there exists a scalar adjunction
(εx,y,δx,y) onV such that

δ(F )(y) =
∨
x∈E

δx,y(F (x)), ε(G)(x) =
∧
y∈E

εy,x(G(y))

(1)
In this paper we build generalized image dilations and erosions

by defining the scalar dilations (erosions)δx,y (εx,y) via some
fuzzy intersection (union) between the values of theimage signal
F and astructuring functionH. (More details can be found in [7].)
First we define fuzzy norms.

A fuzzy intersection norm, in short aTnorm, is a binary oper-
ationT : [0, 1] → [0, 1] that satisfies the following conditions [6]:
For alla, b, c ∈ [0, 1]

F1.T (a, 1) = a andT (a, 0) = 0 (boundary conditions).
F2.T (a, T (b, c)) = T (T (a, b), c) (associativity).
F3.T (a, b) = T (b, a) (commutativity).
F4.b ≤ c =⇒ T (a, b) ≤ T (a, c) (increasing).

For theTnorm to be a scalar dilation (with respect to any argument)
onV, it must also satisfy:

F5.T is a continuous function.
A fuzzy union norm [6] is a binary operationU : [0, 1] → [0, 1]
that satisfies F2-F5 and a dual boundary condition:

F1′. U(a, 0) = a andU(a, 1) = 1.
Clearly,U is an erosion onV.

By defining in (1) the scalar dilationsδx,y via a fuzzyTnorm
betweenF andH values [7], we can define a generalized image
dilation and erosion by

δ(F )(y) :=
∨
x∈E

T (F (x), H(y − x)), (2)

ε(G)(x) :=
∧
y∈E

Ξ(G(y), H(y − x)) (3)

whereΞ represents the adjoint scalar erosions(εx,y) in (1) and is
actually the adjoint of the fuzzyTnorm:

T (v, a) ≤ w ⇐⇒ v ≤ Ξ(w, a) (4)

GivenT we can find its adjoint functionΞ by

Ξ(w, a) = sup{v ∈ [0, 1] : T (v, a) ≤ w} (5)

Three examples ofTnorms are:

Min : T1(v, a) = min(v, a)
Product : T2(v, a) = v · a
Yager : T3(v, a) = 1 − (1 ∧ [(1 − v)p + (1 − a)p]1/p), p > 0.

The corresponding three adjoint functions are:

Ξ1(w, a) =
{
w, w < a
1, w ≥ a

Ξ2(w, a) =
{

min(w/a, 1), a > 0
1, a = 0

Ξ3(w, a) =
{

1 − [(1 − w)p − (1 − a)p]1/p, w < a
1, w ≥ a

The generalized fuzzy openingα and closingβ are

α(F ) := δ(ε(F )), β(F ) := ε(δ(F )) (6)

If we define an alternative erosion operator by

ε′(F )(y) =
∧
x

U(F (x), H(y − x)) (7)

whereU(a, b) = 1 − T (1 − a, 1 − b) is a fuzzy union that is dual
toT , thenε′(F ) = 1−δ(1−F ); i.e., this second erosionε′ is the
dual of the first dilationδ. Further, the adjoint dilationδ′

of ε′ is
an operator that is dual of the first erosionε. Previous works used
pairs(ε′,δ) or (ε,δ′

) which are duality pairs but not adjunctions
and hence cannot form openings/closings via compositions.

3. EXPERIMENTS AND EDGE GRADIENTS

In this section we present some experimental results illustrating
the differences between the classical morphological operators and
the generalized operators based on fuzzyTnorms, emphasizing
the advantages of the parametricTnorms. Further, we present
some new edge gradients based on fuzzy operators and focus on
the problem of optimally designing these fuzzy operators.

The first part of the experiments (Rows 1,2) deals with 1D
images. We apply several fuzzy lattice operators based onTnorms
and we compare the outcomes with the morphological operators.
Rows 1 and 2 of Fig. 1 show the outputs of dilation, erosion, opening
and closing operators, first for the morphological type using a51-
pixel flat structuring element and second for the fuzzy type (2), (3)
and (6) using a parabolic non-flat structuring function

H[n] =
{

1 − k(n/s)2, |n| ≤ s
0, |n| > s

(8)

with s = 25. The parameters determines the scale, whilek affects
the shape ofH. (We usedk = 0.5.) We have experimented
with threeTnorms: the minimum, the product and the Yager. The
paramerp of the YagerTnorm wasp = 2. For p ↓ 0 the Yager
Tnorm takes the form of the drasticTnorm, which is one extreme
of the spectrum ofTnorms, whereas forp → ∞ it coincides with
the minimumTnorm which is the other extreme of the spectrum.
In general, we have observed that, the fuzzy operators are more
adaptive and track closer the peaks/valleys of the signal than the
corresponding flat morphological operators of the same scale.

The second part of the experiments (Rows 3,4) deals with 2D
images. For all fuzzy operators used in Rows 3,4 we used the
YagerTnorm with parameterp = 10 and a conical structuring
functionH. In Row 3, Fig. 1(i) shows an original soilsection im-
age and its dilation and erosion first of the morphological type in
Figs.1(j,k) and then of the fuzzy type in Figs. 1(l,m). In both cases
the structuring element had a7 × 7-pixel support, being flat in the
morphological case and conical in the fuzzy case. Figure 1(n) in
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Row 4 shows the corresponding fuzzy clos-opening (a smoothing
filter).

The rest of the images in Row 4 deal withedge detection:
Figue 1(o) shows a nonlinear edge-enhancing gradient of the type
δ(F ) − ε(F ), whereδ andε are the morphological dilation and
erosion, respectively, off by 3 × 3-pixel flat structuring element.
Figure 1(p) shows the same type of gradient but uses fuzzy dila-
tion and erosion with a3 × 3-pixel structuring function. In the
continuous case (images defined onR

2), if δs(F ) = F ⊕ sB
andεs(F ) = F 	 sB are the flat dilation and erosion ofF by
multiscale diskssB, it is well-known that

lim
s↓0

[δs(F )(x) − εs(F )(x)]/(2s) = ||∇F (x)|| (9)

for a differentiable functionF . We have proven that the same result
holds if we replace the morphological dilation with a multiscale
fuzzy dilation

δs(F )(x) =
∨

||y||≤s

T (F (x− y), H(y/s)) (10)

and similarly for the adjoint multiscale fuzzy erosionεs. For the
edge gradients, the unit-scale structuring functionH(x), |x| ≤ 1,
must be a unimodal symmetric structuring function with a global
maximumH(0) = 1.

Figure 1(q) shows a different type of edge gradient:

FuzzyEdgemin(F ) = min[δs(F ), 1 − εs(F )] (11)

whereδs andεs are the same fuzzy dilation and erosion as in
Fig. 1(p) withs = 1. Figure 1(r) shows a similar type of fuzzy
edge gradient as in Fig. 1(q) but the min is replaced with max.
The last two types of edge gradients were inspired by the standard
discrete morphological gradientδ(F ) − ε(F ), but to make the
gradient operator more consistent with fuzzy set theory we replaced
the difference between dilation and erosion with min (or max) of
the dilation and the fuzzy complement of the erosion. As shown in
Row 4 of Fig. 1, these new fuzzy gradient operators have a quite
promising behavior since they yield cleaner and sharper edge peaks
than the morphological gradient.

In general, having a parameter in theTnorm offers flexibility
for the fuzzy operator that use it. By tuning this parameter we can
find the optimum solution depending on the type of application,
such as edge detection in the presence of noise or other feature
detection in images with low contrast. The scale (support size)
and the shape of the structuring function are also important factors,
which can influence the behavior of the fuzzy operators. For a 1D
edge detection test problem (see Row 5 of Fig. 1), we have explored
the efficacy of the fuzzy gradients by varying two parameters, the
parameterp of the YagerTnorm and the parameters, which is the
scale of the parabolic structuring function (8) used. Figure 1(t)
shows the difference-based fuzzy gradient (p = 10, s = 5) of the
1D test signal in Fig 1(q). By varyingp ands, on can optimize
the edge detection performance as measured by the peak height of
the fuzzy derivative. Thus, the 3D graph in Fig. 1(u) shows the
peak heights of the difference-based fuzzy gradient of the 1D test
signal in Fig 1(q) for various values ofp ∈ [1, 22] ands ∈ [1, 25].
Clearly, for each value ofp there is an optimum value ofs; e.g.,
for p = 6 the optimum wass = 10. There are many optimal
solution pairs(p, s), and this illustrates the advantages of having a
parametricTnorm. Finally, Fig. 1(v) shows the min-based fuzzy
gradient (11) of the 1D test signal; clearly, this yields a sharper
peak.

Concluding, the power but also the difficulty in applying the
lattice-based fuzzy operators to image analysis is the huge vari-
ety of fuzzy norms and the absence of some practical experience
or systematic ways in selecting them. In our on-going work we
are investigating rigorous methods to design these new operators
for various nonlinear filtering and image analysis tasks, such as
edge and peak/valley detection, by optimizing the parametric fuzzy
norms and structuring functions used. In parallel, by experimenting
with the type of fuzzy norm and the shape-size of the structuring
function, it is possible to adapt the new fuzzy operators so that their
performance has many promising aspects compared with the stan-
dard morphological operators. Finally, by combining lattice-based
MM and fuzzy set theory, we can create new operators, like the
fuzzy edge gradients, that extend and improve the capabilities of
the standard morphological operators.
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Fig. 1. Rows 1 and 2, left to right: flat, minimum, product, Yager. Row 1: original signal (solid line), dilation (dashed line), erosion (dotted
line). Row 2: closing (dashed line), opening (dotted line). Row 3: (i) original image, (j) morphological dilation, (k) morphological erosion,
(l) fuzzy dilation, (m) fuzzy erosion Row 4: (n) clos-opening, (o) morphological gradient, (p) fuzzy gradientδ − ε, (q) fuzzy gradient
min(δ, 1−ε), (r) fuzzy gradientmax(δ, 1−ε). Row 5: (s) original step-edge signalF , (t) fuzzy derivative[δ(F )−ε(F )]/(2s∆x), (u) 3D
graph showing the heights of the derivatives (t) as the scales and parameterp vary, (v) fuzzy derivative[min(δ(F ), 1 − ε(F ))]/(2s∆x).
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