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ABSTRACT

In this paper we briefly overview emerging trends in ‘Adaptive
Morphology’, i.e. work related to the theory and/or applications of
image analysis filters, systems, or algorithms based on mathematical
morphology, that are adaptive w.r.t. to space or intensity or use any
other adaptive scheme. We present a new classification of work in
this area structured along several major theoretical perspectives. We
then sample specific approaches that develop spatially-variant struc-
turing elements or intensity level-adaptive operators, modeled and
implemented either via conventional nonlinear digital filtering or via
geometric PDEs. Finally, we discuss some applications.

Index Terms— Adaptive filters, Morphological image analysis

1. INTRODUCTION

In image and signal processing, adaptivity of a system or algorithm
means its capability to automatically adjust its parameters to the in-
put data aiming at optimizing some criterion. In the processing de-
sign, this adaptation should take into account the spatial, dynamical
and/or temporal and range information which is available or can be
computed from the data. The usefulness and necessity of adaptive
algorithms are evident if one considers the variability of the signals
or images that should commonly be processed by a unique algo-
rithm, the internal variability of the data in a single image or image
sequence, the a priori knowledge (e.g. context or noise) that needs
to be incorporated in the processing, and the requirements of the
processing in terms of resulting signal properties (for instance the
preservation of certain image structures). We mention a few prac-
tical motivations: adapting to the luminance, or the contrast, or the
gradient norm or the gradient direction of the image function at every
point in space is fundamental if one wants to encourage intra-region
smoothing while preserving edges; adapting to a possibly spatially-
varying camera perspective is of crucial importance in many surveil-
lance situations; the evolution of the image data throughout the time
is also a precious information for video compression.

There are two fundamental questions when dealing with adap-
tive algorithms or adaptive transforms. First, how to mathematically
define such operations? Second, how to practically design adaptive
transforms, i.e., how to define the link between the transformation
parameters and the image data? These questions have received an
increasing interest in the image processing community, judging by
the great numbers of publications that refer to adaptive algorithms.

In this paper, we briefly survey the state of the art on these ques-
tions in the field of mathematical morphology (MM) [12, 13, 26],
which is a powerful nonlinear methodology for representing and an-
alyzing geometrical structures in images and signals based on tools
from set and lattice theory, topology and stochastic geometry, with
numerous applications in image enhancement, feature extraction,

multiscale filtering, detection and segmentation. We discuss three
major perspectives and corresponding research directions for adap-
tive MM: (i) adaptivity w.r.t. the spatial neighborhood of morpho-
logical operators, (ii) algebraic principles such as group and repre-
sentation theory to unify important aspects of the adaptive operators,
and (iii) adaptivity w.r.t. how the operators process the image level
sets at different levels. Our survey includes issues from the theoret-
ical, design, computational and applications aspects of these direc-
tions. Our discussion of the modeling and implementation aspects
of the adaptive operators in categories (i) and (ii) mainly focuses on
the conventional filtering view, from which they appear as min-max
combinations of nonlinear (sup/inf) spatially-variant convolutions,
whereas in category (iii) we also add the viewpoint of partial differ-
ential equations (PDEs).

Due to the limited paper size, our references are limited and only
indicative. More can be found in the the papers we cite.

2. THEORETICAL FRAMEWORKS FOR ADAPTIVE MM

Morphological operators, which include well-known rank, median
and stack-type nonlinear filters, were originally defined so that they
satisfy important properties. Translation invariance is a fundamental
one. If f(x) is a real image (or a function) defined on a space do-
main E such as R

d of Z
d, a translation-invariant (TI) operator is an

operator ψ such that for each input f and each (h, v) in E × R

ψ(fh,v) = [ψ(f)]h,v , fh,v(x) := f(x − h) + v

The operator is called horizontal-translation-invariant (HTI) or
spatially-invariant if it commutes only w.r.t. a horizontal (spatial)
shift, and vertical-translation-invariant (VTI) if it commutes only
w.r.t. a vertical (value) shift. If we consider only TI operators, then
every signal dilation (every increasing operator that distributes with
supremum

∨
) δ and every erosion (every increasing operator that

distributes with infimum
∧

) ε are Minkowski function additions
⊕ and subtractions �; i.e., we can find a fixed function, called
the structuring element (SE), g(x) such that δ(f) = f ⊕ g and
ε(f) = f � g where

f⊕g(x) =
∨

y∈B

f(x−y)+g(y), f�g(x) =
∧

y∈B

f(x+y)−g(y)

(1)
and B ⊆ E is the support of g(x). If g is flat, i.e. zero over its sup-
port, we obtain the flat dilation f ⊕B and erosion f �B of f by B.
Otherwise, (1) are the weighted dilation and erosion. More complex
morphological operators/filters are formed by sup/inf superpositions
and/or compositions of the dilations and erosions. The basic oper-
ations (1) are nonlinear convolutions, which represent the action of
the combined filter as moving-window operations over the spatial
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domain E. An alternative domain is the range, where the basic oper-
ators can be interpreted as operating on the level sets. For example,
if all the involved SEs are sets, then the combined operators ψ are
flat, i.e. they obey threshold superposition:

ψ(f) =
∨

v∈R

v · ψ(χv(f)) (2)

where χv(f) is the indicator function of the level set Xv(f) = {x :
f(x) ≥ v} of f .

For fixed SEs, the basic operators (1) and all their parallel and
serial combinations are TI. However, when dealing with adaptive
morphological operators, the TI property may be lost if the action of
the operator can vary according to the location, the luminance, the
contrast, or some other attribute of the image data at a point or its
neighborhood. For example, one can consider that the SE is not fixed
but that it locally adapts to the data. However, TI is not necessarily
lost in all cases of adaptive morphology; e.g., if we chose our actions
based on local structure or content, TI is kept iff the way in which
we select a local SE is itself TI.

Next we outline the main ideas in some major theoretical contri-
butions on how to go from translation-invariant morphology to adap-
tive morphology. In this paper we mainly focus on flat MM.

2.1. Structuring Element Map (SEM)

A general framework for adaptive morphology, in the Euclidean
space, is the concept of the structuring element map (SEM), also
known as ‘structuring function’, proposed in [26, ch.2,9]. In this
case, we have not a fixed but a spatially-varying SE, i.e., a map
A that assigns a possibly different set or function A(x) at each
point x of space E. This allows for the following spatial adaptivity
rules: (1) Adaptive Window, where the operators are flat and use a
Spatially-Varying (SV) set-valued SEM A : E → P(E); e.g., the SV
flat dilation and erosion [3, 4]

DA(f)(x) = (f ⊕A)(x) =
∨

y∈A(x) f(x − y)

EA(f)(x) = (f �A)(x) =
∧

y∈A(x) f(x + y)
(3)

(2) Adaptive Kernel, where the operators (1) use an SV gray kernel
g. (3) Adaptive Weighted operators whose SEs are functions g with
a fixed support B but SV weights/values.

Since the introduction of the concept of SEM, the interest of
the scientific community for adaptive morphology has continuously
increased.

2.2. Group-invariant MM

Consider a group T of automorphisms on the signal domain E. An
operator ψ, acting on a complete lattice L of signals with domain E,
is called T-invariant if ψτ = τψ for all τ ∈ T. The prototypical case
is T to be the Euclidean translation group; then T-invariant means a
TI operator in the classic sense. However, as stated in [23], “for cer-
tain applications the use of translation-invariant transformations is
not appropriate in view of an internal structure which does not pos-
sess translation symmetry”. Thus, we can restrict to morphological
operators that are invariant under a different group of transforma-
tions, and talk about group-invariant morphology or group morphol-
ogy [13,22]. The theory was developed for polar morphology in [23],
for general commutative symmetry groups in [12, 13], and for gen-
eral non-commutative symmetry groups in [22] including the Eu-
clidean motions (rotations and translations), and perspective trans-
formations for 3D-to-2D projections.

Such group-invariant signal dilations (resp. erosions) are gener-
alized supremal (resp. infimal) convolutions that are adaptive since
they are equivalent to using an SEM, as explained next.

2.3. Kernel/Basis Representation Theory

Every increasing TI set operator Ψ can be represented as a union of
erosions by its kernel elements and as an intersection of dilations,
according to Matheron’s theorem. This theory was extended to TI
function operators in [15], where also a basis representation was in-
troduced for set and function operators. The above theories of TI op-
erators were extended in [3, 4] for spatially-varying morphology by
using representations with supremum and infimum of SV erosions
and dilations respectively. For example, let a flat operator ψ (with
corresponding set operator Ψ) have a kernel Ker(Ψ) := {A : x ∈
Ψ(A(x)) ∀x ∈ E}. Then it is increasing iff it can be represented as
supremum of SV erosions by SEMs in the kernel:

ψ(f) =
∨

A∈Ker(Ψ)

EA(f) (4)

Thus, any increasing operator can be decomposed into a sup of adap-
tive erosions (or inf of adaptive dilations). These results unify the
adaptive morphological operators based on SV neighborhoods with
those based on group morphology. For example, polar morphol-
ogy [23] and affine morphology [16] were shown in [3] to corre-
spond to SV morphological operations with specific choices for an
SEM.

2.4. Level Adaptive MM

A flat operator (2) uses a fixed set operator for each intensity level
v; it is clearly a VTI operator. We can avoid this vertical invariance
as follows. Given a family {ψv} of increasing set operators, we can
build a level-adaptive operator, called semi-flat operator in [12],

Φ(f) =
∨

v∈R

v · ψv(χv(f)) (5)

that uses a different set processing operator ψv for each level, pro-
vided that {ψv} is a decreasing family of increasing set operators.

3. SPECIFIC APPROACHES FOR ADAPTIVE MM

Several ways have been explored to decide how to use local charac-
teristics of the image (including geometrical, statistical or radiomet-
ric information) in order to locally design the SE (in shape and/or
size) at each point of the space. Most works deal with improving the
visual image quality by designing filters that privilege intra-region
smoothing rather than inter-region smoothing. This idea motivated
the introduction of nonlinear filters in [20] based on anisotropic dif-
fusion. In the framework of MM, one can also consider anisotropic
neighborhoods. This can be achieved via several approaches, out-
lined below. Most of them can be explained using the SEM concept.
The last one is based on level adaptivity.

Distance-based: Neighborhoods are defined as set of points at
a distance from the center lower than a threshold, the distance be-
ing chosen for its capacity to detect image edges. At least two
approaches were studied in this direction: the use of a weighted
graylevel distance led to the concept of morphological amoebas [14].
In this approach the distances are computed on a pilot image, which
is a smoothed version of the original image. Another approach [10]
uses a similarity measure between the image pixels that combines
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both spatial and tonal information. The similarity is defined as a
decreasing function of the geodesic time, which is computed by in-
tegrating the image gradient magnitude along paths. As in [14], the
geodesic time is a weighted distance transform.

Connectivity-based: Adaptivity is omnipresent in connected
morphological operators [19, 25, 27], which emphasize connectiv-
ity in images instead of geodesic distances. For instance, area open-
ings [6] at scale λ are geometry-adaptive filters: the size of the struc-
turing element is linked to the area λ of the connected components
of image. The volume opening [28] at scale λ was explained in [17]
as a level-adaptive connected filter (5), for which ψv equals at each
intensity level v an area opening with parameter λ/v.

Adaptive Neighborhoods: In [5, 9], given some criterion map-
ping h (expressing local radiometric, morphological, or geometrical
information) and a tolerance m > 0, at each point x ∈ E an adap-
tive neighborhood V h

m(x) is defined that contains all points y with
|h(y) − h(x)| ≤ m and is connected. Obviously, its shape and size
vary spatially and adapt to the local image characteristics around
the seed point. Then, one can build an SEM that provides an auto-
reflected collection of adaptive SEs [3, 5, 9]

A(x) =
⋃

z∈E

{V h
m(z) : x ∈ V h

m(z)} (6)

and use this to construct SV dilations and erosions as in (3).
Adaptive Rank operators: These correspond to rank filters

whose operational window is a graylevel SEM, i.e. an adaptive set
of weighted signal values to be ranked. A class of adaptation rules
developed in [24] is based on minimizing a local MSE or MAE error
via steepest descent using LMS-like algorithms. These approaches
weight the SE using a rank-sum arithmetic. However, in rank filters
it is also possible to use weights as repetition numbers of the sig-
nal values. The adaptation of such filters was approached in [21] by
using the procedure of [24].

Viscous MM: Edge preservation is not always a goal in image
processing. In many situations, e.g. in contour detection, new edges
will be created in the image in order to close or regularize the exist-
ing contour lines. The problem is then to modify the local geometry
of the image at places where regularization is required while preserv-
ing the precision of the data at places where they are accurate. This
motivated [18, 31] to introduce level-adaptive morphological filters,
associated with an adaptive SE of fixed shape and whose size adapts
w.r.t. the local image intensity or contrast. These so-called viscous
operators are no longer VTI. The viscous dilations β and erosions
α proposed in [32] process different level sets by different scales [δr

and εr denote flat dilation and erosion by a disk of radius r]:

β(f) =
∨

v

v · δM−v[χv(f)], α(f) =
∧

v

v · εM−v[χv(f)] (7)

where M = supx f(x). Some viscous operators are semi-flat.

4. GEOMETRIC PDES AND ADAPTIVITY

Modeling multiscale image filtering via PDEs offers continuous
scale evolution, better and more intuitive mathematical modeling,
connections with physics, and closer approximation to the continu-
ous geometry of the problem. The most famous is the linear isotropic
diffusion PDE ∂tu = ∇2u, which corresponds to Gaussian con-
volutions. To avoid the edge blurring of Gaussian scale-space, a
nonlinear anisotropic diffusion PDE was proposed in [20]

∂tu = div(g(‖∇u‖)∇u) = g∇2u + ∇g · ∇u (8)

where g is a smooth nonincreasing function that inhibits smooth-
ing at strong edges (acting like a varying diffusion coefficient),
whose purpose is to favor intra-region over inter-region smoothing.
One could approximately interpret (8) as a linear convolution by a
spatially-varying kernel. Tensor generalizations of (8) in [30, 34]
indeed admit such an approximate interpretation as adaptive con-
volutions by anisotropic Gaussians whose major axes are parallel
to the eigendirections of the local image structure tensor. A con-
ceptually similar adaptation based on the local Hessian was used in
some morphological filters [29]. Nonlocal means [2] is an adaptive
neighborhood filter that smooths by averaging pixels not by spatial
but by graylevel proximity; it is asymptotically equivalent to (8).

If we attempt to also model level-adaptive MM with differential
rules, the main objective is to find PDEs for the viscous dilation and
erosion (7), since they are the building blocks of viscous operators.
In [17] we introduced the following scale-space PDE models

∂tu(x, t) = (M − u(x, t))+‖∇u‖
∂tw(x, t) = −(M − w(x, t))+‖∇w‖ (9)

with the original image as initial condition: u(x, 0) = w(x, 0) =

f(x). The PDE for u or w generates the viscous dilation β(f) or
erosion α(f) respectively. Indeed, the level curves of the function
φ(x, t) that satisfies the PDE ∂tφ = c(x, t)‖∇φ‖ move on the
plane with normal speed c(x, t). Thus, the isoheight curve of u(x, t)
at level v moves with speed M − v.

5. COMPUTATIONAL METHODS

A large part of the success of mathematical morphology in the en-
gineering community is due to the algorithmic developments. Very
efficient algorithms have been proposed for TI morphological opera-
tors for both binary and graylevel images, and for both software and
hardware implementations. However, “supporting a variable struc-
turing element shape imposes an overwhelming computational com-
plexity, dramatically increasing with the size of the structuring ele-
ment”, as mentioned in [11]. Thus, algorithms addressing the case
of spatially adaptive SEs are still very limited.

In [8] locally adaptable binary erosions and dilations were im-
plemented as a variant of distance transformation algorithms. How-
ever, the only possible extension of the strategy to the graylevel case
is based on a decomposition of the function into its thresholds. This
considerably decreases the strategy efficiency.

For implementing binary adaptive morphology, an algorithm in
[11] was limited to non-centered adaptive rectangles with low mem-
ory requirement and latency. In the graylevel case, a fast algorithm
was proposed in [7] for spatially-varying SEs with adaptable shape
and size based on a decomposition of the SEs in smaller 2D sub-
elements. Tree-based fast algorithms for connected filters can be
found in [19, 25].

Finally, the PDEs (9) for level-adaptive MM were implemented
in [17] using fast nonlinear difference equations.

6. APPLICATIONS AND DISCUSSION

Noise reduction: So far, the main application domain of adaptive
filtering in both linear and nonlinear cases is certainly the noise re-
duction. Denoising is to remove noise as much as possible while
preserving useful information as much as possible. Adaptivity can
be helpful in denoising applications since it allows to design the fil-
ter in accordance with the model of noise while adapting the filtering
parameter to the image content in such a way to preserve features of
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main importance in the image, for instance edges, contrast, local ge-
ometry, color appearance.

Perspectivities and other geometric deformations: One of the
earliest applications that requested the use of SEs of variable size is
the analysis of images from traffic control cameras [1]. Because of
the perspective effect, vehicles at the bottom of the image are closer
and appear larger than those higher in the image. Hence, the SE
should follow a law of perspective, for example, vary linearly with its
vertical position in the image. This example is nicely supplemented
by many other examples where more complex variations of the rele-
vant SE size are required. For instance, in [23] a photograph of the
trees in a forest was taken by putting the camera at ground level and
aiming towards the sky. This case requires a polar structure where
the size of the structuring element increases with the distance from
the center of the image. In [33], the interest was in range imagery, a
modality where the value of each pixel is the distance to the imag-
ing device. Thus, the perspective requires to consider structuring
elements that locally adapt their size to the image content.

Viscous filters and viscous watershed: In many segmentation
applications, variational methods are the best because they make the
balance between two requirements: a necessity of precision at place
where contours are sure and a certain amount of modeling at place
where the contour information is missing. In [18, 31] similar seg-
mentations were obtained via connective segmentation paradigms,
as the watershed transform, by computing it on images with regu-
larized contours produced by intensity- or contrast-adaptive filters
called viscous filters. By viscous filtering, contours of high lumi-
nance or of high contrast are left unchanged (which ensures a good
precision of the final segmentation) while points of low luminance
are hardly closed (which ensures the regularization of the final seg-
mentation).
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