AFFINE MORPHOLOGY AND AFFINE SIGNAL MODELS

Petros Maragos

Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

ABSTRACT: Affine signal transformations are useful for modeling self-similar structures in fractal im-
ages and shape deformations in visual motion. In the first part of this paper a theoretical framework, called
affine morphology, is developed to analyze parallel and serial superpositions of affine image transforma-
tions. Affine morphology unifies and extends translation-invariant morphological image transformations
and their rotation/scaling-invariant generalizations by using action of affine groups on lattices. Several
theoretical aspects of affine morphology are explored for binary images. In the second part of the paper,
the affine transformations are extended to gray-level images and arbitrary signals, and affine models are
developed by using a sum superposition of affine signal transformations. A solution is then given to the
problem of estimating the parameters of this sum-affine model using least squares algorithms, and some
applications are outlined for image and speech signal processing.

1 Introduction

The analysis of useful classes of image transformations and the design of systems based on them is of
central importance in image processing and computer vision. One such traditional class has been the
class of linear and translation-invariant image transformations, with applications mainly to image filtering,
restoration, and coding. Another class of growing popularity is the collection of all morphological image
operations, which are nonlinear and translation-invariant; we call this whole area translational morphology.
Morphological operations have found many applications in nonlinear image filtering, image enhancement,
feature detection, shape analysis, and pattern recognition; see [12] for a recent survey. However, not
all image processing tasks are translation-invariant. There are cases where invariance under rotation or
scaling is needed. Recently, morphological operations for binary images have been introduced that are
invariant under rotation and scalar multiplication; we call this area polar morphology. However, while
both translational and polar morphology have shortcomings because they lack each other's invariance
characteristics, neither of them can represent a broad class of image transformations, that occur in visual
motion and are used in fractal image modeling. These are the affine image transformations.

Therefore, in this paper we focus on the class of affine image transformations and develop a theoretical
framework that can (i) unify translational and polar morphology as special cases of what we call affine
morphology, and (ii) provide analytic tools for a variety of shape deformations used to model fractal
images or interpret visual motion. In these applications we have superpositions of translated, scaled and
rotated versions of the original image. Whereas translational morphology can model only translations and
polar morphology can model only uniform (i.e., same with respect to both axes) scaling/rotation, affine
morphology can simultaneously model both translations and arbitrary rotations with arbitrary scalings.
The first part (Sections 2 and 3) of the paper explores (i) and (ii) for binary images. (iii) In the second part
(Section 4) of the paper, in an effort to extend the above ideas to gray-level images, we develop a sum-affine
model that is capable of modeling a signal as an additive superposition of affine domain-transformed and
affine amplitude-transformed versions of another signal (in which case the model generalizes convolutions)
or of itself (in which case the model is self-affine). Then we provide least-squares algorithms to find the
parameters of this model and we outline its potential application to modeling self-similarities in fractal
images and other signals, e.g., speech.
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In the rest of this introduction we outline some background ideas on affine image transformations and
their applications, and define the basic operations of translation and polar morphology.

AFFINE IMAGE TRANSFORMATIONS: Consider the class of binary images, represented by subsets of
the two-dimensional (in short, 2-dim) Euclidean space R2%. Then a broad and useful class of image trans-
formations can be constructed based on affine point mappings w(z) = Mz +t, z € R?, where t € R? and
M € R®? is a 2 x 2 real matrix. The vector-valued map w can be extended to the set P(R?) of subsets
of R?. Thus by an affine image set transformation we mean a set-valued mapping

wX)={Mz+t:z€ X}, XCRZ (1)

Affine transformations have been (explicitly or implicitly) used often for modeling 2-dim or 3-dim shape
deformations with applications to computer vision, photogrammetry, and mathematical psychology. For
example, the motion of a rigid body in 3-dim space can be modeled by a 3-dim affine transformation,
which when projected down to the 2-dim camera’s image plane or the eye’s retina, induces (under certain
restrictions on the type of motion and projection) 2-dim affine transformations between the projected image
sets 1, 4]. Several aspects of visual perception (e.g., shape and size constancy, motion) have been modeled
by Lie groups whose elementary finite transformations are 2-dim affine mappings [8]. There has also
been considerable interest and research work in inverting an affine transformation either for relating two
coordinate systems [9], or for recovering motion parameters [4, 11], or for recognizing a transformed shape
by reffering it to an undeformed original shape [18, 11]. Note that in the above mentioned applications
the overall image transformation was modeled by a single affine transformation or in visual motion by
a composition (and thus a serial superposition) of several affine transformations. However, in modeling
fractal images [10, 3], a union, i.e., a parallel superposition of affine transformations has been used to mode]
fractal images as the attractors of chaotic dynamical systems.

TRANSLATIONAL MORPHOLOGY: All binary image transformations of traditional mathematical mor-
phology (13, 15] are translation-invariant and stem from the dilation @ and erosion &, which are, respec-
tively, the union and intersection of translations X +b = {z£b:z € X} of the image set X CR? by vector
points b = (b1, b3) of the structuring element BC R?:

X@erB = UX“H): U {(z1+b1,20 + b2) : (21,22) € X} (2)
beB (b1.b2)€B

XerB = ((X-b= () {(z1 = b1z~ b3) : (z1,22) € X} (3)
beB (61.52)eB

Note that we have added to the usual notation of dilation & and erosion © a subscript T to emphasize the
fact that both the classical dilation and erosion are obtained from translations of planar points. We shall
call them translational dilation and erosion. and they are identical to classical Minkowski set addition and
subtraction defined in [5]. This paper also examines other forms of dilation and erosion for which we will
use the symbols & and & with different subscripts. Two very important properties that the translational
dilation and erosion satisfy are: 1) translation-invariance and 2) distributivity over union or intersection,
respectively: i.e.,

(X+terB=(XerB)+t ; (UX)erB=JX;0rB (4)
j€Jd jed

(X+t)erB=(XerB)+t (N X;)er B= () X;orB (5)
JEJ Jed

where J is some index set, countable or not.
PorAr MorpPHOLOGY: To create rotation- and scaling-invariant mophological operations, Heijmans
and Roerdink [6, 14] developed the polar morphology by observing that translational erosion and dilation
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depend only on vector addition, which forms a commutative group in R? and induces translations of planar
sets by vectors. They replaced this translation group structure in R? with the “polar group”, which is the
set of nonzero planar points represented in polar coordinates (r,8) and equipped with the group operation
+p defined by (r1,6,)+p(r2,602) = (ry- 72,61 4+ 62); i.e., in the polar group two planar points are combined
by multiplying their magnitudes and adding (modulo 27) their angles. Then they defined the polar dilation
and erosion as:

XepB = |J X4pr(p9)= | {(r-p.0+9¢):(r,0) € X} (6)
(0,0)€B (r.4)€B

XoepB = m X+P(p_1,—¢)= ﬂ {(T/p,0—¢):(1‘,0)€X} (7
(0,#)€B (0.0)€B

The polar dilation and erosion are: 1) invariant under rotation and/or scalar multiplication and 2) dis-
tributive with respect to union or intersection, respectively: i.e.,

(X +p(p,¢))@p B=(X@pB)+r(p¢) ; (IJX)apB=|JX;0pB (8)
j€J Jj€J

(X +p(p,¢))op B=(X6pB)+p(p.¢) ; ([)X;)6pB=()X;0pB (9)
Jjed jeJ

Polar morphological operations are useful in problems without translational symmetry where the image
operations need to be invariant under rotations and uniform scaling. An example is images photographed
with a fish-eye (wide-angle) lens; there we need rotation/scaling-invariance with respect to the optical
center of the image (intersection of camera axis and image plane) instead of translation-invariance.

2 Group Action Morphology on Lattices

For generalization purposes, an abstract viewpoint is adopted in this section. Let SCR?. The set P(S) =
{X : XC S} of all (binary images) subsets of S is viewed as an atomic Boolean complete lattice, where the
supremum and infimum lattice operation are the set union and intersection, respectively. The atoms of
P(5) are the singletons {z}, z € S. Image transformations from P(S§) to P(S) are called (set) operators,
and O denotes the set of all such operators.

2.1 Preliminaries from Morphology on Lattices

Let a, 8 € O. Their compositionis the operator aB(X) = a(3(X)),XCS. Set C induces a similar ordering
between operators, i.e., aC 3 means a(X)C B(X) for all XC S. This ordering makes O a complete lattice.
a1 denotes the inverse, if it exists, of the operator a. Let id(X) = X denote the identity operator on

PS).

DEeFINITION 1 . (Serra [16]) Let 3 € O. Then:

(i) B is increasingif XCY = 3(X)C B(Y)forall X,YCS.

(i) B is a dilation if B(Uxex X) = Uxex B(X) for all KC P(S). i.e., if B distributes over U.
(iii) B is an erosion if B(Nxex X) = Nxex B(X) for all KCP(S), i.e., if 8 distributes over N.
(iv) B is an opening if it is increasing, idempotent (i.e., 38 = 3) and anti-extensive (i.e., fCid).
(v) Bis a closing if it is increasing, idempotent and extensive (i.e., B 2id).

An operator @ € O is an automorphism on P(S) if it is a bijection such that both a and a~! are
increasing. Note that dilations and erosions are increasing. The following can be shown about automor-
phisms:
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PROPOSITION 1 . Leta € O. The following four statements are equivalent:
(i) a is an automorphism. (ii) « is a bijection, dilation and erosion.
(i) a is a bijection and dilation. (iv) o is a bijection and erosion.

Let 6,6 € O. Then the pair (¢,6) is called an adjunction (7] (or a morphological duality [16]) if
§(X)CY <= XCe(Y) for all X,YCS. Given a dilation 6, there is a unique erosion ¢ such that (g,8) is
adjunction, and vice-versa. The following summarizes some useful facts aboot adjunctions:

ProposiTION 2 . (Serra [16], Heijmans & Ronse (7]) Let (¢,6) be an adjunction. Then:
(i) 8 is a dilation and ¢ is an erosion. (ii) 626 = 6 and ebe = ¢. (111) €6 Did and 6eC id.
(iv) If (¢;,6;), j € J, are adjunctions, then (N; €5-U; 65) is an adjunction.

(v) If o is an automorphism, then (a,a™1) is an adjunction.

2.2 Group Action Morphology

We unify and extend the translational and polar morphology by using action of groups on the set P(S).
Let (G, *) be a group with group operation x, identity element e, and the inverse of any g € G denoted as

gL

DEFINITION 2 . An action of the group G on the set P(S) is defined as any mapping A : P(S)xG — P(S)
such that, if we write A,(X) for A(X, g),

AL Ap(Ag(X)) = Apug(X), forall g,h € G and all XC §.

A2. A (X)=X,forall XCS.

Thus given an action A, each group element g € G induces an image set transformation A, P(S) —
P(S), and thus each A, is an operator in . The following can easily be shown about A:

ProPosITION 3 . (i) The operator Ay is a bijection for allg € G.
(11) Ay is an automorphism if and only if it is a dilation or an erosion.
(i) Ay is an automorphism if and only if (Ag, Ay-1) is an adjunction.

Theset G = {A;: g€ G}isa group under composition ARA, = Ahpeg. It is a group of bijections on
P(S). The identity of the group is A, = id and the inverse of Agis (Ay)! = Ag-r. If G is commutative,
then G is a commutative group too. Further, if we define the mapping Z: G — G by =(g) = Ag, then = is
a group homomorphism. The kernel of = is Ker(Z2)={g€ G:A, =id}. Asis well known, the group G is
isomorphic to the quotient group G/Ker(Z). If Ker(Z) = {e}, then Z is a bijection, G is isomorphic to G
and the action A is called faithful.

Based on the group action, we define two set operations @4 : P(§) x P(G) — P(S) (called the group-
action Minkowski set addition) and S, : P(S) > P(G) — P(S) (called the group-action Minkowsk: set
subtraction) as

X&aB=|JAyX) , X6aB= () A&,-1(X). (10)
g9€B g€B

BC G is a set of group elements and plays the role of a “structuring element”.

EXAMPLE 1 . Let § = G = R® and let ‘4’ be the vector addition. By defining the action as the translation
Ay(X)= X +gof XCR? by g € R?, we obtain the classical translational morphology because the g, and
©a operations become identical to the translational dilation and erosion. Note that this action is faithful,
and G' is isomorphic to the translation group on R?.
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EXAMPLE 2 . Let § = R?\ 0 and let (G,x) = (S,+p) be the “polar group” of Section 1. Let us define
the group action by A, o)(X) = X +p(p,¢) = {(rp,0+¢): (r,0) € X}, XC S, which rotates X by 6 and
uniformly scales it by 7 > 0. Then the &4 and 64 operations become identical to the polar dilation and
erosion of Section 1.

Thus, both the translational and polar dilation/erosion result as special cases of the @5 and 64
operations by certain choices of the group G and the action A. The above very general approach, which
we call “group-action morphology”, achieves the desired unification, but without any further constraints
it lacks sufficient structure to endow the resulting operations with useful properties. Hence, we next
provide some constraints on A that are sufficient to enrich the ®a and ©4 operations with invariance and
distributivity properties. A sufficient such constraint will be for A, to be an automorphism so that it is
both a dilation (i.e., preserves unions) and an erosion (i.e., preserves intersections).

THEOREM 1 . Let BC G and define the operators 6g, €g, ag, ¢ € O by

6p(X)=X@aB , eB(X)=X6aB, (11)
ag = épep , ¢ = €pdp. (12)

If the group action operator Ay is an automorphism for all b € B, then:
(1) ép is a dilation (ii) eg is an erosion. (iii) (¢p,d8B) is an adjunction.
(iv) ap is an opening and ¢g is a closing.

Proof: (i) If Ay is an automorphism, then it is a dilation and an erosion and hence distributes over U and
N. Then for any set collection {X;:j € J}

se(lJ X5 = U AU X5) = U U aux;) = U auX;) = a(X)).

JjeJ beB JjeJ beB jeJ JEJbeB Jjed

(ii) Similarly for ep by replacing U with N. (iii) results from Propositions 2(iv) and 3(iii).
(iv) ap and ¢p are increasing because they are the composition of two increasing operators. Since (¢g,é85)
is an adjunction, by Proposition 2 ap is anti-extensive and agag = (6gegbp)ep = dpeg = ag. Thus ap
is idempotent. Hence apg is an opening. Similarly, ¢p is a closing. O

In translational and polar morphology we have the serial laws: (X@A4)®B = X@(A®B)and (X0A)aB =
X©(A@B). Similar properties can be shown in group-action morphology:

PROPOSITION 4 . Let A, BCG and define AxB = {axb:a€ A, be B}. If A, is an automorphism for
allg € AU B, then

(X@AA)EBAB = .X'EBA(B*A) and (‘X@AA)@AB = XSa(A *B). (13)

In group-action morphology, the equivalent of “translation-invariance” for an image transformation ¥
is formulated as follows: Consider some HC G and define its corresponding HC G by H = {A,: g€ H}.
Then ¥ is called H-invariant provided that

U(A,(X)) = A,[¥(X)] , Vg€ H, VXCS.

The set of all g € G for which YA, = A,V is a subgroup of G. Therefore, when we talk about H-invariance
of an operator ¥, we will always assume that H is a subgroup of G and thus H is a subgroup of G. If
the mapping € = Z|y : g — Ay is defined on a subgroup H, then it is a group homomorphism between H
and H; further, if Ker(€) = {e}, then £ is a bijection and H becomes isomorphic to H. We shall call ¥
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G-invariant if H = G. For any subgroup HC G, the set of H-invariant operators is closed under composition
and contains id.

To see when the @4 and 64 operations are H-invariant we need the following definitions: The central-
izer of an element g € G is the subgroup C(g) = {a € G:gxa=axg}. The centralizer of a subgroup H
of G is the subgroup

C(H)= ﬂ Clg)={a€G:gxa=axgVge H}
g€EH
If H=G, C(G) is a normal subgroup of G and is called the center of G. Obviously, if G is commutative,
then C(G) = G.

THEOREM 2 . Let H be a subroup of G and H = {Ag : g € H} a subgroup of G = {A, : g € G}. If
BC HNC(H) and H is a group of automorphisms, then the group-action dilation ép, the erosion €g, the
opening ap, and the closing ¢p are all H-invariant operators.

Proof: Since BC H, it follows from Theorem 1 that 65, €B, ap, and ¢p are, respectively, a dilation, erosion,
opening and closing. Since also BC C(H ) and Ag, g € H,is an automorphism, ép is H-invariant because
forallge H

0(Ay(X)) = U Ab[Ag(X)] = U Apeg(X) = U Ageb(X)
beB be B beB
= U AgAs(X)] = Ayl As(X)] = Ay(65(X)).
beB beB

Similarly for ep by replacing U with N and A, with Ap-1. The H-invariance of ag and ¢g follows from
the closure of H-invariant operators under composition. O

Next we provide a sufficient condition under which the group action becomes an automorphism, a
property quite important for all the previous results. This condition requires that A be constructed from
point mappings. We show this first for an arbitary operator V¥:

PROPOSITION 5 . Let ¥ : P(S) — P(S). Then ¥ is an automorphism on P(S) if and only if there ezists
a bijective point mapping 0 : S — S such that

Y(X)={o(z):z€ X}, XCS. (14)

Proof: Let ¥ € O be constructed from (14) with o being a bijection. Since o(r) € ¥(X) < r € X, it
follows that ¥(X) = ¥(Y) < X = Y. Hence ¥ is a bijection. Further, from (14) and the definition of
U it follows that ¥ distributes over union and hence is a dilation. Since V¥ s a bijection and a dilation,
by Proposition 1 it is an automorphism. Conversely, let ¥ be an automorphism. Since P(S) is an atomic
lattice with a lowest element (), each automorphism maps an atom of P(S5) (i.e., each singleton {z},
z € 5) to another atom (see [6, p.21]). Thus, if z € S, VY({z}) = {y} for some y € S. This action of ¥
on the singleton sets induces a function o : § — § defined by o(z) =y <= ¥({z}) = {y}. Since ¥ is a
bijection, it follows that 04 is a bijection on §. @

In a group action the only inherent property of the operators A, that is related to the structure of
automorphisms is the fact that A, are bijections. By Proposition 5, Ay is an automorphism, if and only
if it can be constructed from a point mapping, i.e., if there exists 0g 15 — § such that A (X) = {g,(z):
re X} XCS.

In Heijmans’ [6] generalization of morphology commutative group structures G of R? are first considered;
such examples are the translation and the polar group [14]. These give rise to commutative groups of lattice
automorphisms (i.e., bijective set operators that distribute over U and N). Then dilation-type and erosion-
type operations are defined as union and intersection, respectively, of a collection of automorphisms. Also
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in Heijmans & Ronse [7], although arbitrary automorphisms are briefly considered, the majority of results
requires a group of commutative automorphisms. Group-action morphology is different from Heijmans’,
Roerdink’s and Ronse’s generalizations of translational morphology from two viewpoints: 1) In its most
general form, group-action morphological operations are formed from union, intersection, or composition of
less restricted and hence more general set operators; i.e., the group-action operators A, are bijections but do
not have to be automorphisms. 2) To endow the group-action morphology with some useful properties, we
had to constrain. A, to be automorphisms, but even then they do not have to be commutative. For example,
in the next section we provide a useful special case of group-action morphology where the underlying group
of automorphisms is not commutative.

3 Affine Morphology

As a useful special case we introduce the affine morphology, which is defined from the general framework
of group-action morphology by using § = R? and as group G the set

G ={(M,t): M € R¥? det(M) # 0,t € R?} (15)

equipped with the binary operation (L,v) (M,t) = (LM, Lt + v). It can be easily shown that (G, ) is
a non-commutative group. The group identity is (7,0), where T is the identity matrix. The inverse of the
element (M,t)is (M,t)~1 = (M1, ~M~'t) where M~ denotes matrix inverse. Toward defining an action
of the group (G, %) on planar images X C R?, consider the affine set mappings

Amyo(X)={Mz+t:ze X}, XCR™ (16)
Let (M.t),(L,v) € G. Then
A dmy(X) ={LMz+ Lt+v:z € X} = Aparpipn(X) = A(Lwyxa)(X)

Also A(10)(X) = X. Hence, A is a group action. Then G = {Aary) 1 (M,t) € G} becomes the affine
group A(2) of all invertible affine transformations of planar sets under composition. The 2 x 2 real matrix
M performs rotation and scaling of the image X, while the vector ¢ performs translation. Since (1,0) is
the only element in G that makes A(m,e) the identity map, the action is faithful and the affine group .A(2)
is isomorphic to the group G.

For the affine, translational and polar morphology, note that all three correspond to group action
operators A(ay;) constructible from bijective point mappings

_la b T b}, 2 -
U(M‘t)(l)_[c d][12}+[t2:‘_A1z+t’zeR’ (17)
where z = (z1,22) and ¢ = (t;,1;) are viewed both as points in the plane R? with Cartesian coordinates
and also as 2-dim real column vectors. The matrix M can always be written as

Mol b | ricos#; —rysiné, . a,be,deR (18)
"l e d| | rising Ty cos b, r1,72 20, 6,,6; € [0,27)

where (71,6;) are the polar coordinates of the point (a, c¢) and (72,62 + 7 /2) are the polar cordinates of the
point (b,d).

By constraining M or t in the general affine image transformation, several known classes of image
transformations and can be derived, whose corresponding groups M are subgroups of G = A(2). (We use
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the notation of Section 2.) If M = I, then Aar,y(X) becomes a translation 7(X) = X +t of the set X
along the vector t. The set H = {rn:te Rz} under composition 7,7, = 7,4, becomes a commutative
subgroup of .A(2), called the translation group 7(2). Translational morphology is created by the action of
7(2) on P(R?).

In general, det(M) = rirycos(8; — 6,). If M is orthonormal, i.e., if MMT = I where ()T denotes
transpose, then it follows that r; = r, = 1 and |det(M)| = 1. Let i = 0 and let M be orthonormal. Then,
ifdet(M) =1 (< 6, =6, =9), A(n,t) becomes a counterclockwise rotation about the origin by an angle
0, denoted as

J :(.’171,132)€X} (19)

No(X) = {[ cos @ —sinH} [11

sin § cos 8 z,

whereas, if det(M) = -1 (<= 6, =0 and 6, = 6 + 7), then A(a,) becomes a reflection about an axis.
Thus both the rotation and the reflection can be represented by orthonormal (linear) transformations and
are elements of the orthogonal group in two dimensions. The set of rotations is the special orthogonal group
SO(2). If ry = 73 = 1, then A is an isometry, i.e., a composition of an orthonormal transformation and a
translation. The set of isometries is a group under composition, the Euclidean group £(2) of planar rigid
motions.

ft=0,r =7r,=r,and 6; = 6, = 0, then A becomes a homothety pu,(X) = {rz : z € X}.
The homothety performs a uniform contraction of X if »r < 1 or a uniform expansion if r > 1. The set
{#r : 7 > 0} under composition p,piy = pi,, becomes a commutative subgroup of .4(2), called the uniform
scaling group US(2). Let V(r8) = HrAg = Agptr be a composition of a homothety and rotation. The set
H= {1/(,,9) :7 > 0,0 € [0,27)} under composition Y(r,6)Y(p.6) = V(rp,6+¢) DECOMES @ commutative subgroup
of A(2), isomorphic to the external direct product group SO(2) x US(2), and also isomorphic to the polar
group of section 1. Polar morphology is created by the action of this H on P(Rz).

By using as group of image transformations the general affine group A(2) or any of its subgroups above,
we define the affine dilation of X by BC G as

X®aB= |J AmoX)= |J {Mz+t:zeX}=6bg(X). (20)
(M,t)eB (M.t)eB
The affine erosion of X by B is defined as
X664 B= ﬂ Anpry-1(X) = ﬂ {M‘lx—M‘lt:xeX}:5B(X). (21)
(M t)eB (M,t)eB

Similarly, we define the affine opening 04 and affine closing @ 4 of X by BC G as
XOuB =(X04B)®aB =0ap(X) , X0 B =(X¢4B)54B = éB(X). (22)

Note that the “structuring element” B is a collection of parameter pairs (M, t).

Obviously, translational and polar morphology are special cases of affine morphology. Three major
differences between affine vs. translational and polar morphology are: 1) The acting group in affine
morphology is not commutative, whereas the corresponding groups for translational and polar morphology
are commutative. 2) The group action operator for affine morphology is not built from binary operations
between planar points, as is the case for both the translational and polar morphology. 3) In translational
and polar morphology the structuring element B is a subset of R? and hence is a shape by itself; in contrast,
the structuring element in affine morphology is a collection of parameters.

A common property shared by affine, translational and polar morphology is that in all three cases, due
to Proposition 5, the operators A(M\',) are automorphisms. Hence, based on Theorem 1, the affine dilation
and erosion are increasing operators that distribute over U and N, respectively. The affine opening (resp.
closing) is increasing, anti-extensive (resp. extensive) and idempotent.
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One potential application of affine morphology is the modeling of shape deformations that result in
visual motion analysis when the 3-dim motion of a rigid object is projected on a 2-dim image plane. For
example, in 3-dim coordinates (z,y, ), let the camera axis be along the z-axis and the image plane parallel
to the (z,y)-plane. Then, if the 3-dim rigid object has X as its 2-dim projection (i.e., silhouette) on the
image plane and its motion is a composition of a translation and a rotation both parallel to the image
plane, then X undergoes a 2-dim isometry. A 3-dim translation along the z-axis corresponds to a uniform
scaling (horiothety) of X. Arbitrary 3-dim translations combined with a rotation around the z-axis incur
a composition of isometry and scaling of X. Thus, many types of 3-dim rigid motion incur an affine
transformation of the projected 2-dim silhouette. A parallel superposition of transformed silhouettes is
also possible either when there are multiple objects projected on the plane or when there are multiple
projections of the same object from different light sources. We can model such superpositions by using the
affine dilation and erosion, or their combinations.

Another potential application is modeling of fractals. Specifically, let {w, : n = 1,2, ... N} be a finite
set of contractive affine transformations; i.e., for some distance metric d in R? there exists 0 < s < 1 such
that d(wn(z), wa(y)) < s-d(z,y) for all n. Then, on the space K(R?) of non-empty compact subsets of

R?, the image transformation
N

W(X) = | wa(X) (23)
n=1

Is a contraction with respect to the Hausdorff metric (10, 3]. Hence, by the contraction mapping theorem,
there exists a unique fixed point F of W in K(Rz), which can be obtained from iterations. That is,
F = lim_o W°*(S), where Wek(S) is the k-fold self-composition of W and S is an arbitrary starting set
in K(Rz). {R%: wy;n = 1,2,...,N}is called in (3] an iterated function system, and F is called its attractor.
In many cases F'is a fractal image and can model shapes or textures occuring in natural scenes (3]. In the
context of affine morphology, the mapping W is an affine dilation and F is the limit of this dilation when
iterated. Thus, while in translational and polar morphology iterated dilations usually yield uninteresting
results, iteration of affine dilations yields attractors that may have a remarkable degree of structure.

4 Affine Models for Signal Processing

In this section we extend the affine transformations to gray-level images and other signals, and we address
the problem of modeling a signal by a superposition of affine signal transformations. Let f : R? — R.
d = 1,2, be a real-valued d-dim signal and consider the affine signal transformation

(f)z)=rf(Mz +1)+c (24)

where M € Rd’(d, t € R%, and r,c € R. (Note: If d = 2, M is a 2 x 2 matrix and ¢ is a vector. If d = 1, M
and t are real numbers.) This corresponds to a 1-dim affine transformation of the amplitude range of the
signal y = f(z),i.e., y+— ry+c, and to a d-dim affine transformation of its domain, i.e., z — Mz +t. If
G(f)={(z,f(z)):z € Rd} is the graph of f, then (24) is related to a (d + 1)-dim affine set transformation

of G(f) that maps vertical lines into vertical lines. We create composite affine transformations
V() 2) = V{®n(z) = raf(Maz + tn) 4 cpin = 1,2,..,N}) (25)

of the signal f by superimposing several affine transformations ®,, of f, defined by the indexed parameter
tuples (M,,t,,m,,c,). The superposition is done via the value mapping V' : P(R) — R. If V() is sup()
or inf(), then we obtain, respectively, an affine “dilation” or “erosion” of f. These terms become familiar
from the following two examples. Let M, = [ if d = 2 or M, =1ifd=1, and let r, = 1. Then, if
V() = sup(), ¥(f) becomes the gray-level morphological dilation [17] of f by the structuring function A
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where h(—1,) = ¢, and h(z) = —oo elsewhere. If V() = inf(), then ¥(f) is the morphological erosion of f
by h where h(1,) = —¢,, and ~o0 elsewhere. However, in modeling signals with such a general superposition
of affine transformations, if our goal is to estimate the model parameters, we need to sacrifice the generality
and use a mathematically tractable superposition. Thus we focus only on the case where V()= Z,}:;l and
N is finite. Then we have

N
Y(f)(z)=c+ Z rnf(Mnz + t,) (26)

n=1
where ¢ = 3" ¢,. We call this ¥ the sum-affine signal operator. V¥ is defined via the tuple P =
(M, ..., Mn,ty, . N, Ty, ..»TN,¢) that contains N(d*+d + 1) + 1 real parameters. If ¢ = 0 and M, =1,
then ¥(f) becomes the classical linear shift-invariant convolution of f with (the weighted impulse sum)
h(z) = SN r.b(a + tn). If ¢ = 0 and M, # I, then ¥ is a linear but shift-varying signal operator. If
¢ # 0, ¥ becomes nonlinear.

Now we formulate the problem of approrimately modeling a signal f over a compact region K of R? as
the output of a sum-affine operator ¥ when the input is a signal A. We assume that f and h are known
signals and follow a least squared error approach; i.e., we find the parameter tuple P that minimizes the
error

E(P) = /Kez(.r)dx = /K[\Il(h)(:c)— f(@)2dz = E(M,, 1,70, c). (27)

If h is an input signal, then this is a system identification problem where an output signal f is modeled
as a sum of affine amplitude-transformed and domain-transformed versions of the input h. Alternatively,
this may be a signal modeling problem, where A # f and h is some basis function, or some wavelet, or the
impulse response of some system. If f = h, then our system ¥ becomes a self-affine model of f and has
applications in modeling fractals as explained later. In general, minimizing E is a nonlinear minimization
problem. However, it is linear with respect to the amplitude-scaling parameters ry,¢. Thus,

N
%Z*f = 2 ra(n,i)+ cp(i) = 9(0,4), i=1,2,. N (28)
3 n=1
1 OE Y
5 ae = n}; Tnd(n) + C/}l‘ ldz - /1\ f(z)dz (29)

where, if we use the notation gn(z) = h(Myz + 1),

o = [ one)dz | (i) = [ gul@a()dz , w0, = [ f@)2)aa. (30)
Setting 9E/dr; = 0 and 8E /e = 0 yields the set of N + 1 linear equations

SN mat(n, i) + ed(d) w(0,i), i=1,2,.,N
Cacimd(n) +efilds = [y f(z)da

in the N + 1 unknowns r,, . By fixing M,, t,, we can solve these linear equations and obtain the optimal
Ty ¢*, which are functions of M, t,.. Replacing then these optimal values back in E yields the new error

(31)

E™(My, ty)

Il

E(My,t,, 5, c*)

) N
/I\" fé(z)dz - ,; . /k f(z)h(Mrz + t,)dz — ¢ /I\’ f(z)dz. (32)

Algorithm A: One approach to find the optimal MY t* is to assume that they have a finite and quantized

n*'n
range and perform an exhaustive search in this finjte parameter space (My,t,) of N(d? + d) dimensions.
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For example, if the domain of h contains the origin, then it is natural to constrain the translations tn
to be in the region K. The algorithm proceeds as follows: 1) For each allowed value (My,t,) the signal
correlations ¢(n,7) and averages ¢(n) are computed. 2) The set of linear equations (31) is solved to find
the corresponding r},¢*. (If N is relatively small, then the closed-formula, expressions that give rX, c* as
functions of M,,t, are simple and can be used directly.) 3) E* is computed. Steps 1,2,3 are repeated
throughout the entire parameter space and thus we find the optimal M}, t* that minimize E*.

If the signals f,h have discrete argument z € Z°, then the integration f;. becomes a summation over
K in all the above formulas. Further, it is natural then to constrain all translations t, to have integer
values and be in K. However, the real parameters M, (which contain information about domain-rotation
and -scaling if d = 2 or about domain-scaling if d = 1) will be truncated during the computations since
Mz + t must always be integer.

A very special case of the sum-affine model ¥ and the previous model estimation approach has been
used in [2] for multi-pulse linear predictive coding of speech (d = 1), where a short-time speech segment f
is modeled by ¥(h) withec =0, M, = 1 (i.e., no domain scaling; only translation), and h being the impulse
response of the linear prediction synthesis filter.

Algorithm B: An alternative approach to find the optimal parameter tuple P that minimizes E is
to follow a traditional steepest descent approach. For simplicity, we describe this only for 1-dim signals
(d = 1) where all M,,t,,r,,c are real numbers and thus P is a real (column) vector. That is, choose a
starting value Py for the parameter vector, and let P, be its update at the k-th iteration step where

Piy1 = Po— MVE(P), k=1,2,3,.. (33)

and Ay is a positive step size controlling the speed of convergence. The gradient of E is the (column) vector
VE(P) = (..,3% 8E ., 8E 3?), where

e By 0 B
1 9F al

5 oM " ri - /1\ h'(M;z + t;) ng:l rah(Mpz +t,) + ¢ - f(z)] dz (34)
1 9E N

5 o = r,--A_ K (Miz + t;) L}; rnh(an+tn)+c—f(z)] dz (35)

where h'(z) = dh(z)/dz. If, for each k, \; is selected as the optimal solution to minimizing E(P; —
AV E(Py)) subject to A > 0, then limg_ e Pr = P. where P. is a stationary point, i.e., VE(P.) = 0. Let us
make the second-order approximation

E(P)~ E(Po) + [VE(PT(P = B+ 3(P - PYTH(P - Py) (36)

where H is the Hessian matrix [02E/(")p,~8p]-] evaluated at P = P, and p;, i = 1,2,..,3N + 1 are compo-
nents of P. Then, by using Py from (33) in (36), it follows that E(Ps4;) is mimimized by the choice
Ak = ||[VE|[?/VETHVE. In the extensive literature on optimization techniques, many other choises of A,
or improvements of the steepest descent method can be found. The solutions P, toward which these itera-
tive optimization techniques converge could be a local or global minimum of E, but it could also be just a
stationary point. However, in practice the usefulness of these solutions can only be evaluated empirically
by performing experiments to see whether the solutions provided by such gradient descent methods are
meaningful for the specific application.

APPLICATIONS:

L If N =1, then ¥ is a single affine transformation, and the algorithms A and B above provide least
squares solutions in finding the parameters of ¥. This has obvious applications in computer vision for
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motion detection since the M, parameters provide information about the rotation/scaling and translation
of an image object; in addition, the parameters r, ¢ provide information about amplitude changes in the
image brightness. Recovering the M, t parameters has also applications in recognizing deformed objects.

ILITN >1, f=h,and fis a binary image, then by setting ¢ = 0 and r, = 1, ¥(f) becomes a sum
of affine transformations of the binary image signal f. If ¥ were a unjon instead of a sum, this would be
equivalent to an affine dilation of f. In addition, if all (M,,,t,) were contractive mappings, ¥(f) would be
what Barnsley (3] calls a “collage” of f made out of several patches, where each patch is a shrunk, rotated
and translated version of f. Barnsley’s collage theorem states that, the iterated mapping W in (23) with
contraction factor 0 < s < 1 converges to an attractor whose Hausdorff distance from a binary image
X is no greater than the distance between X and W(X) divided by 1 — s. There has been considerable
interest in finding the parameters of such a self-affine model of f. The approach followed in [3] is based
on the Hausdorff metric, whose minimization with respect to the affine parameters is hard to analytically
track using differential calculus. In this section, by replacing the union with a sum and the Hausdorff with
the least squares metric, we provided two tractable algorithms to find the parameters of these self-affine
models. Since these algorithms do not require f to be binary, another advantage of our approach is the fact
that it easily extends to gray-level images simply by replacing the binary f with a gray-level image and
by allowing the amplitude-scaling parameters r,, ¢ to vary freely. As such it can be applied to modeling
fractal image textures by viewing them as the attractor of an iterated sum-affine model V.

1. We also see some potential in applying the above sum-affine model to speech signals. One application
results when f # h and h is the impulse response of some speech synthesis system related to speech
production. Then the given speech signal f could be modeled as a sum of affine domain-transformed and
amplitude-scaled versions of h. This model generalizes the multipulse linear prediction scheme [2] because
the latter involves only translations of the domain of A instead of general affine transformations. Another
speech application arises when f = h; then ¥(f) becomes a self-affine model of f- Such a model could
reflect the existence of self-similar structures in a short-time speech segment f: i.e., the possible fact that
f, over a short time interval (in the order of one or a few pitch periods), is approximately a sum of affine-
transformed versions of itself. Thus, given f, we can first approximate it by W(f) where the parameters
of the sum-affine model ¥ are found via the previous least squares approaches. If these parameters are
constrained so that ¥ is a contraction mapping,! then they are by themselves sufficient to approximately
represent (i.e., synthesize) f by iteratively generating the attractor of ¥. The maximum approximation
error between f and the attractor of ¥ is determined by the modeling error between f and ¥(f), as is well
known from the extensive literature on contraction mappings.

We are currently in the process of experimentally investigating the usefulness of these sum-affine models
for speech and image processing.
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