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Abstract. This paper begins with analyzing the theoretical connections between levelings on lattices and scale-
space erosions on reference semilattices. They both represent large classes of self-dual morphological operators that
exhibit both local computation and global constraints. Such operators are useful in numerous image analysis and
vision tasks including edge-preserving multiscale smoothing, image simplification, feature and object detection,
segmentation, shape and motion analysis. Previous definitions and constructions of levelings were either discrete
or continuous using a PDE. We bridge this gap by introducing generalized levelings based on triphase operators
that switch among three phases, one of which is a global constraint. The triphase operators include as special cases
useful classes of semilattice erosions. Algebraically, levelings are created as limits of iterated or multiscale triphase
operators. The subclass of multiscale geodesic triphase operators obeys a semigroup, which we exploit to find
PDEs that can generate geodesic levelings and continuous-scale semilattice erosions. We discuss theoretical aspects
of these PDEs, propose discrete algorithms for their numerical solution which converge as iterations of triphase
operators, and provide insights via image experiments.
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1. Introduction

Nonlinear scale-space approaches that are based on
morphological operators are useful for edge-preserving
multiscale smoothing, image simplification, geometric
feature detection, segmentation, shape, texture and mo-
tion analysis, and object recognition. The theory and
implementations behind the standard multiscale mor-
phological filters evolved first (Matheron, 1975; Serra,
1982; Maragos, 1989) from a geometric viewpoint that
focused on shape-size analysis and a simple algebraic
viewpoint that was based on set theory and min-max
filtering. During the last decade both the algebraic and
geometric aspects of morphology were generalized and
improved, by extending its algebra using the theory of
complete lattices (Serra, 1988; Heijmans, 1994) and
by modeling the dynamics and geometry of multiscale

morphology using partial differential equations (PDEs)
and curve evolution (Alvarez et al., 1993; Brockett
and Maragos, 1994; Sapiro et al., 1993). Openings and
closings are the basic morphological smoothing filters.
The simplest openings/closings, which are composi-
tions of Minkowski flat erosions and dilations, pre-
serve well the edges of the remaining image signal
parts but may blur the boundaries of their supports
at places where the structuring element cannot fit. A
much more powerful class of filters are the reconstruc-
tion openings and closings which, starting from a ref-
erence image consisting of several parts and a marker
(initial seed) inside some of these parts, can reconstruct
whole objects with exact preservation of their bound-
aries and edges (Vincent, 1993; Salembier and Serra,
1995). In this reconstruction process they simplify
the original image by completely eliminating smaller
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objects inside which the marker cannot fit. The ref-
erence image plays the role of a global constraint.
One disadvantage of both the simple as well as the
reconstruction openings/closings is that they are not
self-dual and hence they treat asymmetrically the im-
age foreground vs. background or the bright vs. dark
objects. A recent solution to this asymmetry problem
came from the development of a more general pow-
erful class of self-dual morphological filters, the lev-
elings introduced by Meyer (1998) and further stud-
ied in Matheron (1997) and Serra (2000), which in-
clude as special cases the reconstruction openings
and closings. The levelings possess many useful al-
gebraic scale-space properties, as explored in Meyer
and Maragos (2000), which are best studied in a lat-
tice framework. Further, they can be generated by the
following nonlinear PDE1 introduced in Maragos and
Meyer (1999):

∂u(x, y, t)/∂t = −sign(u − r )‖∇u‖
(1)u(x, y, 0) = f (x, y)

where u(x, y, t) is the scale-space function, r (x, y)
is the reference image and f (x, y) is a marker. At
scale-space points where u > r (resp., u < r ), the above
PDE generates multiscale erosions (resp., dilations)
by disks. The leveling of r w.r.t. f is produced when
t → ∞. In Maragos and Meyer (1999) and Meyer and
Maragos (2000) it was explained that, if f ≤ r (resp.,
f ≥ r ), the leveling is a reconstruction opening (resp.,
closing). Examples are shown in Fig. 1.

One way to construct multiscale levelings is to
use a sequence of multiscale markers obtained from

Figure 1. Evolutions of 1D leveling PDE ut = −sign(u − r ) |ux | for 3 different markers u(x, 0) = f (x). Each figure shows the reference
signal r (dash line), the marker f (thin solid line), its evolutions u(x, t) (thin dashdot line) at t = n25�t , n = 1, 2, . . ., and the leveling u(x, ∞)
(thick solid line). The 3 markers f were: (a) Arbitrary. (b) An erosion of r minus a constant; hence, the leveling is a reconstruction opening.
(c) A dilation of r plus a constant; hence the leveling is a reconstruction closing. (�x = 0.001, �t = 0.0005).

sampling a Gaussian scale-space. As shown in Fig. 2,
the image edges and boundaries which have been
blurred and shifted by the Gaussian scale-space are bet-
ter preserved across scales by the multiscale levelings.

A relatively new algebraic approach to self-dual
morphology was developed by Keshet (2000) and
Heijmans and Keshet (2000, 2001) based not on com-
plete lattices but on inf-semillatices. Specifically, by
using self-dual partial orderings the image space be-
comes an inf-semilattice on which self-dual erosion
operators can be defined that have many interest-
ing properties and promising applications in nonlinear
image analysis.

In this paper we develop theoretical connections be-
tween levelings on lattices and erosions on semilat-
tices, both from an algebraic and a PDE viewpoint.
We begin in Section 2 with a brief background dis-
cussion on multiscale operators defined on complete
lattices and inf-semilattices. In Section 3 we intro-
duce and analyze algebraically multiscale triphase op-
erators (which switch among 3 different states, one
state being a global constraint) whose special cases
are reference semilattice erosions and whose limits are
levelings. The semigroup of geodesic triphase opera-
tors is discovered. Afterwards, in Section 4 we model
both geodesic levelings and semilattice erosions us-
ing PDEs. The main ingredient here is the leveling
PDE which we prove it can generate both the multi-
scale geodesic operators and (after some modification)
the translation-invariant semilattice self-dual erosions.
Section 5 extends the PDE ideas to 2D images signals.
In both Sections 4 and 5 we propose discrete numerical
algorithms for solving the PDEs and prove their conver-
gence using triphase operators. Concluding comments,
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Figure 2. Multiscale image levelings. The markers were obtained by convolving the reference image with 2D Gaussians of standard deviations
σ1 = 4, σ2 = 8, σ3 = 16. At each scale σi as reference was used the leveling of the previous scale σi−1.

insights via experiments, and comparisons are given
in Section 6.

2. Multiscale Image Operators on Lattices

A poset is any set equipped with a partial ordering ≤.
The supremum (

∨
) and infimum (

∧
) of any subset

of a poset is its lowest upper bound and greatest lower
bound, respectively; both are unique if they exist. A
poset is called a (sup-) inf-semillattice if the (supre-
mum) infimum of any finite collection of its elements
exists. A (sup-) inf-semilattice is called complete
if the (supremum) infimum of arbitrary collections
of its elements exist. A poset is called a (complete)
lattice if it is simultaneously a (complete) sup- and an
inf-semilattice. An operator ψ on a complete lattice
is called: increasing if it preserves the partial ordering
[ f ≤ g =⇒ ψ( f ) ≤ ψ(g)]; idempotent if ψ2 = ψ ;
antiextensive (resp., extensive) if ψ( f ) ≤ f (resp.,
f ≤ ψ( f )). An operator ε (resp., δ) on a complete
inf-semilattice (resp., sup-semilattice) is called an ero-
sion (resp., dilation) if it distributes over the infimum

(resp., supremum) of any collection of lattice elements;
namely δ(

∨
i fi ) = ∨

i δ( fi ) and ε(
∧

i fi ) = ∧
i ε( fi ).

A lattice operator is called an opening (resp., closing)
if it is increasing, idempotent, and antiextensive (resp.,
extensive). A negation is a bijective operator ν �= id
such that both ν and ν−1 are either decreasing or
increasing and ν2 = id, where id is the identity. An
operator ψ is called self-dual if it commutes with a
negation ν.

In this paper, the image space is the collection of
signals defined on a continuous or discrete domain E

and assuming values in V, where E = R
m or Z

m , m =
1, 2, . . ., and V ⊆ R = R∪{−∞, +∞}. The value set
V is equipped with some partial ordering that makes it a
complete lattice or inf-semilattice. This lattice structure
is inherited by the image space by extending the partial
order of V to signals pointwise.

2.1. Multiscale Operators on Complete Lattices

Classical lattice-based morphology (Heijmans, 1994;
Serra, 1988) uses as image space the complete lattice
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L of signals f : E → V with values in V = R or Z. In
L the signal ordering is defined by f ≤ g ⇔ f (x) ≤
g(x), ∀x, and the signal infimum and supremum are
defined by (

∧
i fi )(x) = supi fi (x) and (

∨
i fi )(x) =

infi fi (x). Assume first E = R
m . Let B = {x : ‖x‖ ≤

1} denote the unit-radius ball in R
m w.r.t. the Euclidean

metric ‖ · ‖ and let t B = {tb : b ∈ B} be its version at
scale t ≥ 0. The simplest multiscale dilation/erosion on
L are the Minkowski flat dilation/erosion of an image
f by tB:

δt
B( f )(x) � ( f ⊕ tB)(x) =

∨
a∈tB

f (x − a)

(2)
εt

B( f )(x) � ( f � tB)(x) =
∧
a∈tB

f (x + a)

We shall also need the multiscale conditional dila-
tion and erosion of a marker (‘seed’) image f given a
reference (‘mask’) image r :

δtB( f | r ) � ( f ⊕ tB) ∧ r
(3)

εtB( f | r ) � ( f � tB) ∨ r

Iterating the unit-scale conditional dilation (erosion)
yields the conditional reconstruction opening (closing)
of r from f :

ρ−
B ( f | r ) � δ∞

B ( f | r ) =
∨
n≥1

δn
B( f | r )

(4)
ρ+

B ( f | r ) � ε∞
B ( f | r ) =

∧
n≥1

εn
B( f | r )

where, for any operator ψ and any positive integer n,
ψn denotes the n-fold composition of ψ with itself and
ψ∞ = limn→∞ ψn if the limit2 exists.

Another important pair is the geodesic dilation and
erosion. First we define them for sets X ⊆ E. Let
R ⊆ E be a reference (mask) set and consider its
geodesic metric dR(x, y) equal to the length of the
geodesic path connecting the points x and y inside
R. If BR(x, t) = {p ∈ R : dR(x, p) ≤ t} is the
geodesic closed ball with center x and radius t ≥ 0,
then the multiscale geodesic set dilation of X given R is
defined by

�t (X | R) � {p ∈ R : BR(p, t) ∩ X �= ∅} (5)

By using threshold decomposition and synthesis of an
image f from its upper level sets Xh( f ) � {x ∈

E : f (x) ≥ h} we can synthesize a flat geodesic
dilation for images by using as generator its set coun-
terpart. Then, a possible definition of geodesic ero-
sion is via negation. The resulting multiscale geodesic
dilation and erosion of f given a reference image r
are

δt ( f | r )(x) � sup{h ≤ r (x) : x ∈ �t (Xh( f ) | Xh(r ))}
εt ( f | r )(x) � −δt (− f | −r ) (6)

The multiscale geodesic dilation and erosion possess
a semigroup property:

δtδs = δt+s, εtεs = εt+s, ∀s, t ≥ 0 (7)

whereas their conditional counterparts do not:
δtB(δs B( f | r ) | r ) �= δ(t+s)B( f | r ). By letting t → ∞
the geodesic dilation (erosion) yields the geodesic
reconstruction opening ρ− (closing ρ+) of r
from f :

ρ−( f | r ) � δ∞( f | r ) =
∨
t≥0

δt ( f | r )

(8)
ρ+( f | r ) � ε∞( f | r ) =

∧
t≥0

εt ( f | r )

The above limit δ∞ (ε∞) can also be reached using
iterations δn (εn) for n → ∞ since, due to the semi-
group property, the geodesic dilation (erosion) at inte-
ger scales t = n can be obtained via n-fold iteration of
the unit-scale operator.

The definitions of multiscale operators remain valid
for signals defined on Z

m if we use integer scales t =
n, replace the Euclidean metric with a discrete metric
on Z

m and define the multiscale set nB as the n-fold
Minkowski sum of B with itself. Further, the geodesic
operators for sampled signals need a connectivity grid
on Z

m .

2.2. Image Operators on Reference Semilattices

In Keshet (2000), Heijmans and Keshet (2000, 2001) a
recent approach for a self-dual morphology was de-
veloped based on inf-semilattices. Now, the image
space is the collection of signals f : E → V, where
V = R or Z. The value set V becomes a complete
inf-semilattice (cisl) if we select an arbitrary refer-
ence element r ∈ V and use the following partial
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ordering:

a �r b ⇐⇒ r ∧ b ≤ r ∧ a and r ∨ b ≥ r ∨ a

(9)

The corresponding infimum in (V, �r ) is

�
i

ai �
(

r ∧
∨

i

ai

)
∨

∧
i

ai

=
(

r ∨
∧

i

ai

)
∧

∨
i

ai (10)

The ordering � coincides with the activity ordering
in Boolean lattices (Meyer and Serra, 1989; Heijmans,
1994).

Given a reference image r (x), a valid signal cisl or-
dering is f �r g defined as f (x) �r (x) g(x) ∀x . The
corresponding signal cisl infimum becomes

(�
i

fi

)
(x) �

[
r (x) ∧

∨
i

fi (x)

]
∨

∧
i

fi (x)

= med

[
r (x),

∨
i

fi (x),
∧

i

fi (x)

]
(11)

where med(·) denotes the median. Under the above
cisl infimum, the image space becomes a cisl denoted
henceforth by Fr . Varying the reference signal r yields
cisl’s that are all isomorphic to each other. Significant
in this paper is the cisl F0 with r (x) = 0. An iso-
morphism between F0 and an arbitrary cisl Fr is the
bijection ξ ( f ) = f + r . Thus, if ψ0 is an operator on
F0, then its corresponding operator on Fr is given by

ψr ( f ) = ξψ0ξ
−1( f ) = r + ψ0( f − r ) (12)

If ψ0 is an erosion on F0 that is translation-invariant
(TI) and self-dual, then ψr is also a self-dual TI ero-
sion on Fr . Note: the infimum, translation operator
and negation operator on F0 are different from those
on Fr . For example, if ν0( f ) = − f is the negation
on F0, then self-duality of ψ0 means ψ0ν0 = ν0ψ0,
whereas self-duality on Fr means ψrνr = νrψr where
νr ( f ) = 2r − f .

The simplest multiscale TI self-dual erosion on the
cisl F0 is the operator

ψ t
0( f )(x) =

[
0 ∧

∨
a∈t B

f (x − a)

]
∨

∧
a∈t B

f (x − a)

(13)

The corresponding multiscale TI self-dual erosion on
the cisl Fr is

ψ t
r ( f )(x)

= r (x) +
([

0 ∧
( ∨

a∈t B

f (x − a) − r (x − a)

)]

∨
( ∧

a∈t B

f (x − a) − r (x − a)

))
(14)

3. Multiscale Triphase Operators and Levelings

3.1. Triphase Operators

Consider operators in the complete lattice L. To define
levelings as in Meyer (1998) and Matheron (1997) and
to generalize them we shall begin by introducing the
concept of triphase operators.

Definition 1. Given two increasing operators αp and
βp on L such that αp is antiextensive and βp is
extensive, a parallel triphase operator λp is defined by

λp( f | r ; αp, βp) � αp( f ) ∨ (r ∧ βp( f ))

= βp( f ) ∧ (r ∨ αp( f )) (15)

where r is the reference signal and f is a marker signal.

The subscript p in the above operators denotes ‘par-
allel’. The prototypical example is when αp and βp are
a flat erosion εB and dilation δB , respectively. Then, λp

becomes a composition of a conditional erosion and a
conditional dilation. Hence, we may call a general par-
allel triphase ‘conditional’. In this paper we also define
a more general type of triphase operators as follows.

Definition 2. Given two operators αs and βs from L2

toL that are increasing w.r.t. both arguments and, ∀ f, r ,

f ∧ r ≤ βs( f | r ) ≤ r ≤ αs( f | r ) ≤ f ∨ r, (16)

two serial triphase operators λ1 and λ2 are defined by

λ1( f | r ; αs, βs) � αs( f | βs( f | r )),
(17)

λ2( f | r ; αs, βs) � βs( f | αs( f | r )).

The subscript s in the above operators refers to ‘se-
rial’. Any parallel triphase operator becomes a serial
one by setting αs( f | r ) = αp( f ) ∨ r and βs( f |
r ) = βp( f ) ∧ r . However, the converse is not always
true. Henceforth, we drop the subscripts s and p from
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α, β, λ and focus on the serial case since it is more gen-
eral. Thus, unless otherwise mentioned, by ‘triphase
operator’ we shall mean a serial one. The triphase op-
erators have four arguments: two signals f and r and
two operators α and β. The signal arguments ( f, r ) are
written as ( f | r ) to emphasize their asymmetric roles
(marker vs. reference) and to connect them later with
conditional operators that use the same notation. If the
operators α and β are known and fixed, we shall omit
them and write λ( f | r ). If the reference r is assumed,
we may write λ( f ), α( f ), β( f ); if f is also implied,
we may express the operator outputs simply as λ, α, β.

The inequality (16) and the assumption of being in-
creasing immediately imply the following properties
for the operators α, β.

Corollary 1.

(a) f ≤ r =⇒ α( f | r ) = r, and
f ≥ r =⇒ β( f | r ) = r .

(b) r ≤ α2( f ) ≤ α( f ) ≤ α( f ∨ r ) ≤ f ∨ r
(c) f ∧ r ≤ β( f ∧ r ) ≤ β( f ) ≤ β2( f ) ≤ r .

Lemma 1. Let λ1 = λ1( f | r ) and λ2 = λ2( f | r ) be
the two triphase operators of (17). Let α = α( f | r ),
β = β( f | r ). Then for all f, r :

(a) β = λ1 ∧ r ≤ λ1 ≤ λ1 ∨ r ≤ α.
(b) β ≤ λ2 ∧ r ≤ λ2 ≤ λ2 ∨ r = α.
(c) β ≤ λ1 ≤ λ2 ≤ α.

Proof: Lemma 1(a): From (16) it follows directly that
β ≤ λ1 ≤ α ≤ f ∨ β. Taking the max and min of all
terms in this inequality with r and using (16) yields
that β ≤ λ1 ∧ r ≤ ( f ∨ β) ∧ r = β and λ1 ∨ r ≤ α ∨
r = α. These two inequalities yield (a). The proof of
Lemma 1(b) is similar. Lemma 1(c): Apply (a) and (b)
at each point x . If f (x) ≥ r (x), then r (x) = β(x) ≤
λ1(x) ≤ λ2(x) = α(x) ≤ f (x). If f (x) ≤ r (x), then
f (x) ≤ β(x) = λ1(x) ≤ λ2(x) ≤ α(x) = r (x). Thus, in
both cases λ1 ≤ λ2. ✷

Assume now that the operators α and β commute
in the definition of the serial triphase (17), and hence
λ1 = λ2 = λ. Then, Lemma 1 and its proof directly
imply the following simplified properties for the single
common triphase λ.

Proposition 1. Assume that α( f | β( f | r ) = β( f |
α( f | r )) and let λ = λ( f | r ) be the common serial
triphase operator. Then for all f, r :

f ∧r ≤ β = λ∧r ≤ λ ≤ λ∨r = α ≤ f ∨r (18)

Thus, at each point x,

f (x) ≥ r (x) =⇒ r (x) = β(x) ≤ λ(x) = α(x) ≤ f (x)

f (x) ≤ r (x) =⇒ f (x) ≤ β(x) = λ(x) ≤ α(x) = r (x)

(19)

The case λ1 = λ2 is useful and necessary for many
of the subsequent results. Two sufficient conditions for
this are provided next.

Proposition 2. The operators α and β commute in
the Definition (17) of a serial triphase operator λ, and
hence λ( f | r ) = α( f | β( f | r )) = β( f | α( f | r )),
if any of the following two conditions holds:

(a) λ is a parallel triphase operator as in (15), i.e., if
α( f | r ) = αp( f ) ∨ r and β( f | r ) = βp( f ) ∧ r,
where αp, βp are increasing and αp( f ) ≤ f ≤
βp( f ).

(b) α( f | r ) = α( f ∨ r | r ) and β( f | r ) = β( f ∧ r |
r ) for all f, r .

Proof: Proposition 2(a): In the parallel case, α( f |
β( f | r )) = αp( f ) ∨ [βp( f ) ∧ r ] is equal to [αp( f ) ∨
βp( f )] ∧ [αp( f ) ∨ r ] which in turn equals
βp( f ) ∧ [αp( f ) ∨ r ] = β( f | α( f | r )). Proposi-
tion 2(b): Let λ( f | r ) = α( f | β( f | r )). Denote
S+ = {x : f (x) > r (x)} and S− = {x : f (x) < r (x)}.
Then, β(x) = β( f | r )(x) = r (x) for points x �∈ S−.
Further, since β( f ) = β( f ∧ r ), the value β(x) at any
point x ∈ S− is a β-dependent function of values f (p)
and r (p) only for points p inside S−. Now, by Lemma 1,
λ(x) = α( f | β)(x) = β(x) for x ∈ S−, whereas for
x ∈ S+ λ(x) is an α-dependent function of values
f (q) and β(q) = r (q) for points q ∈ S+. Hence,
λ(x) = α(x) when f (x) ≥ r (x) and λ(x) = β(x)
when f (x) ≤ r (x). If we commute α and β in the def-
inition of λ, its values at each point will not change
because they will still depend in the same way on the
same values of α and β over the same regions S+, S−.

✷

A significant property becomes now evident for the
subclass of serial triphase operators whose constituent
operators α and β commute and hence yield a single
triphase operator

λ( f | r ) = α( f | β( f | r )) = β( f | α( f | r )) (20)

The action of such an operator λ at points x where
f (x) > r (x) (resp., f (x) < r (x)) is determined only
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by α (resp., β). Also points x where f (x) = r (x) are
not affected by any of the α, β, λ. Specifically,

λ( f | r )(x) =




β( f | r )(x), if f (x) < r (x)

α( f | r )(x), if f (x) < r (x)

r (x), if f (x) = r (x)

(21)

Henceforth, in this paper we shall only deal with
triphase operators that satisfy (20) and hence (21).
Some general properties of triphase operators follow
next.

Proposition 3. Let λ( f | r ) = α( f | β( f | r )) =
β( f | α( f | r )) be a serial triphase operator. Then:

(a) λ is antiextensive in the cislFr ; i.e., λ( f | r ) �r f .
(b) λ is increasing inFr ; i.e., f �r g =⇒ λ( f | r ) �r

λ(g | r ).
(c) Let (α1, β1) and (α2, β2) create two triphase oper-

ators λ′( f ) = λ( f | r ; α1, β1) and λ′′( f ) = λ( f |
r ; α2, β2), respectively. If α1 ≥ α2 and β1 ≤ β2,

then λ′′( f ) �r λ′( f ), ∀ f .
(d) Ifα andβ are dual of each other, thenλ is self-dual;

i.e., if α(− f | − r ) = −β( f | r ), then λ(− f | −
r ) = −λ( f | r ).

Proof: Proposition 3(a): By (18) we have r ∨ λ ≤
r ∨ f and r ∧ λ ≥ r ∧ f . Hence (a) is true by the
definition of �r . Proposition 3(b): f �r g means that
f ∧ r ≥ g ∧ r and f ∨ r ≤ g ∨ r . This partitions
all points x into three types: (i) r (x) > f (x) ≥ g(x),
(ii) r (x) < f (x) ≤ g(x), (iii) r (x) = f (x) and g(x)
is arbitrary. At points of type (iii) (b) holds because
λ( f )(x) = r (x). At points of the first (resp., second)
type where r > f ≥ g (resp., r < f ≤ g), λ preserves
this ordering because its values are identical with those
of β (resp., α) which is increasing. Proposition 3(c): Let
αi = αi ( f | r ) and βi = βi ( f | r ), i = 1, 2. We need
to show that (i) r ∨λ′′ ≤ r ∨λ′ and (ii) r ∧λ′′ ≥ r ∧λ′.
By Proposition 1, at points x where f (x) ≤ r (x), λ′ =
β1 ≤ β2 = λ′′ ≤ r ; hence, r ∨ λ′′ = r ∨ λ′. At points
x where f (x) ≥ r (x), λ′ = α1 ≥ α2 = λ′′ ≥ r ; hence,
r ∨ λ′′ ≤ r ∨ λ′. Thus (i) holds at all points. Similarly
we can prove (ii). Hence, (c) is true. Proposition 3(d)
results directly from the definition of λ and the duality
between α and β. ✷

3.2. Levelings

Meyer (1998) and Matheron (1997) defined as a lev-
eling of r any signal f such that δB( f ) ∧ r ≤ f ≤

εB( f ) ∨ r . It can be shown that this is equivalent to
f = λ( f | r ), where λ is the parallel (conditional)
triphase formed by the flat erosion εB and dilation δB

in place of α and β. By generalizing the triphase to
be a serial one, we propose the following alternative
definition of levelings.

Definition 3. A signal f is a called a parallel or serial
leveling of r iff it is a fixed point of the parallel or serial,
respectively, triphase operator, i.e. f = λ( f | r ).

The ‘parallel’ leveling may also be called ‘condi-
tional.’ The following is a necessary and sufficient con-
dition for f to be a λ-induced leveling of r :

f = λ( f | r ) ⇐⇒ β( f | r ) ≤ f ≤ α( f | r ) (22)

Since any triphase operator λ is antiextensive, a lev-
eling of a reference r from a marker f can possibly be
obtained by iterating λ to infinity, or equivalently by
taking the cisl infimum of all iterations of λ. Specifi-
cally, the limit

�( f | r ) � λ∞( f | r )

= �
n≥1

λn( f ) �r · · · �r λ( f ) �r f (23)

exists in the cisl Fr . The map r �→ �( f | r ) is an
increasing and antiextensive (in Fr ) operator. Next we
analyze the iterations of λ and show that, if λλ∞ = λ∞,
then � is also idempotent and its output is a leveling.

Proposition 4. Let λ(· | ·; α, β) be a serial triphase
operator.

(a) αn ↓ α∞ = ∧
n≥1 αn, βn ↑ β∞ = ∨

n≥1β
n, and

for all f, r

λ∞( f | r ) = α∞( f | β∞( f | r )) (24)

(b) λλ∞ = λ∞ iff αα∞ = α∞ and ββ∞ = β∞.
(c) If α is a lattice erosion and β is a lattice dilation,

then λλ∞ = λ∞.
(d) If λλ∞ = λ∞, then λ∞( f | r ) is a leveling of r for

all f and λ∞(· | r ) is idempotent.

Proof: Proposition 4(a): By Corollary 1(b), αn is a
decreasing sequence bounded below by r ; hence, as
n → ∞, the limit α∞ exists and equals

∧
n≥1 αn . Sim-

ilarly for βn which is an increasing sequence upper
bounded by r . Then, (24) follows from (21), since at
points x where f (x) ≥ r (x) (resp. f (x) ≤ r (x)) λ



128 Maragos

and all its iterations coincide with the corresponding
iterations of α (resp. β). Proposition 4(b): Assume first
that αα∞ = α∞ and ββ∞ = β∞. Then, the point-
wise representation (21) of λ yields λλ∞( f | r ) =
αα∞( f | ββ∞( f | r )) = λ∞( f | r ). The converse
is proven similarly. Proposition 4(c): If α is an ero-
sion, then αα∞ = α(

∧
n≥1 αn) = ∧

n≥1 αn+1 = α∞.
Similarly, if β is a dilation, then ββ∞ = β∞. The rest
follows from (b). Proposition 4(d): It was proven in
(Heijmans, 1994, p. 452) for an arbitrary lattice oper-
ator ψ that, if ψn → ψ∞ and ψψ∞ = ψ∞, then ψ∞

is idempotent and ψ∞( f ) = f iff ψ( f ) = f . Hence,
(d) is a direct application of this result. ✷

Henceforth, we shall deal only with triphase opera-
tors λ for which λλ∞ = λ∞. In such cases, the map
r �→ �( f | r ) is called a leveling operator since its out-
put is a leveling. Note that, � is an increasing, antiex-
tensive and idempotent operator, and hence a semilat-
tice opening, in the cisl Fr . It is also an increasing and
idempotent operator, and hence a morphological filter,
in the complete lattice L.

3.3. Semigroups of Multiscale Triphase Operators
and Semilattice Erosions

Assume real-valued signals defined on R
m . If we re-

place the operators α and β with the multiscale condi-
tional flat erosion and dilation by B of (3) we obtain a
parallel multiscale conditional triphase operator

λtB( f | r )(x) � εtB( f )(x) ∨ [r (x) ∧ δtB( f )(x)]

= �
a∈t B

f (x − a) (25)

It is called ‘conditional’ because it can be written as a
serial triphase operator involving conditional dilation
and erosion:

λtB( f | r ) = εtB( f | δtB( f | r )) = δtB( f | εtB( f | r ))

(26)

By replacing the conditional dilation and erosion in
(26) with their geodesic counterparts from (6) we ob-
tain a serial multiscale geodesic triphase operator

λt ( f | r ) � εt ( f | δt ( f | r )) = δt ( f | εt ( f | r ))

(27)

For both the conditional and the geodesic triphase,
its constituent erosion and dilation operators satisfy the

basic properties of the operators α and β required for
the definitions of triphase operators. Further, they com-
mute. In the conditional case, this is simple to see. The
geodesic triphase is also well-defined since δt and εt

commute. This follows from Proposition 2(b) because
they satisfy the following additional property.

Proposition 5. Let δt and εt be the multiscale
geodesic dilation and erosion of (6). Then, for all
f, r, t, δt ( f | r ) = δt ( f ∧ r | r ) and εt ( f | r ) =
εt ( f ∨ r | r ).

Proof: For the geodesic set dilation of (5), we have
�t (X | R) = �t (X ∩ R | R). The geodesic signal
dilation δt of (6) is a flat operator generated from �t via
threshold superposition. Then, since Xh( f ) ∩ Xh(r ) =
Xh( f ∧ r ), where Xh( f ) are the upper level sets of f ,
we obtain δt ( f | r ) = δt ( f ∧ r | r ). The dual result for
the geodesic erosion follows via negation. ✷

Calling the above triphase operators ‘multiscale’ can
be easily justified in the conditional case λtB where the
scale parameter t coincides with the radius of the disk
used for eroding or dilating the marker. In the geodesic
case, the scale t equals the geodesic distance used to
create the geodesic balls.

Comparing (25) with (14) reveals that λtB(· | r ) be-
comes a multiscale translation-invariant (TI) semilat-
tice erosion onFr if r is constant. In particular, if r = 0,
then λtB becomes a multiscale TI self-dual erosion on
F0. For non-constant r , λtB is generally neither TI nor
an erosion. In constrast, as proven next, the geodesic
triphase is a semilattice erosion in Fr , although not TI.

Proposition 6. The geodesic triphase operatorλt ( f |
r ) = εt ( f | δt ( f | r ) is a semilattice erosion in the cisl
Fr ; i.e., λt (�i fi | r ) = �iλ

t ( fi | r ).

Proof: We use the pointwise representation (21) of
λt . First, note that, using the definition (11) for the cisl
infimum �, Proposition 5, the ∨-distributivity of δt

and its extensivity yields

δt

(
�

i
fi

)
= δt

(
r ∧

∨
i

fi

)
∨ δt

( ∧
i

fi

)

= δt

( ∨
i

fi

)
∨ δt

( ∧
i

fi

)

= δt

( ∨
i

fi

)
=

∨
i

δt ( fi ). (28)
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Now, consider points x where f (x) = �i fi (x) ≤
r (x) and hence λt ( f | r )(x) = δt ( f | r )(x).
The condition �i fi (x) ≤ r (x) is equivalent
to r (x) ∧ ∨

i fi (x) ≤ r (x) and
∧

i fi (x) ≤
r (x). This implies that

∨
iδ

t ( fi )(x) ≤ r (x)
and hence �iδ

t ( fi )(x) = ∨
iδ

t ( fi )(x). This and
(28) imply δt (�i fi )(x) =�iδ

t ( fi )(x). Similarly, at
points x where�i fi (x) ≥ r (x) we haveλt ( f | r )(x) =
εt ( f | r )(x). By working as for the dilation we can
show that, εt (�i fi ) = ∧

i εt ( fi ). Further, the con-
dition �i fi (x) ≥ r (x) implies that �iε

t ( fi )(x) =∧
i εt ( fi )(x). Therefore, λt distributes over � since

λt (�i fi )(x) = �iλ
t ( fi )(x) at all points. ✷

The geodesic triphase is the most important triphase
operator because it obeys a semigroup. This will allow
us later to find its PDE generator.

Proposition 7.

(a) As t → ∞, λt ( f | r ) yields the geodesic leveling
which is the composition of the geodesic recon-
struction opening and closing:

�( f | r ) � λ∞( f | r ) = ρ−( f | ρ+( f | r ))

= ρ+( f | ρ−( f | r )) (29)

(b) The multiscale family {λt (· | r ) : t ≥ 0} forms an
additive semigroup:

λt (λs(· | r ) | r ) = λt+s(· | r ), ∀t, s ≥ 0. (30)

(c) For a zero reference (r = 0), the multiscale
geodesic triphase operator becomes identical to
its conditional counterpart and the multiscale TI
semilattice erosion:

r = 0 =⇒ ψ t
0( f ) = λt ( f | 0) = λtB( f | 0) (31)

(d) For any r, the multiscale TI semilattice erosion
ψ t

r ( f ) = r + ψ t
0( f − r ) obeys a semigroup:

ψ t
r ψ

s
r = ψ t+s

r ∀t, s ≥ 0. (32)

Proof: Proposition 7(a) results from the definitions of
the geodesic triphase and reconstruction openings and
from Proposition 4. Proposition 7(b): Let λs = λs( f |
r ), δs = δs( f | r ) and εs = εs( f | r ). Then, by (21),
at points x where f (x) ≤ r (x) we have λs(x) = δs(x).
Hence, by (7), λtλs = δtδs = δt+s = λt+s . Similarly, at

points x where f (x) ≥ r (x) we have λs(x) = εs(x) and
hence λtλs = εtεs = εt+s = λt+s . Thus, at all points
λtλs acts equivalently to λt+s . Proposition 7(c): If r =
0, ψ t

0( f ) = λtB( f | 0) from their definitions. Further,
to show that λt ( f | 0) = λtB( f | 0) observe first that,
by (21), (6) and (25), at points x where f (x) ≤ 0:

λt ( f | 0)(x) = δt ( f | 0)(x)

= sup{h ≤ 0 : x ∈ �s(Xh( f ) | E)}
= 0 ∧

∨
a∈t B

f (x − a) = λtB( f | 0)(x).

Similarly it can be proven when f (x) ≥ 0. Proposi-
tion 7(d): By writing ψ t

r = ξψ t
0ξ

−1 with ξ ( f ) = f +r
we obtain ψ t

r ψ
s
r = ξψ t+s

0 ξ−1 = ψ t+s
r since ψ t

0(·) =
λt (· | 0) obeys a semigroup. ✷

From the semigroup property (30), the n-fold itera-
tion of the unit-scale geodesic triphase operator con-
cides with its multiscale version at integer scale t = n.
The same is true for the multiscale TI semilattice ero-
sions. It is not generally true, however, for the con-
ditional triphase operator λB( f | r ), which does not
obey a semigroup. Further, its iterations converge to the
conditional leveling �B( f | r ) = λ∞

B ( f | r ) which is
smaller w.r.t. �r than the geodesic leveling �( f | r ) =
λ∞( f | r ) of (29). Namely, since δn

B( f | r ) ≥ δn( f | r )
and εn

B( f | r ) ≤ εn( f | r ), by Proposition 3

r �r �B( f | r ) �r �( f | r ) . (33)

4. PDEs for 1D Levelings
and Semilattice Erosions

4.1. Leveling PDE

Consider a 1D reference image r (x) and a marker image
f (x) on R, both real and continuous. We start evolving
the marker image by producing the multiscale geodesic
triphase evolutions

u(x, t) = λt ( f | r )(x) = δt ( f | εt ( f | r ))(x) (34)

The initial value is u(x, 0) = f (x). In the limit we ob-
tain the final result u(x, ∞) which will be the leveling
�( f | r ). Attempting to find a generator PDE for the
function u, we shall analyze the following evolution
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rule:

∂u

∂t
(x, t) = lim

s↓0

u(x, t + s) − u(x, t)

s
(35)

By using the semigroup (30) that u satisfies and the
pointwise representation (21) of triphase operators, the
evolution rule becomes

∂u

∂t
(x, t) = lim

s↓0

λs(u(x, t) | r )(x) − u(x, t)

s

=




lim
s↓0

[δs(u(x, t) | r )(x) − u(x, t)]/s,

if u(x, t) < r (x)

lim
s↓0

[εs(u(x, t) | r )(x) − u(x, t)]/s,

if u(x, t) > r (x)

0, if u(x, t) = r (x)

(36)

We shall show later that, at points where the partial
derivatives exist, this rule becomes the following PDE:
ut = −sign(u − r )|ux |. Starting from a continuous
marker f (x), the evolutions u(x, t) remain continuous
for all x, t . However, even if the initial image f is dif-
ferentiable, at finite scales t > 0, the above triphase
evolution may create shocks (i.e., discontinuities in the
derivatives). One way to propagate these shocks (as
done in solving evolution PDEs of the Hamilton-Jacobi
type with level-set methods (Osher and Sethian, 1988))
is to use conservative monotone difference schemes
that pick the correct weak solution satisfying the en-
tropy condition. An alternative way we propose to deal
with shocks is to replace the standard derivatives with
morphological sup/inf derivatives. For example, let

Mx u(x, t) � lim
s↓0

[ ∨
|a|≤s

u(x + a, t) − u(x, t)

]/
s

be the sup-derivative of u(x, t) along the x-direction,
if the limit exists. If the one-sided right derivative
∂+x u(x, t) and left derivative ∂−x u(x, t) of u along the
x-direction exist, then its sup-derivative also exists and
is equal to

Mx u(x, t) = max[0, ∂+x u(x, t), −∂−x u(x, t)] (37)

The nonlinear derivative M leads next to a more gen-
eral PDE that can handle discontinuities in ∂u/∂x .

Theorem 1. Let u(x, t) = λt ( f | r )(x) be the
scale-space function of multiscale geodesic triphase

operations with initial condition u(x, 0) = f (x). As-
sume that r is continuous and f is continuous with left
and right derivatives at all x.

(a) If the partial sup-derivative Mx u exists at some
(x, t), then

∂u

∂t
(x, t) =



Mx (u)(x, t), i f u(x, t) < r (x)

−Mx (−u)(x, t), i f u(x, t) > r (x)

0, i f u(x, t) = r (x)

(38)

(b) If the partial left and right derivatives ∂±x u exist
at some (x, t), then

∂u

∂t
(x, t) =




max[0, ∂+x u(x, t), −∂−x u(x, t)],

i f u(x, t) < r (x)

min[0, ∂+x u(x, t), −∂−x u(x, t)],

i f u(x, t) > r (x)

0, i f u(x, t) = r (x)

(39)

(c) If the two-sided partial derivative ∂u/∂x exists at
some (x, t), then u satisfies

∂u

∂t
(x, t) = −sign[u(x, t) − r (x)]

∣∣∣∣∂u

∂x
(x, t)

∣∣∣∣ (40)

Proof: Theorem 1(a): In the case u(x, t) < r (x), the
numerator of the right-hand side of (36) equals

sup{h ≤ r (x) : x ∈ �s[Xh(u) | Xh(r )]} − u(x, t)

Due to the continuity of u and r , for s sufficiently small,
u(y, t) < r (y) for all y ∈ [x −s, x +s] and the interval
[x −s, x +s] will lie inside Xh(r ) for h ≤ ∨

|a|≤s u(x −
a, t). Hence, in this infinitesimally small neighborhood
the geodesic dilation will become unconditional flat
dilation and (36) becomes

∂u

∂t
(x, t) = lim

s↓0

∨
|a|≤s u(x − a, t) − u(x, t)

s
= Mx u(x, t).

Similarly we prove the case r (x) < u(x, t). If
r (x) = u(x, t), λs( f | r )(x) = r (x) ∀s≥ t and hence
ut (x, t) = 0. Theorem 1(b) results directly from
(a) and (37). Theorem 1(c) results directly from (b)
and the fact that, if left and right derivatives exist and
are equal, then the sup-derivative becomes equal to the
magnitude |ux (x, t)| of the standard derivative. ✷
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Thus, assuming that ∂u/∂x exists and is continuous,
the nonlinear PDE (40) can generate the multiscale
evolution of the initial image u(x, 0) = f (x) under
the action of the geodesic triphase operator. However,
even if f is differentiable, as the scale t increases, this
evolution can create shocks. In such cases, the more
general PDE (39) that uses morphological derivatives
still holds and can propagate the shocks provided the
equation evolves in such a way as to give solutions that
are piecewise differentiable with left and right deriva-
tives at each point.

The PDE (40) has a varying coefficient −sign(u −r )
with scale-space dependence which controls the instan-
taneous growth and stops it whenever u = r . (Of course,
there is no growth also at extrema where ux = 0.) The
control mechanism is of a switching type: For each t ,
at points x where u(x, t) < r (x) it acts as a dilation
PDE and hence shifts parts of the graph of u(x, t) with
positive (negative) slope to the left (right) but does not
move the extrema points. Wherever u(x, t) > r (x) the
PDE acts as an erosion PDE and reverses the direction
of propagation. The final result u(x, ∞) is a leveling
of r w.r.t. f .

4.2. PDE for 1D Multiscale TI Semilattice Erosions

Consider now on the cisl F0 the multiscale TI semi-
lattice erosions of a real 1D image f (x) by 1D line
segments tB = [−t, t]:

v(x, t) = ψ t
0( f )(x)

=
[

0 ∧
∨
|a|≤t

f (x − a)

]
∨

∧
|a|≤t

f (x − a) (41)

Since v(x, t) is the special case of the corresponding
function u(x, t) for multiscale geodesic triphase oper-
ations when r = 0, we can use the leveling PDE (40)
to generate the evolutions v(x, t):

∂v/∂t = −sign(v)|∂v/∂x |
v(x, 0) = f (x)

(42)

If r (x) is not zero, we can generate multiscale TI semi-
lattice erosions ψ t

r ( f ) = r + ψ t
0( f − r ) of f , defined

explicitly in (14), by the following PDE system

∂v/∂t = −sign(v)|vx |, v(x, 0) = f (x) − r (x)

ψ t
r ( f )(x) = r (x) + v(x, t) (43)

The 1D images f and r above are assumed to be contin-
uous and possess left and right derivatives everywhere.

Note: If f −r has some zero values and is non-constant,
then as t → ∞ we obtain a leveling identical to
the reference r , because ψ∞

0 ( f − r ) = 0 and hence
ψ∞

r ( f ) = r .

4.3. Discretization and Numerical Algorithms

To find a numerical algorithm for solving the previous
PDEs, let U n

i be the approximation of u(x, t) on a grid
(i�x, n�t)). Similarly, define Ri � r (i�x) and Fi �
f (i�x). Consider the forward and backward difference
operators:

D+xU n
i �

(
U n

i+1 − U n
i

)
/�x,

(44)
D−xU n

i �
(
U n

i − U n
i−1

)
/�x

To produce a shock-capturing and entropy-satisfying
numerical method for solving the leveling PDE (40) we
approximate the more general PDE (39) by replacing
time derivatives with forward differences and left/right
spatial derivatives with backward/forward differences.
This yields the following algorithm:

U n+1
i = U n

i − �t
[ (

Pn
i

)+
max

(
0, D−xU n

i , −D+xU n
i

)
+ (

Pn
i

)−
max

(
0, −D−xU n

i , D+xU n
i

)]
(45)

where Pn
i = sign(U n

i − Ri ), q+ = max(0, q), and
q− = min(0, q). Further, to avoid spurious numeri-
cal oscillations around zerocrossings of f − r , at each
iteration we enforce the sign consistency

sign
(
U n

i − Ri
) = sign(Fi − Ri ), ∀n, i (46)

We iterate the above scheme for n = 0, 1, 2, . . . ,

starting from the initial data U 0
i = Fi . For stability,

(�t/�x) ≤ 0.5 is required.
The above scheme can be expressed as iteration of

a discrete triphase operator � acting on the cisl FR of
1D sampled real-valued signals with reference R:

U n+1
i = �

(
U n

i

)
, �(Fi ) � α(Fi ) ∨ [Ri ∧ β(Fi )],

(47)

where the operators α, β are given by, for θ = �t/�x ,

α(Fi ) = min[Fi , θ Fi−1 + (1 − θ )Fi ,

θ Fi+1 + (1 − θ )Fi ],
(48)

β(Fi ) = max[Fi , θ Fi−1 + (1 − θ )Fi ,

θ Fi+1 + (1 − θ )Fi ].
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By using ideas from methods of solving PDEs corre-
sponding to hyperbolic conservation laws (Osher and
Sethian, 1988), we can easily show that this scheme
is conservative and monotone increasing for θ =
�t/�x ≤ 1. Hence, it satisfies the entropy condition.

There are also other possible approximation schemes
such as the conservative and monotone scheme pro-
posed in Osher and Rudin (1990) to solve the edge-
sharpening PDE ut = −sign(uxx )|ux |:

U n+1
i

= U n
i − �t

[(
Pn

i

)+
√((

D−xU n
i

)+)2 + ((
D+xU n

i

)−)2

+ (
Pn

i

)−
√((

D+xU n
i

)+)2 + ((
D−xU n

i

)−)2
]

(49)

In order to solve the leveling PDE, we have modified
this scheme to enforce the sign consistency condition
(46). The combined algorithm can be expressed via the
iteration of a discrete triphase operator � as in (47) but
with different α and β:

α(Fi )

= Fi − θ
√

[max(Fi − Fi−1, 0)]2 + [min(Fi+1 − Fi , 0)]2,

β(Fi )

= Fi + θ
√

[min(Fi − Fi−1, 0)]2 + [max(Fi+1 − Fi , 0)]2

(50)

This second approximation scheme is more diffusive
and requires more computation per iteration than the
first scheme. Thus, as the main numerical algorithm
to solve the leveling PDE, we henceforth adopt the
first scheme (47),(48), which is based on discretiz-
ing the morphological derivatives. Examples of run-
ning this algorithm are shown in Figs. 1 and 3. An
important question is whether the two above algo-
rithms converge. The answer is affirmative as proved
next.

Proposition 8. If �(·) = α(·)∨ [R ∧β(·)] and (α, β)
are either as in (48) or as in (50), then � is a parallel
triphase operator and the sequence U n+1 = �(U n),
U 0 = F, converges to a unique limit U∞ = �∞(F).
For digital images F, R assuming a finite number of
gray levels, the limit �∞(F) is a conditional leveling
of R from F.

Proof: In both cases (48) and (50) the increasing
operators α and β are antiextensive and extensive,

respectively, w.r.t. the standard lattice ordering ≤.
Hence, � is a valid parallel triphase operator, which can
be written as a serial one �(F | R) = αs(F | βs(F | R)
by setting αs(F | R) = R ∨ α(F) and βs(F | R) =
R ∧ β(F). In the cisl FR , � is an antiextensive opera-
tor w.r.t. the cisl ordering �R . Hence, the limit �∞(F)
is the cisl infimum of �n(F) which exists and is unique.
For digital images with a finite number of gray levels,
the iteration of αs, βs will converge in a finite number
of iterations, say αn+1

s = αn
s and βm+1

s = βm
s for some

integers n, m. This implies that αsα
∞
s = α∞

s = αn
s

and βsβ
∞
s = β∞

s = βm
s . Hence, by Proposition 4,

��∞ = �∞ and �∞ creates a leveling. ✷

If �t = �x , then the α and β operators (48) of
the discrete triphase operator � in (47) become ero-
sion and dilation, respectively, by a unit-scale win-
dow B = {−1, 0, 1}. Further, the corresponding
PDE numerical algorithm coincides with the iterative
discrete algorithm of Meyer (1998) for constructing
levelings.

5. PDEs for 2D Levelings
and Semilattice Erosions

A straighforward extension of the leveling PDE from
1D to 2D images results by replacing the term −|ux |
creating 1D multiscale erosions with the term −‖∇u‖
generating multiscale erosions by disks. Then the 2D
leveling PDE becomes:

∂u(x, y, t) = − sign[u(x, y, t) − r (x, y)]‖∇u‖
u(x, y, 0) = f (x, y) (51)

As in the 1D case, u(x, y, t) = λt ( f | r )(x, y) is
a scale-space function holding the 2D multiscale
geodesic triphase evolutions of the marker image
f (x, y) within the reference image r (x, y). Of course,
we could select any other PDE modeling the inter-
mediate growth kernel by shapes other than the disk,
but the disk has the advantage of creating an isotropic
growth.

For discretization, let U n
i, j be the approximation of

u(x, y, t) on a computational grid (i�x, j�y, n�t)
and set the initial condition U 0

i j = Fi j = f (i�x, j�y).
Then, by replacing the magnitudes of standard deriva-
tives with morphological derivatives and by express-
ing the latter with left and right derivatives which are
approximated with backward and forward differences,
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Figure 3. Multiscale triphase evolutions of 1D signals generated by PDEs. (a) A reference signal r (x) shown (dash line), a marker signal
f (x) (thin solid line) and its evolutions u(x, t) (dashdot line) generated by the leveling PDE ut = −sign(u − r )|ux |, u(x, 0) = f (x), at times
t = n25�t , n = 1, 2, 3, 4. (b) The reference r , the marker f , and the leveling u(x, ∞) (thick solid line). (c) Multiscale TI semilattice erosions
v(x, t) of f (x) w.r.t. a zero reference generated by the PDE vt = −sign(v)|vx |, v(x, 0) = f (x), at t = n25�t , n = 1, 2, 3, 4. (d) Multiscale TI
semilattice erosions v(x, t)+r (x) of f (x) w.r.t. the non-constant reference r (x), generated by the PDE vt = −sign(v)|vx |, v(x, 0) = f (x)−r (x),
at t = n25�t , n = 1, 2. (�x = 0.001, �t = 0.0005.)

we arrive at the following entropy-satisfying scheme
for solving the 2D leveling PDE (51):

U n+1
i, j = �

(
U n

i, j

)
, �(Fi j ) � [Ri j ∧ β(Fi j )] ∨ α(Fi j ),

α(Fi j ) = Fi j − �t
√

max2[0, D−x Fi j , −D+x Fi j ] + max2[0, D−y Fi j , −D+y Fi j ] (52)

β(Fi j ) = Fi j + �t
√

max2[0, −D−x Fi j , D+x Fi j ] + max2[0, −D−y Fi j , D+y Fi j ]

For stability, (�t/�x + �t/�y) ≤ 0.5 is required.
As in the 1D case, this scheme converges to a discrete
conditional leveling. Examples of running the above 2D
algorithm are shown in Fig. 4. In all image experiments
based on PDEs we used �x = �y = 1, �t = 0.25 as
space-time steps.

As a by-product of the 2D leveling PDE, the multi-
scale TI semilattice erosions (14) of a marker image f

by disks B w.r.t. a reference image r can be generated
as follows:

∂v/∂t = −sign(v)‖∇v‖,
v(x, y, 0) = f (x, y) − r (x, y), (53)

ψ t
r ( f )(x, y) = r (x, y) + v(x, y, t)
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Figure 4. Multiscale triphase evolutions and levelings of soilsection images generated by PDEs. The marker image f (x, y) was obtained from
a convolution of the reference r (x, y) with a 2D Gaussian of σ = 8. Second row: triphase evolutions (geodesic semilattice erosions) u(x, y, t)
generated by the leveling PDE (51). Third row: multiscale TI semilattice erosions v(x, y, t) generated by the PDE (53).

6. Discussion

We conclude by providing some insights on the behav-
ior of levelings and multiscale semilattice erosions via
several image experiments. Then, we also comment on
the advantages of PDE-based algorithms for generating
these lattice scale-spaces.

As shown in Figs. 4, 5, and 6, the leveling limit is
strongly dominated by the structure of the reference
image. Although the selection of markers suitable for
producing levelings with various designable properties
is still an open issue, it appears that a smooth version of
the reference works well as a marker for applications
of image simplification and segmentation. In Fig. 5
we experimented with a binary edge map as reference
whereas the marker was a smooth version of the same
original image. Here the intermediate triphase evolu-
tions (geodesic semilattice erosions) toward the lev-
eling seemed useful for adding image region details

back to the edge map. Finally, as shown in Figs. 5 and
6, the intermediate multiscale TI semilattice erosions
seem potentially applicable to mixing or morphing the
marker image into the reference, even if the two im-
ages are completely unrelated. On comparing the speed
of convergence, we have experimentally found that the
geodesic triphase evolutions toward levelings converge
to the limit more slowly than the multiscale TI semi-
lattice erosions.

The basic algebraic discrete algorithm that Meyer
(1998) developed to construct levelings of digital im-
ages is the iteration of the conditional triphase operator
λ(Fi ) = εB(Fi ) ∨ [Ri ∧ δB(Fi )], where δB and εB are
flat dilation and erosion by a discrete unit-scale disk-
like set B. Now we know that this converges to a dis-
crete conditional leveling �algdiscr . If levelings can be
modeled and generated by such an algebraic discrete
model, why then use PDEs for levelings and semilat-
tice erosions? In addition to the well-known advantages
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Figure 5. First Row: the reference image resulted from applying the Canny edge detector to the original image, and the marker image is a
Gaussian convolution of the original. Second row: multiscale geodesic triphase evolutions converging to a leveling. Third row: Multiscale TI
semilattice erosions. (All evolutions were generated by PDEs.)

Figure 6. Multiscale geodesic triphase evolutions converging to a leveling and multiscale TI semilattice erosions of a marker image w.r.t. an
unrelated reference. (All evolutions were generated by PDEs.)
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of the PDE approach (such as more insightful mathe-
matical modeling, more connections with physics, bet-
ter approximation of Euclidean geometry, and subpixel
accuracy), there are also some advantages over the dis-
crete modeling that are specific for the operators ex-
amined in this paper. The new PDE-based numerical
algorithm (47),(48) converges to another discrete con-
ditional leveling �pdenum. If �true is the sampled true
(geodesic) leveling, then

r �r �algdiscr �r �pdenum �r �true.

Hence, the algebraic discrete algorithm yields a result
that has a larger absolute deviation3 from the true solu-
tion than the PDE numerical algorithm. Further, the al-
gebraic discrete algorithm is a special case of the PDE
algorithm using the value θ = �t/�x = 1, which
makes it unstable (amplifies small errors).

In the 2D case we have an additional comparison
issue: Although for the triphase evolutions toward lev-
elings the desired result in segmentation applications is
mainly the final limit, there may be other applications,
for instance such as mixing/morphing images, where
we need to stop the marker growth before convergence.
For example, the mixing/morphing in Figs. 5 and 6 in-
dicates that the multiscale TI semilattice operators can
generate quite interesting intermediate results. In such
cases as evolutions of 2D multiscale (geodesic or TI)
semilattice erosions, the isotropy of the partially grown
marker offered by the PDE approach is an advantage
over the discrete algebraic approach.
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Notes

1. Notation often used for PDEs: ut = ∂u/∂t , ux = ∂u/∂x , uy =
∂u/∂y, ∇u = (ux , uy ).

2. A sequence ( fn) in the lattice L is defined in [Heijmans (1994),
chap.13] to order converge to a limit f , written as fn → f ,
if lim inf fn = lim sup fn = f , where liminf and limsup are
defined using only

∨
and

∧
. The simplest case is monotone

convergence: fn ↓ f means that ( fn) is decreasing and f =∧
n fn , whereas fn ↑ f means that ( fn) is increasing and f =∨
n fn . A sequence (ψn) of operators on L is defined to order

converge to ψ , written as ψn → ψ , if ψn( f ) → ψ( f ) for any
f ∈ L.

3. f �r g implies | f (x) − r (x) |≤| g(x) − r (x)| ∀x .
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