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Abstract. This paper explores some aspects of the algebraic theory of mathematical morphology from the view-
points of minimax algebra and translation-invariant systems and extends them to a more general algebraic structure
that includes generalized Minkowski operators and lattice fuzzy image operators. This algebraic structure is based on
signal spaces that combine the sup-inf lattice structure with a scalar semi-ring arithmetic that possesses generalized
‘additions’ and �-‘multiplications’. A unified analysis is developed for: (i) representations of translation-invariant
operators compatible with these generalized algebraic structures as nonlinear sup-� convolutions, and (ii) kernel
representations of increasing translation-invariant operators as suprema of erosion-like nonlinear convolutions by
kernel elements. The theoretical results of this paper develop foundations for unifying large classes of nonlinear
translation-invariant image and signal processing systems of the max or min type. The envisioned applications lie
in the broad intersection of mathematical morphology, minimax signal algebra and fuzzy logic.
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1. Introduction

Classic Mathematical Morphology (MM), as a field
of nonlinear geometric image analysis, was developed
initially by Matheron and Serra [29, 37] and their col-
laborators and was applied successfully to biomedi-
cal and geological problems of image analysis. In the
1980s, extensions of classic MM and connections to
other fields were developed by several research groups
worldwide along various directions including: applica-
tions to pattern recognition and computer vision prob-
lems; unified nonlinear filtering of the morphologi-
cal/rank/stack type; multiscale image processing and
shape and texture analysis; statistical analysis and op-
timal design of morphological filters. Detailed accounts
and references can be found in books [9, 13, 15, 29, 37,
38] or tutorial papers [11, 23, 24, 40] that deal with MM.
This ‘classic MM’ was Euclidean translation-invariant
and had a max-sum arithmetic.

The need to unify its analysis tools for both binary
and gray images as well as to use it for more abstract

data types such as graphs led MM researchers in
the late 1980s—early 1990s to extend its theory by
generalizing the image space to a complete lattice and
viewing all image transformations as lattice operators.
The theoretical foundations of complete lattice MM
were developed by Matheron and Serra [38] and ex-
tended further by Heijmans and Ronse [15, 16, 36] and
Roerdink [35]. A relatively new algebraic approach to
morphology was developed by Keshet [18] based not
on complete lattices but on inf-semilattices. The basic
advance of lattice MM was to develop more general op-
erators that shared with the standard dilation, erosion,
opening and closing only a few algebraic properties.
One such fundamental algebraic structure is a pair
of erosion/dilation operators that form an adjunction
[15, 38]. This guarantees the formation of openings
and closings via composition of the adjunction con-
stituents. Both classic and lattice MM have focused
on and exploited mainly the lattice structure (sup/inf).
Although some useful operations in MM combine
the sup/inf with max-plus arithmetic (e.g., Minkowski
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operations with gray structuring elements, chamfer dis-
tance transforms), such cases have always remained a
minority.

In parallel to the development of MM, there has
been another independent effort in the 1980’s by Rit-
ter and co-workers [32, 33], called image algebra,
to unify image operations using algebraic structures
such as lattices, semirings and concepts from min-
imax algebra. Minimax (also called ‘max-plus’) al-
gebra [7] has exploited the interaction of the lattice
(sup/inf) with the group structure of real addition +
and has developed analogies with linear algebra that
has a product-of-sums structure. There exist many ap-
plications of minimax algebra in operations research,
scheduling and discrete event control systems [6, 7].
Both image algebra and minimax algebra use con-
cepts from lattices but have not exploited the lat-
tice structure to the level that MM has and have
not focused on the concept of lattice operators and
adjunctions.

In this paper we bridge the above gaps and join MM
with minimax (max-plus) algebra. Further, we gener-
alize MM to a max-� signal algebra that has both a
sup/inf structure and two semigroup ‘multiplication’-
type operations � and its dual �′ that distribute over sup
and inf, respectively. First we develop this generalized
algebraic structure, which we call ‘clodum’ (complete
lattice-ordered double monoid) and unifies four main
cases: (1) Max-Sum MM: classic translation-invariant
max-sum operations. (2) Max-Product MM: Lattice
extensions of Minkowski dilations-erosions with mul-
tiplicative structuring elements. (3) Fuzzy image oper-
ations and convolutions, where � (�′) becomes a fuzzy
intersection (union). (4) Binary translation-invariant
MM: this can be seen as a special case of (1) or (3).
Further, within this unified clodum structure we derive
theoretical results in two areas: (A) Representations of
translation-invariant operators that obey superpositions
compatible with the clodum structure via generalized
sup-� convolutions. (B) Representations of increasing
translation-invariant operators over a clodum via gen-
eralized kernels as suprema of erosion-type inf-�′ con-
volutions. (C) Extensions of (A) and (B) to the special
case of lattice fuzzy operators. Some parts of our re-
sults have appeared before either as special cases, e.g.
the max-sum case of (A) and (B) in [21, 22], or in
conference papers without proofs, e.g. the case (C) in
[25, 27, 28]. Finally, we briefly discuss some benefits of
our unified algebraic framework for max/min systems.

2. Elements from Lattice and Minimax Algebra

2.1. Lattices

The material in this section follows [3]. A partially-
ordered set, briefly poset (P, ≤), is a set P in which
a binary relation ≤ is defined that is a partial order-
ing, i.e., satisfies the following three properties for all
X, Y, Z ∈ P:

(P1). X ≤ X (reflexive)
(P2). X ≤ Y and Y ≤ X imply X = Y (antisymmetric)
(P3). X ≤ Y and Y ≤ Z imply X ≤ Z (transitive)

If ≤ has the additional property that, for any two
elements we have either X ≤ Y or Y ≤ X , then P is
called a totally-ordered set or chain. To every partial
ordering ≤ on P there corresponds a converse partial
ordering ≤′ defined by “X ≤′ Y iff X ≥ Y ”. If (P, ≤)
is a poset, then (P, ≤′) is also a poset, called the dual
poset; this is the Duality Principle.

Let S be a subset of a poset P . An upper bound
(resp. lower bound) of S is an element B ∈ P such
that X ≤ B (resp. X ≥ B) for all X ∈ S; if B ∈ S,
then it is the greatest element or maximum (resp. least
element or minimum) ofS. An element M ∈ S is called
maximal (resp. minimal) if there is no element in S that
is greater (resp. smaller) than M . The least upper bound
of S is called its supremum and denoted by supS or∨

S. By using the duality principle, we can also define
the greatest lower bound of S, called its infimum and
denoted by infS or

∧
S. The supremum and infimum

are unique if they exist.
A lattice is a poset (L, ≤) any two of whose el-

ements have a supremum, denoted by X ∨ Y , and an
infimum, denoted by X ∧Y . We often denote the lattice
structure by (L, ∨, ∧). A lattice L is complete if each
of its subsets has a supremum and an infimum in L.
Any nonempty complete lattice is universally bounded
because it contains its greatest element (the ‘unit’)
I = ∨

L and its least element (the ‘zero’) O = ∧
L.

Duality in Lattices: In any lattice L, by replacing the
partial ordering ≤ with its dual ≤′ and by interchanging
the roles of the supremum and infinum, i.e., by consid-
ering the dual operations ∨′ = ∧ and ∧′ = ∨, we can
form a new lattice (L, ∨′, ∧′), called the dual lattice and
often denoted just by L′. The duality principle dictates
that to every definition, property and statement that ap-
plies to the lattice L and involves its partial ordering
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Table 1. Properties of lattice operations.

Sup-semilattice Inf-semilattice Description

L1. X ∨ X = X L1′. X ∧ X = X Idempotence

L2. X ∨ Y = Y ∨ X L2′. X ∧ Y = Y ∧ X Commutativity

L3. X ∨ (Y ∨ Z ) = (X ∨ Y ) ∨ Z L3′. X ∧ (Y ∧ Z ) = (X ∧ Y ) ∧ Z Associativity

L4. X ∨ (X ∧ Y ) = X L4′. X ∧ (X ∨ Y ) = X Absorption

L5. X ≤ Y ⇔ Y = X ∨ Y L5′. X ≤ Y ⇔ X = X ∧ Y Consistency

L6. A ∧ (∨
i∈J Xi

) = ∨
i∈J (A ∧ Xi ) L6′. A ∨ (∧

i∈J Xi
) = ∧

i∈J (A ∨ Xi ) Distributivity
(if J is finite†)

†If J is infinite, the lattice is called infinitely distributive.

and sup/inf, there corresponds a dual one that applies
to the dual lattice L′ by interchanging ≤ with ≤′ and
∨ with ∧.

The lattice operations satisfy many properties; the
four fundamentals are listed as (L1, L1′)–(L4, L4′) in
Table 1. Conversely, a set L equipped with two binary
operations ∨ and ∧ that satisfy these first four pairs of
properties is a lattice whose supremum is ∨, infimum
is ∧, and partial ordering ≤ is given by L5.

A lattice L is called distributive if property L6 of
Table 1, or equivalently its dual L6′, holds for any finite
index set J and any A, Xi ∈ L. If it also holds for an
infinite index set, then the lattice is called infinitely
distributive.

A lattice contains two weaker substructures, i.e., two
semilattices. In general, a semilattice (P, ◦) is a set P
equipped with a binary operation ◦ that is idempotent,
commutative, and associative. Actually, any semilat-
tice (P, ◦) is a poset in which the partial ordering is
defined by X ≤ Y iff Y = X ◦ Y and any two elements
possess a supremum1 defined by X ∨ Y = X ◦ Y ; such
a semilattice is called a sup-semilattice. Conversely,
if (P, ≤) is a poset in which any two elements X, Y
have a supremum X ◦ Y , then P is a semilattice with
respect to the binary operation ◦. It now becomes evi-
dent that a lattice (L, ∨, ∧) contains a sup-semilattice
(L, ∨) that satisfies properties L1–L3 of Table 1, an
inf-semilattice (L, ∧) that satisfies properties L1′–L3′,
and the two binary operations of supremum and infi-
mum are related via properties L4, L4′ that make them
dual to each other.

In a lattice L with universal bounds O and I , an el-
ement X ∈ L is said to have a complement Xc ∈ L
if X ∨ Xc = I and X ∧ Xc = O . If all the ele-
ments of L have complements, then L is called com-
plemented. A lattice is called Boolean if it is com-
plemented and distributive. In any Boolean lattice the

complement of each element is unique and involutive:
(Xc)c = X .

A subset A of a complete lattice L is called sup-
generating (resp. inf-generating) if each lattice element
can be expressed as a supremum (resp. infimum) of
members of A. Such generators can be found if the
lattice has atom-like elements. Specifically, an element
A ∈ L is called an atom if it is a minimal element of
L\{O}. Respectively, a dual atom is called any maxi-
mal element of L\{I }. Atoms may not exist in a lattice.
A weaker concept is the semi-atom: a nonzero element
A ∈ L is called a semi-atom if A ≤ X ∨ Y implies
A ≤ X or A ≤ Y . A lattice is called atomic (resp. semi-
atomic) if the class of its atoms (resp. semi-atoms) is
sup-generating. Dually, we can also define dual (semi)
atoms, which, if they form an inf-generating class, cre-
ate a dual (semi) atomic lattice.

In this paper we deal mainly with function lattices.
The underlying set of these lattices is the setS = V

E of
all functions F : E → V whose domain is an arbitrary
nonempty set E and range is a subset of the value set
V; this function class is also denoted by Fun(E, V).
The value set V is always a complete lattice; let its
partial order, supremum and infimum be ≤, ∨, and
∧, respectively. Then, the complete lattice structure of
V is also inherited by the function space Fun(E, V)
by extending the partial order, supremum and infimum
among points in V to functions pointwise:

F ≤ G ⇔ F(x) ≤ G(x) ∀x ∈ E
( ∨

i∈J

Fi

)
(x) �

∨

i∈J

Fi (x), x ∈ E (1)

( ∧

i∈J

Fi

)
(x) �

∧

i∈J

Fi (x), x ∈ E

where F, G, Fi ∈ Fun(E, V) and J is an abritrary in-
dex set. Thus the function Fun(E, V) lattice inherits
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many of the extra properties that the value lattice
may have, such as its distributivity type or Boolean
nature. An important example is the function lattice
Fun(Rm, R̄), i.e. the class of m-dimensional extended
real-valued signals.

2.2. Monotone Lattice Operators

The material in this section follows [3, 15, 38]. Let
L be a complete distributive lattice and let O(L) be
the set of all operators on L, i.e., mappings from L to
itself. This is an example of a function lattice where
the domain and value set are both equal to L. Given
two such operators � and �, we can consider their
composition ��(X ) = �(�(X )). Also we can define a
partial ordering ≤ between them, their supremum �∨
� and infimum � ∧ � in the obvious way induced by
the corresponding operations on L. Equipped with the
above ordering, supremum and infimum, the set O(L)
becomes a lattice which inherits many of the possible
properties ofL, such as completeness and distributivity.
Next follow some definitions for lattice operators. The
identity operator is id(X ) = X . An operator � is called:
extensive (resp. anti-extensive) if id ≤ � (resp. � ≤
id); idempotent if �2 = � where �n denotes the n-fold
composition of � with itself; involution if �2 = id.

Of great interest are the monotone operators. A lat-
tice operator � is called increasing or isotone (resp.
decreasing or antitone) if it is order-preserving (resp.
order-inverting), i.e., ∀X, Y ,

increasing: X ≤ Y ⇒ �(X ) ≤ �(Y )
decreasing: X ≤ Y ⇒ �(X ) ≥ �(Y )

Examples of monotone operators are the morphisms. A
lattice homomorphism is any operator that preserves (fi-
nite) suprema and infima; if in addition it is a bijection,
then it is called an automorphism. Homomorphisms are
increasing. Conversely, a dual homomorphism inverts
suprema and infima. It can be shown that an operator
� is an automorphism (resp. dual automorphism) if it
is a bijection and both � and its inverse �−1 are in-
creasing (resp. decreasing). Finally, a negation ν is a
non-identity dual automorphism that is also involutive,
i.e., ν2 = id; we often write X∗ = ν(X ) for the negative
of a lattice element. Given a lattice operator �, its cor-
responding negative operator is defined as �∗ = ν�ν;
i.e., �∗(X ) = [�(X∗)]∗.

Four important types of increasing operators, which
are fundamental for unifying lattice image processing,

are the following:
δ is dilation iff δ(

∨
i∈J Xi) = ∨

i∈J δ(Xi)
ε is erosion iff ε(

∧
i∈J Xi) = ∧

i∈J ε(Xi)
α is opening iff α is increasing, idempotent &

anti-extensive
β is closing iff β is increasing, idempotent

& extensive

The first two definitions require arbitrary (possibly in-
finite) collections {Xi : i ∈ J } of lattice elements;
hence, the dilation and erosion operators need com-
plete lattices.

Dilations and erosions come in pairs as the following
concept reveals. The operator pair (ε, δ) is called an
adjunction [15, 38] if

δ(X ) ≤ Y ⇔ X ≤ ε(Y ) ∀X, Y ∈ L (2)

Given a dilation δ, there is a unique erosion

εδ(Y ) =
∨

{X : δ(X ) ≤ Y } (3)

such that (εδ, δ) is adjunction. Conversely, given an
erosion ε, there is a unique dilation

δε(X ) =
∧

{Y : X ≤ ε(Y )} (4)

such that (ε, δε) is adjunction. Some useful facts about
adjunctions are given next:

Proposition 1 ([15, 38]). Let (ε, δ) be an adjunction.
Then:

(i) δ is a dilation with δ(O) = O and ε is an erosion
with ε(I ) = I .

(ii) δε is an opening, and εδ is a closing.
(iii) If (ε j , δ j ), j ∈ J , are adjunctions, then (

∧
j ε j ,∨

j δ j ) is an adjunction.
(iv) If ψ is a lattice automorphism, then (ψ, ψ−1) is an

adjunction.

2.3. Lattice-Ordered Monoids

The following material follows [3, 7]. A poset, lat-
tice, or semilattice L is often endowed with additional
structure of the group type. Namely, L may have an
additional binary operation, called symbolically the
‘multiplication’ �, under which (L, �) is any of the
following:
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Semigroup if � is associative.
Monoid if � is associative and has identity element.
Group if � is associative, has identity, and each element

has an inverse.

In addition, if � is also commutative, we obtain a com-
mutative semigroup/monoid/group. Henceforth, we
shall deal only with commutative (semi)group oper-
ations �.

A lattice-ordered group is an algebra (L, ∨, ∧, �) in
which (L, ∨, ∧) is a lattice, (L, �) is a group, and the
group ‘multiplication’ is increasing. It follows that any
group translation X 
→ A�X is a lattice automorphism.

An algebra (M, ∨, �) is called a semilattice-ordered
monoid if M is a sup-semilattice under ∨, monoid
under �, and � distributes over ∨:

A � (X ∨ Y ) = (A � X ) ∨ (A � Y ) (5)

for all A, B, X, Y ∈M. If M also has an infimum
∧ that (together with ∨) makes it a lattice, then
(M, ∨, ∧, �) is called a lattice-ordered monoid. Sup-
pose now that M is also a monoid under a ‘dual mul-
tiplication’ operation �′ that distributes over infimum:

A �′ (X ∧ Y ) = (A �′ X ) ∧ (A �′ Y ) (6)

Now M has four binary operations. We call the result-
ing algebra (M, ∨, ∧, �, �′) a lattice-ordered double
monoid. To the above definitions we add the word com-
plete if M a complete lattice and the distributivities
involved are infinite. For algebraic structures similar
to the above definitions alternative names2 have been
used in previous works related to discrete-event control
systems.

In any lattice-ordered double monoid the distributiv-
ity of � over ∨ and of �′ over ∧ imply that both � and
�′ are increasing; i.e.,

X ≤ Y ⇒ A � X ≤ A � Y
X ≤ Y ⇒ A �′ X ≤ A �′ Y

(7)

These properties imply in turn that

A � (X ∧ Y ) ≤ (A � X ) ∧ (A � Y )
A �′ (X ∨ Y ) ≥ (A �′ X ) ∨ (A �′ Y )

(8)

If � = �′, we have a self-dual ‘multiplication’. This
always happens if (M, �) is a group; in this case we
obtain a lattice-ordered group, and the inequalities (8)
become equalities.

3. Minimax Signal and System Representations

3.1. Algebraic Structures on the Scalars

We henceforth assume that all vector elements or sig-
nals involved in the description of the systems exam-
ined herein take their values from a set V of scalars,
which in general will be a subset of the set R̄ =
R ∪ {−∞, ∞} of extended real numbers. Under the
standard real number ordering ≤, V is a chain, and∨

and
∧

become the standard supremum and infi-
mum on the reals. We assume that V is universally
bounded, i.e., contains its least Vinf �

∧
V and great-

est element Vsup �
∨

V. For the unified lattice signal
processing model we need to equip V with four binary
operations:

(A). A generalized ‘addition’ under which V be-
comes a complete sup-semilattice. We shall henceforth
fix this ‘addition’ to be the standard supremum ∨ on
R̄.

(A′). A ‘dual addition’ which makes V a complete
inf-semilattice and is related to the generalized ‘addi-
tion’ via the absorption law L4 of Table 1. The stan-
dard infimum ∧ on R̄ will henceforth be this ‘dual
addition’.

(M). A commutative generalized ‘multiplication’ �

under which: (i) V is a monoid with identity element
Vid and null element Vinf, i.e.,

a � Vid = a, a � Vinf = Vinf, ∀a ∈ V, (9)

and (ii) � is a scalar dilation, i.e., distributes over any
supremum

a �

(
∨

i∈J

xi

)

=
∨

i∈J

(a � xi ) (10)

for any (possibly infinite) index set J . Namely,
(V, ∨, ∧, �) is a dioid [6].

(M′). A commutative ‘dual multiplication’ �′ under
which: (i) V is a monoid with identity V

′
id and a null

element Vsup, i.e.,

a �′
V

′
id = a, a �′

Vsup = Vsup, ∀a ∈ V, (11)

and (ii) �′ is a scalar erosion, i.e., distributes over any
infimum.

We group the above requirements into the following
sets of conditions:
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(C1). (V, ∨, ∧) is a complete infinitely-distributive lat-
tice.
(C2). (V, �) is a commutative monoid, and � is a dila-
tion.
(C3). (V, �′) is a commutative monoid, and �′ is an
erosion.

Under the above assumptions (V, ∨, ∧, �, �′) be-
comes a commutative complete lattice-ordered dou-
ble monoid, in short clodum. This will be the most
general and minimally required algebraic structure
we consider for the set of scalars. We avoid degen-
erate cases by henceforth assuming that each ‘addi-
tion’ is different from its corresponding ‘multiplica-
tion’, i.e., ∨ �= � and ∧ �= �′. However, � may be
the same as �′, in which case we have a self-dual
‘multiplication’.

In some cases we may have some additional alge-
braic structure in V. This occurs if we assume that
V = VG ∪ {Vinf, Vsup} where (VG, �) is a commutative
group. Then, for each element a ∈ VG there exists its
‘multiplicative’ inverse a−1 such that a � a−1 = Vid.
Further, (VG, ∨, ∧, �, �) is a lattice-ordered group with
self-dual ‘multiplication’. The ‘multiplication’ � and its
self-dual �′ (which coincide over VG) can be extended
over the entire V by adding the rules in (9) and (11)
involving the null elements. The resulting richer struc-
ture (V, ∨, ∧, �, �) is called a bounded lattice-ordered
group [7], in short blog.

A clodum V is called self-conjugate if it has a
negation, i.e. an involutive dual automorphism that
maps each element a to its conjugate element a∗ such
that

(a ∨ b)∗ = a∗ ∧ b∗

(a � b)∗ = a∗ �′ b∗ (12)

If V is a blog, then it becomes self-conjugate by setting

a∗ =






a−1 if Vinf < a < Vsup

Vsup if a = Vinf

Vinf if a = Vsup

(13)

3.2. Signal Space and Impulse Representations

The space S = Fun(E, V) of signals with values in
the lattice V is a special case of a function lattice. Of
main importance is the case E = R

2 or E = Z
2,

where S becomes the set of all image signals defined
on the continuous or discrete image plane and taking

scalar values in V. But E could also be a finite index
set for matrix-based image processing or the set of ver-
tices of a graph in cases of images defined on a graph.
The signal space S becomes a complete infinitely dis-
tributive lattice if we define on it a partial ordering ≤,
supremum

∨
i Fi , and infimum

∧
i Fi by extending the

corresponding scalar operations to signals pointwise as
in (2). If we now consider that V is not only a lattice but
a clodum, then we can define a signal ‘multiplication’
� and its dual �′ pointwise

(F � G)(x) � F(x) � G(x),

(F �′ G)(x) � F(x) �′ G(x)

Now the signal space S = Fun(E, V) equipped under
the four binary operations ∨, ∧, � and �′ becomes a
clodum. The corresponding signal ‘additions’ are pro-
vided by the supremum and infimum. Henceforth, our
signal space will be the above clodum.

Viewed as a lattice, the signal clodum S possesses
semi-atoms qy,v and dual semi-atoms q ′

y,v which are
the following elementary pulse signals

qy,v(x) �
{

v, x = y

Vinf, x �= y
,

(14)

q ′
y,v(x) �

{
v, x = y

Vsup, x �= y

Further, since S also has a monoid structure, we
can consider translations of signal values via their
‘�-multiplication’ by constants v, denoted as λv :
a 
→ a � v; we call them vertical translations, in short
V-translations, since geometrically they affect the sig-
nal graph in the vertical direction. Similarly we can
define dual vertical translations λ′

v : a 
→ a �′ v. The
scalar mappings λ,λ′ can be extended to signals point-
wise; we keep the same symbol for both scalar and
signal operations:

λv(F)(x) � λv[F(x)] = v � F(x),

λ′
v(F)(x) � λ′

v[F(x)] = v �′ F(x)

Now, the signal semi-atoms can be expressed as
V-translations of only those whose height equals the
identity. Namely, if we define

qy(x) �
{

Vid, x = y

Vinf, x �= y
, q ′

y(x) �
{

V
′
id, x = y

Vsup, x �= y

(15)
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as the impulse and dual impulse signals, respectively,
then all semi-atoms can be expressed as V-translations
of the impulse signals:

qy,v(x) = v � qy(x), q ′
y,v(x) = v �′ q ′

y(x) (16)

Hence, since S is a semi-atomic lattice, every sig-
nal F(x) admits a representation as a supremum of
V-translated impulses placed at all points of the signal
domain or as infimum of dual V-translated impulses:

F(x) =
∨

y∈E

F(y) � qy(x) =
∧

y∈E

F(y) �′ q ′
y(x)

(17)

3.3. Increasing Systems Invariant Under Vertical
�-Translations

We are interested in increasing operators on the signal
clodum S = Fun(E, V). The previous V-translations
λv : F 
→ v � F of signals F via ‘multiplication’
by constants v are increasing operators. Actually they
are dilations of the simplest type, which we shall often
call elementary signal dilations. Their collection Tv =
{λv : v ∈ VG} forms under composition a commutative
monoid of signal dilations; i.e., λaλb = λa�b, where

VG =
{

V \ {Vinf, Vsup} if V is blog

V if otherwise

A signal mapping ψ is called V-translation invariant
operator, in short Tv-operator, if it commutes with any
V-translation, i.e., ψλv =λvψ for all v. All the above
concepts apply as well for signal translations via dual
‘multiplication’. Each dual V-translation λ′

v : F 
→
v �′ F is an elementary signal erosion, and their collec-
tion T

′
v = {λ′

v : v ∈ VG} is a monoid of signal erosions.
Namely, we call an operator dual V-translation invari-
ant iff it commutes with any such dual V-translation. If
V is a blog, the above two monoids Tv, T

′
v become the

same group of automorphisms on the signal lattice.
Important examples of increasing operators are the

dilations and erosions. The following provides a de-
composition of signal dilations and erosions on the
function lattice S into suprema and infima of scalar
dilations and erosions on V, respectively.

Proposition 2 ([15]). Let V be a complete lattice and
E an arbitrary nonempty set. The pair (ε, δ) is an ad-
junction on the function lattice Fun(E, V) iff for every

x, y ∈ E there exists an adjunction (ex,y, dy,x ) on V

such that

δ(F)(x) =
∨

y∈E

dy,x (F(y)),

(18)
ε(G)(y) =

∧

x∈E

ex,y(G(x))

for x, y ∈ E and F, G ∈ Fun(E, V).

In the signal clodum S, if we consider the impulse
signals qy(x) and their duals q ′

y(x) in (15), we can en-
able the decomposition (18) by defining the scalar di-
lations to be

dy,x (v) = δ(qy,v)(x) = δ(v � qy)(x), x, y ∈ E, v ∈ V

(19)

and ex,y to be the adjoint erosion of dy,x .
Dually we can define the scalar erosions εx,y from

the action of ε on the dual impulses q ′, i.e.

ex,y(v) = ε(q ′
x,v)(y) = ε(v �′ qx )(y), x, y ∈ E, v ∈ V

(20)

and then define the scalar dilations dy,x as adjoints of
ex,y .

An important outcome from the above discussion
is that the output signals from dilation (resp. erosion)
operators excited by V-translated impulses are suffi-
cient for the supremal (resp. infimal) representation of
the operators. Henceforth we assume that these op-
erators are V-translation invariant. For dilations and
erosions this invariance implies that they obey an in-
teresting nonlinear superposition principle which has
direct conceptual analogies with the linear superposi-
tion obeyed by linear operators. Specifically, it is simple
to show that an operator δ is a V-translation invariant
dilation iff

δ

(
∨

i∈J

ci � Fi

)

=
∨

i∈J

ci � δ(Fi ), ci ∈ V, Fi ∈ S

(21)

for any index set J . Dually, an operator ε is a dual
V-translation invariant erosion iff

ε

(
∧

i∈J

ci �′ Fi

)

=
∧

i∈J

ci �′ ε(Fi ), ci ∈ V, Fi ∈ S

(22)
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Compare the two above nonlinear superpositions
with the linear superposition obeyed by a linear op-
erator ψ :

ψ

( ∑

i∈J

ai · Fi

)

=
∑

i∈J

ai · ψ(Fi ) (23)

where J is a finite index set, ai are constants from a
field (e.g. the set of reals or complex numbers) and Fi

are field-valued signals from a linear space.
If we assume that our operators are V-translation in-

variant, then their outputs obtain a simplified structure
which is best described by defining next the opera-
tor’s impulse responses. Given a dilation operator δ,
its impulse response function is the parametrized map
Hy : E → Fun(E, V) defined at each y ∈ E as the
output signal from δ when the input is the impulse qy .
Dually, for an erosion operator ε we define its dual im-
pulse response function H ′ via its outputs when excited
by dual impulses:

Hy(x) � δ(qy)(x), H ′
y(x) � ε(q ′

y)(x), x, y ∈ E

(24)

The following gives a unified representation for all
V-translation invariant dilations and erosions on a sig-
nal clodum.

Theorem 1. Consider a clodum (V, ∨, ∧, �, �′) of
scalars and let S = Fun(E, V) be the corresponding
signal clodum space where E is an arbitrary nonempty
set. Then:

(a) An operator δ on S is a dilation invariant to V-
translations, i.e. obeys (21), if and only if it can be
expressed as

δ(F)(x) =
∨

y∈E

F(y) � Hy(x) (25)

where Hy is its impulse response function in (24).
(b) An operator ε on S is an erosion invariant to dual

V-translations, i.e. obeys (22), if and only if it can
be expressed as

ε(F)(x) =
∧

y∈E

F(y) �′ H ′
y(x) (26)

where H ′
y is its dual impulse response function in

(24).

Proof: ‘Only If part’: (a) Assume that δ is a
V-translation invariant dilation. Then by representing
the input signal F via impulses as in (17) we obtain

δ(F)(x) =
∨

y

δ(F(y) � qy)(x) =
∨

y

F(y) � Hy(x)

(b) If ε is a dual V-translation invariant erosion, then
by dual impulse representation of the input as in (17)
we obtain

ε(F)(x) =
∧

y

ε(F(y) �′ q ′
y)(x) =

∧

y

F(y) �′ H ′
y(x)

‘If part’: (a) Consider an operator δ defined as in (25).
By identifying the terms F(y) � Hy(x) as the scalar di-
lations dy,x (F(y)) used in Proposition 2 we conclude
that δ is a signal dilation. Further, since the group
�-‘multiplication’ distributes over suprema, δ com-
mutes with �-‘multiplication’ by constants. (b) Sim-
ilarly, if an operator ε is defined as in (26), by using
the dual arguments of those used in (a), it follows that
ε is a dual V-translation invariant erosion.

Note that the operations in (25) and (26) are like
adaptive nonlinear convolutions where a dilation (resp.
erosion) system’s output is obtained as supremum
(resp. infimum) of various impulse response signals
produced by exciting with impulses at all points and
weighted by the input signal values via a group-like
�-‘multiplication’.

4. Translation-Invariant Lattice Image
Processing Systems

Henceforth we shall work with the signal clo-
dum (S, ∨, ∧, �, �′) where the underlying set S =
Fun(E, V) consists of all signals with values from a
scalar clodum V ⊆ R̄ and defined on a multidimen-
sional Euclidean domain E that is a subset of R

m

or Z
m , m = 1, 2, . . .. We shall consider monoids

of generalized signal translations, which include both
horizontal and vertical translations, and shall prove
that signal dilations (resp. erosions) invariant under
such translations are equivalent to generalized supre-
mal (resp. infimal) convolutions. Related adjunctions
will also be found from pairs of such operators.
These results generalize Heijman’s work [15] where
the vertical translations were constrained to form a
scalar group and T was constrained to be group of
automorphisms.
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4.1. Generalized Translations

The signal domain E possesses various commutative
group structures which allow us to define correspond-
ing horizontal motions that form two major types
of Euclidean motions. The most obvious and practi-
cal choice is to set E = R

m or Z
m and consider the

horizontal translations on the image plane where each
such operator µh(F)(x) = F(x − h) performs a pla-
nar shift of an input signal F(x) along the vector h.
The class Tht = {µh : h ∈ E} of all horizontal trans-
lations under composition is a commutative group of
automorphisms both on the Boolean lattice P(E) (the
collection of all subsets of E) as well as on the signal
lattice S; i.e. µxµy = µx+y . A second choice, only
for the case where E = R

2 \ {(0, 0)}, is to consider po-
lar motions µr,θ : that transform the support of an input
signal via a rotation by θ and a radial multiplication
by r . The class Thr = {µr,θ : r > 0, θ ∈ [0, 2π )} of
all polar motions is also a commutative group of au-
tomorphisms; i.e. µr,θµρ,φ = µrρ,θ+φ . Both of these
choices were studied in [14, 15]. As a third possibil-
ity we can consider the group of all Euclidean planar
motions, i.e. combined translations and rotations; this
is a non-commutative group of automorphisms stud-
ied in [35]. Henceforth, we focus only on the com-
mutative cases, i.e. the first two choices. However, for
notational simplicity, we shall use only the horizon-
tal translation group and write it simply as Th , even
if our results will also include the case of polar mo-
tions. Note also that the horizontal translations apply
to more general signal domains, both continuous and
discrete.

In the previous section we worked with vertical
translations λv[F(x)] = F(x) � v whose collection Tv

forms a commutative monoid of signal dilations, as well
as with dual vertical translations λ′

v[F(x)] = F(x) �′ v
which are erosions. The composition of these two (hor-
izontal and vertical) types of translations yields a gen-
eral translation τ and its dual τ ′:

τ h,v(F)(x) � F(x − h) � v,
(27)

τ ′
h,v(F)(x) � F(x − h) �′ v

Note that the horizontal and vertical translations com-
mute:

τ h,v = µhλv = λvµh, τ ′
h,v = µhλ

′
v = λ′

vµh

(28)

The collection of all such translations

T = Th × Tv = {τ h,v : h ∈ E, v ∈ VG} (29)

forms a monoid under composition:

τ x,aτ y,b = τ x+y,a�b (30)

If V is a blog, then T becomes a group of automor-
phisms. However, in the general case, T is just a com-
mutative monoid of elementary signal dilations on S.
Dually, the collection T

′ = {τ ′
h,v : h ∈ E, v ∈ VG}

forms a monoid of signal erosions. We call an opera-
tor ψ translation-invariant, in short T-invariant if it
commutes with all translations τ ∈ T; i.e. ψτ = τψ .

Consider now two elementary signals, called the im-
pulse q and the dual impulse q ′

q(x)�
{

Vid, x = �0
Vinf, x �= �0 , q ′(x)�

{
V

′
id, x = �0

Vsup, x �= �0
(31)

which are the pulse semi-atoms of S placed at the ori-
gin and with identity height. Then every signal can be
represented as a supremum of translated impulses or as
infimum of dual-translated impulses:

F(x) =
∨

y∈E

F(y) � q(x − y) =
∧

y∈E

F(y) �′ q ′(x − y)

(32)

4.2. Generalized Convolution Representation
of T-Invariant Dilations and Erosions

Consider now a translation-invariant dilation on S,
i.e. an operator � that obeys the nonlinear superpo-
sition (21) and is horizontally tranlation-invariant, or
equivalently distributes over suprema and obeys the
T-invariance. We call � a dilation translation-
invariant (DTI) system. Let H = �(q) be the system’s
impulse response. We shall show next that, the DTI
system’s output �(F) due to an input signal F equals
the following nonlinear sup-� convolution ©� of the
input with the impulse response:

(F ©� H )(x) �
∨

y∈E

F(y) � H (x − y) (33)

Dually, consider a translation-invariant signal erosion,
i.e. an operator E that distributes over infima and obeys
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the T
′-invariance; we call E an erosion translation-

invariant (ETI) system. Let H ′ = E(q ′) be the system’s
dual impulse response. As shown next, the ETI sys-
tem’s output E(F) equals the following nonlinear inf-�′

convolution ©� ′ of the input F with the dual impulse
response H ′:

(F ©� ′ H ′)(x) �
∧

y∈E

F(y) �′ H ′(x − y) (34)

Thus, DTI and ETI systems are represented by the
above nonlinear convolutions, and conversely. Overall,
we have the following fundamental result.

Theorem 2. Consider a clodum (V, ∨, ∧, �, �′) of
scalars and let S = Fun(E, V) be the correspond-
ing signal clodum space where E = R

m or Z
m ,

m = 1, 2, .... Over this clodum, consider the monoid
T of generalized translations defined in (29) and the
monoid T

′ of dual translations. Then:

(a) (DTI Systems): A signal operator � onS is a trans-
lation invariant dilation iff it can be represented as
the sup-� convolution of the input signal with the
system’s impulse response H = �(q).

(b) (ETI Systems): A signal operator E on S is a trans-
lation invariant erosion iff it can be represented as
the inf-�′ convolution of the input signal with the
system’s dual impulse response H ′ = E(q ′).

Proof: (a) ‘Only If part’: Assume that � is a
T-invariant dilation. Then by applying � to the im-
pulse sup-representation (32) of an input signal F(x),
we obtain

�(F)(x) =
∨

y

�[F(y) � q(x − y)]

=
∨

y

F(y) � �[q(x − y)]

=
∨

y

F(y) � H (x − y) = (F ©� H )(x)

Thus, �(F) = F ©� H . ‘If part’: Assume now that
�(F) = F ©� H . Then, it is simple to show that the
sup-� convolution ©� is T-invariant, since it commutes
with any horizontal translation as well as with any ver-
tical �-translation. Further, the sup-� convolution dis-
tributes over suprema, and hence it is a signal dilation.
(b) The proof for ETI systems is the dual of that for
DTI systems and follows by applying the T

′-invariant

erosion E to the impulse inf-representation (32) of the
input signal F .

The above theorem has a direct conceptual anal-
ogy with Riesz’s representation theorem for lin-
ear operators, which states that linear and horizon-
tally translation-invariant (in short, LTI) operators are
uniquely represented as linear (sum-product) convolu-
tions of the input F with their impulse response H :

ψ is LTI ⇔ ψ(F)(x) = (F∗H )(x)

=
∑

y

F(y)H (x − y) (35)

4.3. Generalized Convolution Adjunctions

Let us now find the adjoint operators of the above non-
linear convolutions. A T-invariant dilation �H (F) =
F ©� H can be represented via scalar dilations as

�H (F)(x) =
∨

y∈E

F(y) � H (x − y)

=
∨

y∈E

λH (x−y)(F(y)) (36)

where the V-translation λa(v) = a � v is a scalar di-
lation. Let λ←

a be the scalar adjoint erosion of λa . By
setting

λH (x−y)(v) = dy,x (v), λ←
H (x−y)(w) = ex,y(w)

(37)

we can identify the scalar adjunction (λ←
H (x−y),

λH (x−y)) of V-translations with the scalar adjunction
(ex,y, dy,x ) of Proposition 2. Then, it follows that the
adjoint signal erosion of �H is

EH (G)(y) =
∧

x∈E

λ←
H (x−y)(G(x)) (38)

If V is a blog, i.e. VG = V \{Vinf, Vsup} is a group under
�-‘multiplication’, let v∗ denote the conjugate of each
scalar v ∈ V; this coincides with the group inverse if v

is a group element. Then, the scalar adjoint erosion can
be written as λ←

a (w) = a∗ � w, and hence the adjoint
signal erosion becomes

EH (G)(y) =
∧

x∈E

G(x) � [H (x − y)]∗ (39)
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By interchanging x with y we can write this as

EH (G)(x) =
∧

y∈E

G(y) � [H (y − x)]∗ (40)

which, when compared with (36), reveals that the ad-
joint of a signal sup-� convolution has the computa-
tional structure of an inf-� correlation.

Similarly, if we consider a T
′-erosion EH ′ (G) =

G ©� ′ H ′ and decompose it into scalar erosions as

EH ′ (G)(x) =
∧

y∈E

G(y) �′ H ′(x − y)

=
∧

y∈E

λ′
H ′(x−y)(G(y)) (41)

where λ′
a(w) = a �′ w are dual V-translations, then the

adjoint signal dilation of EH ′ is

�H ′ (F)(y) =
∨

x∈E

λ′←
H ′(x−y)(F(x)) (42)

where λ′←
a is the scalar adjoint dilation of λ′

a . If V is a
blog and its self-dual multiplication � = �′ is a group
operation, each scalar v possesses a conjugate v∗ which
coincides with group inverses. Thus, for the group case,
the scalar adjoint dilation becomes as λ′←

a (v) = a∗ �v.
Then, the adjoint signal dilation becomes

�H ′ (F)(y) =
∨

x∈E

F(x) � [H ′(x − y)]∗ (43)

We see in both cases that while a T-invariant di-
lation (or T

′-invariant erosion) has the computational
structure of a signal convolution, its corresponding ad-
joint has the structure of a nonlinear signal correlation.
Now, are these adjoint operators translation-invariant?
The next result describes the limits of such invariances.

Proposition 3. Let (ε, δ) be an adjunction on the
clodum S. Then:

(a) δ is invariant to any horizontal translation µ iff ε
is invariant to such translation; i.e. δµ = µδ ⇔
εµ = µε.

(b) Consider a scalar adjunction (λ←
, λ) on V where

λ is a vertical translation and λ← is its adjoint.
Then δ is invariant to a vertical translation λ iff
ε is invariant to the adjoint translation λ←; i.e.
δλ = λδ ⇔ ελ← = λ←ε.

(c) Consider a scalar adjunction (λ′
, λ′←) on V where

λ′ is a dual vertical translation and λ′← is its ad-
joint. Then ε is invariant to a dual vertical trans-
lation λ′ iff δ is invariant to the adjoint translation
λ′←.

(d) If V is a blog, δ is T-invariant iff ε is T-invariant.

Proof: (a) This is a simple corollary of the fact that
µ is an automorphism. (b) From the two adjunctions
we obtain:

λδ(F) ≤ G ⇔ δ(F) ≤ λ←(G) ⇔ F ≤ ελ←(G)
δλ(F) ≤ G ⇔ λ(F) ≤ ε(G) ⇔ F ≤ λ←ε(G)

Since δλ = λδ and the above holds for all F, G, we
conclude that ελ← = λ←ε. (c) This is the dual of (b).
(d) If V is a blog, then each vertical translation λ is
an automorphism and its adjoint λ← coincides with its
inverse.

Concluding, our emphasis on working always with
adjunctions (ε, δ) is justified by the following rea-
sons: (i) If we have an adjunction, we can immedi-
ately create an opening α(F) = δε(F) and a closing
β(F) = εδ(F), by simply concatenating the erosion
and dilation. (ii) If a signal dilation (resp. erosion) is
not invertible, then its adjoint erosion (resp. dilation)
is the closest to an ‘inverse operator’. (iii) Adjunctions
provide us with many tools to analyze their constituent
operators.

4.4. Representation Theorems

Matheron [29] proved a famous representation theo-
rem stating that any set operator ψ on P(E) that is
translation-invariant (TI) and increasing can be repre-
sented as the union of erosions by all sets of its kernel
Ker(ψ) = {X : �0 ∈ ψ(X )} as well as an intersection of
dilations by all sets of the kernel of the negative opera-
tor ψ∗, where �0 is the origin of E. This representation
theory was extended by Maragos [21] to both func-
tion and set operators by using a basis for the kernel.
Specifically, if � is a TI signal operator on Fun(E, R̄)
its kernel is defined by

Ker(�) = {F : �(F)(�0) ≥ 0} (44)

and its basis consists of the minimal kernel functions.
Thus, increasing TI signal operators are represented
as supremum (infimum) of Minkowski erosions (dila-
tions) by functions in their kernel, or minimally (if they
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are also upper-semicontinuous) by functions in their
basis. Banon and Barrera [1] extended the kernel repre-
sentation theory to non-monotone operators by proving
that any TI set operator can be represented as a union
of hit-miss operators. A subclass of Maragos’ repre-
sentations dealt with flat operators commuting with
thresholding which admit sup-inf representations, i.e.
supremum of local infima. Applications of this case
led to the max-min representation of all rank operators
and stack filters [21, 24]. The sup-inf representation
of flat operators was extended by Guichard and Morel
[12] to contrast-invariant operators. The applications
of basis representations of increasing TI operators in-
clude: (i) System design as supremum (resp. infimum)
of Minkowski erosions (resp. dilations). Such sup-inf
operators have been applied to nonlinear filtering [9, 21,
24]. (ii) Development of analytic tools for nonlinear
operators. (iii) Approximation of nonlinear operators
via a finite sup-inf combination of erosions-dilations,
which are easy to implement, with many applications
to image restoration and document image analysis [20].
(iv) Sup-inf operators applied to PDE-based modeling
and implementation of multiscale image operators [12].

All the above representations dealt with classical
morphology, based on the max-plus algebra. Gener-
alized representations of increasing TI operators on
complete lattices were developed by Serra [38] and
Heijmans [14, 15]. In particular, Heijmans developed
representations for increasing operators on complete
lattices that are invariant to a commutative group
of lattice automorphisms, e.g. translations or rota-
tions. Roerdink [35] extended these results to non-
commutative groups, e.g. combined translations and
rotations.

In this section we extend the kernel representation
theory for increasing T-invariant operators � on the
signal clodum S = Fun(E, V). The difficulty here is
that T is a group of automorphisms when V is a blog, but
otherwise it is only a monoid of dilations or erosions.
We define the kernel of � by

Ker(�) � {F : �(F) ≥ q} = {F : �(F)(�0) ≥ Vid}
(45)

where Vid is the identity element of the monoid (V, �).
We can reconstruct the operator � from its kernel by
adding an extra condition: we henceforth assume that
� also commutes with adjoint operators λ← of verti-
cal translations λ. Thus, � is invariant to all combina-
tions of horizontal translations µ and vertical transla-

tions λ as well as to adjoint vertical translations λ←.
We abbreviate this combined invariance by saying that
� is Ta-invariant. Obviously, if V is a blog, then all
vertical translations λ are automorphisms whose in-
verses are the adjoints λ←; hence, in the blog case, the
T-invariance is identical to the Ta-invariance. But in the
general case Ta-invariance places an extra constraint
on �.

Now observe that, for any semi-atom

qh,v(x) = q(x − h) � v = µhλv(q),

the adjunction (λ←
v , λv) implies that

qh,v ≤ �(F) ⇔ λv(q) ≤ �(µ−h F) ⇔ q

≤ �(λ←
v µ−h F) (46)

Therefore, we can reconstruct the operator � from
knowledge of its kernel Ker(�) as follows:

�(F)(x) = sup{v ∈ V : λ←
v µ−x (F) ∈ Ker(�)}

(47)

The kernel has several properties outlined next.

Proposition 4. Consider Ta-operators on the signal
clodum.

(a) If � is increasing and F ∈ Ker(�), then G ∈
Ker(�) for all G ≥ F.

(b) If {�i : i ∈ J } is an indexed family of operators,
then

Ker(�) =
⋃

i

Ker(�i ) ⇒ � =
∨

i

�i (48)

(c) Ker(
∨

i �i ) ⊆ ⋃
i Ker(�i ).

(d) Ker(
∧

i �i ) = ⋂
i Ker(�i ).

(e) �1 ≤ �2 ⇒ Ker(�1) ⊆ Ker(�2).

Proof: (a) If � is increasing, F∈Ker(�) and F ≤ G,
we have q ≤ �(F) ≤ �(G). Therefore, G ∈ Ker(�).
(b) Let K = ⋃

i Ki , where K = Ker(�) and Ki =
Ker(�i ). Then

�(F)(x) = sup{v : λ←
v µ−x (F) ∈ K}

= sup{v : λ←
v µ−x (F) ∈ Ki , some i}

= sup{v : �i (λ
←
v µ−x (F)) ≥ q, some i}

= sup{v : λ←
v �i (µ−x (F)) ≥ q, some i}

= sup{v : �i (µ−x (F)) ≥ λv(q), some i}
= sup{v : �i (F)(x) ≥ v, some i}
= ∨

i �i (F)(x) (49)
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Parts (c), (d) and (e) are straightforward corollaries of
the kernel definition.

Example: Let �H (F) = F ©� H be a T-invariant
dilation as in (36) and let EH be its adjoint erosion in
(38). The kernel of this erosion is

KH � Ker(EH ) = {F : EH (F)(�0) ≥ Vid}

=
{

F :
∧

x

λ←
H (x)(F(x)) ≥ Vid

}

= {F : λ←
H (x)(F(x)) ≥ Vid ∀x}

=
{

F :
∨

{v : H (x) � v ≤ F(x)}

≥ Vid ∀x

}

= {F : H (x) ≤ F(x) ∀x}
= {F : F ≥ H} (50)

It turns out that the kernel of the above simple erosion
system is the building block of the kernel of a large class
of increasing operators. This leads us to the following
fundamental result.

Theorem 3. Let � be an increasing Ta-invariant op-
erator on the signal clodum S and let (EH , �H ) be
adjunctions where �H (F) = F ©� H are sup-� con-
volutions by functions H in the kernel of �. Then, �

can be represented as the supremum of all the adjoint
erosions:

�(F) =
∨

H∈Ker(�)

EH (F) (51)

Proof: Let K = Ker(�). Since � is increasing, if
H ∈ K and G ≥ H , then G ∈ K. Thus, see (50),
KH = {G : G ≥ H} ⊆ K. Hence,

⋃
H∈K KH ⊆ K.

Also, since {H} ⊆ KH , we have K ⊆ ⋃
H KH . Thus,

K = ⋃
H∈K KH . Then (48) yields the final result (51).

Consider now increasing operators � that are
T

′
a-invariant, i.e. invariant to all compositions of hori-

zontal translationsµ and dual vertical translationsλ′ as
well as invariant to the adjoint λ′← of any dual vertical
translation, where (λ′

, λ′←) is a scalar adjunction. To
find kernel representations for such � we need to de-
fine the various kernel-related concepts in a dual way.
Next we list the basic ideas and results without proof.

(Their derivation can be obtained by using duality of
the previous roofs.) The dual kernel of a T

′
a-invariant

operator � is defined by

Ker′(�) � {F : �(F) ≤ q ′} = {F : �(F)(�0) ≤ V
′
id}
(52)

where V
′
id is the identity element of the monoid (V, �′).

Example: Let EH ′ (F) = F ©� ′ H ′ be a T
′-invariant

erosion as in (41) and let �H ′ be its adjoint dilation in
(42). The dual kernel of this dilation is

K′
H ′ � Ker′(�H ′ ) = {F : F ≤ H ′} (53)

The properties of the dual kernel include the following.

Proposition 4. Consider T
′
a-operators on the signal

clodum.

(a) If � is increasing and F ∈ Ker′(�), then G ∈
Ker′(�) for all G ≤ F.

(b) If {�i : i ∈ J } is an indexed family of operators,
then

Ker′(�) =
⋂

i

Ker′(�i ) ⇒ � =
⋂

i

�i (54)

The above results lead us to the following fundamen-
tal representation.

Theorem 4. Let � be an increasing T
′
a-invariant op-

erator on the signal clodum S and let (EH ′ , �H ′ ) be
adjunctions where EH ′ (F) = F ©� ′ H ′ are inf-�′ con-
volutions by functions H ′ in the dual kernel of �. Then,
� can be represented as the infimum of all the adjoint
dilations:

�(F) =
∧

H ′∈Ker′(�)

�H ′ (F) (55)

5. Special Cases

By specifying V and the ‘multiplication’ � and its dual
�′, we obtain a large variety of classes of nonlinear
image processing systems that are described by the pre-
vious unified representations. Next we briefly describe
three such choises.
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5.1. Max-Sum Image Operators

We set V = R̄ = R ∪ {−∞, +∞}. The ‘multipli-
cations’ � and �′ are the regular extended addition +
and its dual +′ over R̄, respectively; i.e., + and +′ are
identical for finite reals, but a + (−∞) = −∞ and
a +′ (+∞) = +∞ for all a ∈ R̄. Thus, the clodum
of scalars is ([−∞, ∞], ∨, ∧, +, +′). In this case V

is a blog and contains an additive group (R, +) where
each scalar a has an inverse −a that coincides with its
conjugate a∗. The adjunction (EH , �H ) of a sup-sum
convolution (dilation) �H and its adjoint erosion EH

become

�H (F)(x) = (F ⊕ H )(x) �
∨

y∈E

F(y) + H (x − y)

EH (F)(x) = (F � H )(x) �
∧

y∈E

F(y) − H (y − x)

(56)

These are the traditional Minkowski dilation and ero-
sion of an image F by an additive structuring func-
tion H , which have found numerous applications in
nonlinear filtering, image processing and computer vi-
sion [9, 13, 15, 24, 37, 40]. Similarly, the adjunction
(EH ′ , �H ′ ) of an inf-sum convolution (erosion) EH ′ and
its adjoint dilation �H ′ become

EH ′ (F)(x) = (F ⊕′ H )(x)�
∧

y∈E

F(y) +′ H ′(x − y)

�H ′ (F)(x) =
∨

y∈E

F(y) +′ [−H ′(y − x)]

(57)

Note that sup-sum ⊕ and inf-sum ⊕′ convolutions have
been known in optimization [2] and convex analysis
[34] under the names ‘supremal’ and ‘infimal convolu-
tion’.

The signal translations become τ h,v(F)(x) = F(x −
h) + v and their collection T is a commutative group
of automorphisms, studied in [15]. The kernel repre-
sentations of increasing T-operators as a supremum of
Minkowski erosions or as infimum of dilations has been
well studied in [21, 24].

In short, the max-sum case is the algebraically rich-
est and most well explored case in mathematical mor-
phology and in minimax algebra both in theory and in
applications.

5.2. Max-Product Image Operators

Another less explored paradigm, but equally alge-
braically rich with the max-sum case, results when we
choose as set of scalars the extended nonnegative num-
bers V = [0, +∞] and as self-dual �-‘multiplication’
the standard product ‘×’ of nonnegative numbers ex-
tended to include the +∞. Thus, the clodum of scalars
is ([0, ∞], ∨, ∧, ×, ×′). The signal translations be-
come τ h,v(F)(x) = F(x −h)×v and their collection T

is a commutative group of automorphisms, studied in
[15]. As in the max-sum case, the scalar set V is again
a blog and contains a multiplicative group ((0, ∞), ·)
with inverses a−1 that coincide with the conjugate a∗

of each scalar a. Now, the adjunction (EH , �H ) of a
sup-product convolution (dilation) �H and its adjoint
erosion EH become

�H (F)(x) = (F ⊗ H )(x)�
∨

y∈E

F(y) × H (x − y)

(58)
EH (F)(x) =

∧

y∈E

F(y)/H (y − x)

These are translation-invariant Minkowski-like dila-
tion and erosion of an image F by a multiplicative
structuring function H . Some of its properties, their
translation-invariances and kernel representations of
such systems have been studied in [15].

Note that there is an isomorphism between the max-
sum and the max-product enabled by a logarithmic-
exponential pointwise bijection of the image signals.
Despite this isomorphism, we believe that there is a
significant applications potential in this algebraic sys-
tem, which has not been explored so far. This potential
can be appreciated by the following remarks: (i) Im-
age signals are naturally nonnegative and the max-
product dilations-erosions maintain this nonnegativity
of the input signals. (ii) In certain vision applications
there is sometimes the need to include in the visual
processing the logarithm of intensity images; e.g.,
such a nonlinearity approximates some of the early
stages in biological vision systems. This creates the
density (log-intensity) representation of images. Then,
max-sum dilations-erosions of the density image are
equivalent to max-product dilations-erosions of the in-
tensity image.

6. Lattice Operators Using Fuzzy Norms

This section presents an important special case of
our unified latice image processing systems which
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covers a broad area in the intersection of mathematical
morphology and fuzzy logic. We set V = [0, 1] and
the clodum of scalars is ([0, 1], ∨, ∧, T, T ′) where
T (T ′) is a fuzzy intersection (union). The signal
space S = Fun(E, [0, 1]) consists of all image signals
defined on E = R

m or Z
m and assuming real values

in [0, 1]; alternatively, these signals can be viewed as
membership functions of fuzzy sets. This is a more
difficult clodum case than the previous two (max-sum
and max-product) because it is not a blog. Thus, there
are no inverses under the �-‘multiplication’.

6.1. Mathematical Morphology and Fuzzy Logic

Mathematical morphology (MM) and fuzzy sets share
many common theoretical concepts. As an earlier ex-
ample, the use of min/max to extend the intersec-
tion/union of ordinary (crisp) sets to fuzzy sets [41]
has also been used to extend the set-theoretic morpho-
logical shrink/expand operations on binary images to
min/max filtering on graylevel images [10, 31]. While
the field of morphological image analysis was matur-
ing, several researchers developed various other ap-
proaches using fuzzy logic ideas for extending or gen-
eralizing the morphological image operations [4, 39].
The main ingredients of these approaches have been
to (1) map the max-plus structure of Minkowski sig-
nal dilation to a sup-T signal convolution, where T is
some fuzzy intersection norm, and (2) use duality to
map the inf-minus structure of Minkowski signal ero-
sion to a inf-T ′ convolution, where T ′ is a dual fuzzy
union norm. We refer the reader to [30] for connections
and comparisons of all these approaches to fuzzy mor-
phologies. The main disadvantage of these approaches
is that composition of the operators from steps (1) and
(2) is not guaranteed to be an algebraic opening or clos-
ing. In addition to the above approaches, there have
been efforts to combine MM and fuzzy logic or lattices
and neuro-fuzzy systems by fuzzifying respectively the
inclusion indicator or the partial ordering of the lattice,
as done respectively in [5] and [17].

In some of our previous work [25, 27, 28] we used
lattice theory to develop generalizations of morpho-
logical signal and vector operations based on fuzzy
norms that have an adjunction structure. In this paper
we present these preliminary results as special cases of
the general algebraic structure. From fuzzy set theory
[19] we use t-norms and t-conorms to extend intersec-
tion and union of crisp sets to signal convolutions. To
form openings and closings we use pairs of t-norms and

fuzzy implications. (A work similar to our lattice-fuzzy
theoretical analysis appeared recently in [8].)

6.2. Fuzzy Intersection and Union Norms

A fuzzy intersection norm, in short a T -norm, is a
binary operation T : [0, 1]2 → [0, 1] that satisfies the
following conditions [19]: For all a, b, c ∈ [0, 1]

F1. T (a, 1) = a and T (a, 0) = 0 (boundary condi-
tions).

F2. T (a, T (b, c)) = T (T (a, b), c) (associativity).
F3. T (a, b) = T (b, a) (commutativity).
F4. b ≤ c ⇒ T (a, b) ≤ T (a, c) (increasing). For the

T -norm to be a scalar dilation (with respect to any
argument) on V, it must also satisfy [25]:

F5. T is a continuous function.

A fuzzy union norm [19] is a binary operation U :
[0, 1]2 → [0, 1] that satisfies F2-F5 and a dual bound-
ary condition:

F1′. U (a, 0) = a and U (a, 1) = 1.

Clearly, U is an erosion on V.

6.3. Lattice Fuzzy Convolutions and Adjunctions

We have built the general DTI or ETI systems (equiva-
lent to sup-� or inf-�′ convolutions) as sup or inf of sig-
nal translations of the type τ h,v( f )(x) = f (x − y) � v.
In this section we shall use new translations where the
binary operation a � b is replaced by fuzzy intersection
norms T and the dual operation a �′ b is replaced by
fuzzy union norms U . Namely, the new signal transla-
tions on S = Fun(E, [0, 1]) are the operators τ and the
dual translations are the operators τ ′:

τ h,v( f )(x) = T ( f (x − y), v) (59)

τ ′
h,v( f )(x) = U ( f (x − y), v) (60)

where (h, v) ∈ E× [0, 1] and f (x) is an arbitrary input
signal. These translations include both horizontal shifts
as well as vertical shifts induced by the fuzzy norms.
A signal operator on S is called translation invariant
(resp. dual-translation invariant) iff it commutes with
any such translation τ (resp. τ ′) based on a fuzzy norm.
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Consider now the two elementary signals, the impulse
q and the dual impulse q ′:

q(x)�
{

1, x = �0
0, x �= �0 , q ′(x)�

{
0, x = �0
1, x �= �0

Then every signal f can be represented as a supremum
of translated impulses or as infimum of dual-translated
dual impulses:

f (x) =
∨

y

T [q(x − y), f (y)]

=
∧

y

U [q ′(x − y), f (y)]

Translation invariant signal dilations and erosions
can result, respectively, from the sup-T convolution
©T and the inf-U convolution ©′

U of two signals f
and g defined by

( f ©T g)(x) �
∨

y

T [g(x − y), f (y)],

(61)
( f ©′

U g)(x) �
∧

y

U [g(x − y), f (y)]

The following results are a direct corollary of our con-
volution representation Theorem 2.

Theorem 5. (a) Given a fuzzy intersection norm T ,
an operator � on the signal clodum Fun(E, [0, 1]) is
a dilation invariant to the general translations (59)
iff it can be represented as the sup-T convolution of
the input signal with the operator’s impulse response
H = �(q).

(b) Given a fuzzy union norm U , an operator E on
the signal clodum Fun(E, [0, 1]) is an erosion invariant
to the dual translations (60) iff it can be represented
as the inf-U convolution of the input signal with the
system’s dual impulse response H ′ = E(q ′).

However, the erosion E of the above theorem may
not be the adjoint of the dilation �. To form an adjunc-
tion, we first define a signal fuzzy dilation as a sup-T
convolution:

�H,T (F)(x) �
∨

y∈E

T [H (x − y), F(y)]

= (F ©T H )(x) (62)

By recognizing T [H (x − y), F(y)] as the scalar dila-
tions dy,x (F(y)) in the general decomposition (19) of a
signal dilation, it follows that the adjoint signal fuzzy
erosion is

EH,�(G)(y) �
∧

x∈E

�[H (x − y), G(x)] (63)

where �[H (x − y), G(x)] represents the adjoint scalar
erosions ex,y(G(x)) in (19) and is actually the adjoint
of the fuzzy T -norm:

T (a, v) ≤ w ⇔ v ≤ �(a, w) (64)

An alternative interpretation of T [H (x − y), F(y)] and
�[H (x − y), G(x)] is that they are equal, respectively,
to a scalar V-translation λ and its adjoint λ← of the
signal values:

T [H (x − y), F(y)] = λH (x−y)(F(y)),

�[H (x − y), G(x)] = λ←
H (x−y)(G(x)) (65)

Now, given T we can find its adjoint function � by

�(a, w) = sup{v ∈ [0, 1] : T (a, v) ≤ w} (66)

In fuzzy logic, the norm T can be interpreted as a logical
conjunction, whereas its corresponding adjoint � can
be interpreted as a logical implication [19].

Three examples of T -norms are:

Min : T1(a, v) = min(a, v)

Product : T2(a, v) = a · v

Yager : T3(a, v) = 1 − (
1 ∧ [(1 − v)p

+ (1 − a)p]1/p
)
, p > 0.

The corresponding three adjoint functions are:

�1(a, w) =
{

w, w < a

1, w ≥ a

�2(a, w) =
{

min(w/a, 1), a > 0

1, a = 0

�3(a, w) =





1 − [(1 − w)p − (1 − a)p]1/p,

w < a

1, w ≥ a

Let us consider now the construction of lattice-fuzzy
openings and closings based on an adjunction (ε, δ) of
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Figure 1. Comparison of 1D basic morphological and lattice-fuzzy signal operators. Rows 1 and 2, left to right: flat, minimum, product, Yager.
Row 1: original signal (solid line), dilation (dashed line), erosion (dotted line). Row 2: closing (dashed line), opening (dotted line). Courtesy of
[27].

a lattice-fuzzy dilation δ and erosion ε. The adjunc-
tional lattice-fuzzy opening α and lattice-fuzzy closing
β are defined as

α( f ) � δ(ε( f )), β( f ) � ε(δ( f )) (67)

This is the correct approach to create openings and clos-
ings from fuzzy dilations and erosions. To compare it
with previous works, consider an involutive fuzzy com-
plement a 
→ a∗, e.g. a∗ = 1−a. This is a negation (i.e.
conjugation) on the scalar clodum [0, 1] and induces a
negation on the signal clodum S too. If we define via
complementation an alternative erosion operator (as an
inf-U convolution) by

ε′( f )(y) =
∧

x

U [ f (x), h(y − x)] (68)

whereU (a, b) = 1−T (1−a, 1−b) is a fuzzy union that
is the dual (i.e. complement) of the fuzzy intersection
T , then ε′( f ) = 1 − δ(1 − f ) = δ∗( f ), where ψ∗

denotes the negative operator of ψ ; i.e., this second
erosionε′ is the dual (i.e. negative) of the first dilationδ.
Further, the adjoint dilation δ′ of ε′ is an operator that is
dual (i.e. negative) of the first erosion ε. Many previous
works used pairs (ε′, δ) which are duality pairs (via
negation) but not adjunctions and hence cannot form
openings/closings via compositions.

6.4. Experiments

To gain some insight on the lattice-fuzzy image op-
erators, we briefly present a few experimental results
illustrating the differences between the classical mor-
phological operators and the lattice operators based on
fuzzy T -norms.

Figure 1 reports experiments with 1D images and
shows the outputs of dilation, erosion, opening and
closing operators, first for the morphological type using
a 51-pixel flat structuring element and second for the
fuzzy type (62), (63) and (67). For the fuzzy operations
in Fig. 1, we used three T -norms (the minimum norm,
the product norm and the Yager norm with parameter
p = 2) and a parabolic non-flat structuring function
H : Z → [0, 1]

H (x) =
{

1 − k(x/s)2, |x | ≤ s

0, |x | > s
(69)

The parameter s determines the scale, while k affects
the shape of H . (We used s = 25 and k = 0.5.) In gen-
eral, by experimenting with a large variety of T -norms
and structuring functions H we have observed that, the
fuzzy operators are more adaptive and track closer the
peaks/valleys of the signal than the corresponding flat
morphological operators of the same scale.

Figure 2 reports experiments with 2D images. For all
the fuzzy operations in this figure, we used the Yager
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Figure 2. (a) Original image F . (b) Morphological flat dilation F ⊕ B. (c) Morphological flat erosion F � B. (d) Fuzzy dilation δ(F). (c) Fuzzy
erosion ε(F). (f) Morphological gradient F ⊕ B − F � B. (g) δ(F) − ε(F). (h) Fuzzy min gradient min[δ(F), 1 − ε(F)]. (i) Fuzzy max
gradient max[δ(F), 1 − ε(F)]. Courtesy of [27].

T -norm with parameter p = 10 and a conical struc-
turing function H . The second row compares the mor-
phological flat dilation and erosion of an original im-
age in Fig. 2(a) with its fuzzy dilation and erosion. In
both cases the structuring element had a 7 × 7-pixel
support, being flat in the morphological case and con-
ical in the fuzzy case. The third row of Fig. 2 deals
with edge enhancement: Figure 2(f) shows the stan-
dard discrete morphological gradient F ⊕ B − F � B,
as the difference between the morphological flat dila-
tion and erosion, respectively, of F by a 3 × 3-pixel
square B. Figure 2(g) shows the same type of gradi-
ent but uses a fuzzy dilation δ and erosion ε with a
3×3-pixel structuring function H . Figures 2(h) and (i)
combine the fuzzy dilation and erosion differently to

derive respectively the following two types of new edge
gradients:

FuzzyEdgemin(F) = min[δ(F), 1 − ε(F)]
FuzzyEdgemax (F) = max[δ(F), 1 − ε(F)]

(70)

The new edge gradients were inspired by the standard
discrete morphological gradient F ⊕ B − F � B, but to
make the gradient operator more consistent with fuzzy
set theory we replaced the difference between dilation
and erosion with min (or max) of the dilation and the
fuzzy complement of the erosion. As shown in Fig. 2,
these new fuzzy gradient operators have a quite promis-
ing behavior since they yield cleaner and sharper edge
peaks than the morphological gradient.
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The power but also the difficulty in applying these
lattice fuzzy operators to image analysis is the large
variety of fuzzy norms and the absence of systematic
ways in selecting them. Towards this goal, we have
experimented in [27, 28] with applying these fuzzy op-
erators to various nonlinear filtering and image analysis
tasks, attempting to understand the effect that the type
of fuzzy norm and the shape-size of structuring func-
tion have on the resulting new image operators. This
preliminary work showed that, by experimenting with
the type of fuzzy norm and the shape-size of the struc-
turing function, it is possible to adapt the new fuzzy op-
erators so that their performance has many promising
aspects compared with the standard morphological op-
erators. For example, in the problem of edge detection,
it is possible to optimize the shape and size of the struc-
turing function so that the edge derivatives have sharper
peaks [27]. Further, the edge gradients based on lattice
fuzzy operators have shown improved performance in
noise [28]. Thus, by combining lattice-based MM and
fuzzy set theory, we can create new operators, like the
fuzzy edge gradients, that extend and improve the ca-
pabilities of the standard morphological operators.

7. Conclusions

We have obtained several results that extend the alge-
braic theory of mathematical morphology in three di-
rections: (1) Development of a general algebraic struc-
ture for signals and images that is minimally sufficient
for both translation-invariant morphology (max-sum
and max-product convolutions) as well as for minimax
signal algebra and nonlinear image processing based
on fuzzy logic. (2) Unification of convolutional repre-
sentations of translation-invariant signal operators that
obey max-� superpositions via nonlinear sup-� convo-
lutions over a clodum, i.e. a signal space which com-
bines the sup-inf lattice structure with a scalar semi-
ring arithmetic that possesses generalized ‘additions’
and �-‘multiplications’. (3) Unification of kernel repre-
sentations of increasing and translation-invariant signal
operators over a clodum as suprema of erosion-type (or
infima of dilation-type) nonlinear convolutions.

Our results provide some theoretical support and
open the way in morphological image processing for
future applications that are based (i) on minimax signal
algebra (e.g. minimax signal matrix and eigenvalue-
eigenvector analysis) and (ii) on lattice fuzzy image
operators that are more adaptive than classic morpho-
logical operators, are amenable to optimal designs, and

are closely related to popular pattern recognition sys-
tems of the neuro-fuzzy network type. We also note
that the lattice fuzzy case includes as special case the
Boolean image algebra and hence all the morphologi-
cal operators used in binary image processing. Finally
we note that our results provide a bridge [25, 26] be-
tween morphological image and signal processing and
discrete event control systems based on minimax al-
gebra, both for the max-sum and the max-fuzzy cases.
This can cause a cross-fertilization of the two fields.
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Notes

1. If in the semilattice (P, ◦) we consider a different partial ordering
X ≤′ Y ↔ Y = X ◦ Y where X ◦ Y is interpreted as the infimum
X ∧ Y , then (P, ◦) becomes an inf-semilattice and vice-versa.
Obviously, (P, ≤′) is the dual poset of (P, ≤).

2. In minimax algebra [7], a semilattice is called a band. Further,
a semilattice-ordered semigroup is called a belt, and a lattice-
ordered double semigroup is called a belt with duality. A belt
(B, ∨, �) with an identity element for the semigroup operation �

and with an element ζ that is both the least element w.r.t. ≤ and
also a null, i.e. a ∨ ζ = a and a � ζ = ζ , ∀a ∈ B, is called a dioid
in [6].
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