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In this paper we present a nonlinear scale-space representation based on a general
class of morphological strong filters, the levelings, which include the openings and
closings by reconstruction. These filters are very useful for image simplification
and segmentation. From one scale to the next, details vanish, but the contours of
the remaining objects are preserved sharp and perfectly localized. Both the lattice
algebraic and the scale-space properties of levelings are analyzed and illustrated.
We also develop a nonlinear partial differential equation that models the generation
of levelings as the limit of a controlled growth starting from an initial seed signal.
Finally, we outline the use of levelings in improving the Gaussian scale-space by
using the latter as an initial seed to generate multiscale levelings that have a superior
preservation of image edges.C© 2000 Academic Press
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1. INTRODUCTION

In many circumstances, the objects of interest which have to be detected, measured,
segmented, or recognized in an image belong to a scale, and all remaining objects, to be
discarded, to another scale. In some cases, however, such a threshold in the scales is not pos-
sible, and the information of interest is present at several scales; it has to be extracted from
various scales. For such situations, multiscale approaches have been developed, where a
series of coarser and coarser representations of the same image are derived. The recognition
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of the objects or segmentation will use the complete set of representations at various scales,
not only the initial image.

A multiscale representation will be completely specified if one has defined the trans-
formations from a finer scale to a coarser scale. To reduce the freedom of choice, some
properties of these transformations may be specified. Invariance properties are the most
general:

• Spatial invariance= invariance by translation.
• Isotropy= invariance by rotation.
• Invariance under illumination change: the transformation should commute with any

anamorphosis, i.e., any pointwise increasing transformation, of the luminance.

One may add some requirements for the effect of the transformation itself:

• The transformation should really be a simplification of the image. As such it will not
be reversible: some information has to be lost from one scale to the next.
• A particular form of simplification is expressed by the maximum principle: at any scale

change, the maximum luminance at the coarser scale is always lower than the maximum
luminance at the finer scale, the minimum always higher [6].
• Causality: coarser scales can only be caused by what happened at finer scales [8].
• The transformation should not create new structures at coarser scales; the most frequent

requirement is that it should not create new regional extrema [4, 10].

Furthermore, if the goal is image segmentation, one may require that the contours remain
sharp and not displaced. Finally, one has to care for the relations between the various scales.
Many scale-space representations in the literature verify a semigroup property: iffs is the
representation at scales of image f , then the representation at scalet of fs should be the
same as the representation at scales+ t of f : fs+t = ( fs)t . In this paper we will present
another structure by introducing an order relation among scales.

Since one rarely adds images, there is no particular reason, except mathematical tractabil-
ity, to ask for linear transformations. If one chooses linearity, however, then various groups
of the constraints listed above lead to the same solution: linear scale-space. The evolu-
tion of images with the scale follows the physics of luminance diffusion: the rate of
change of luminance with scale is equal to the divergence of the luminance gradient [8].
The operator for changing scale is a convolution by a Gaussian kernel. Its major util-
ity is to regularize the images, permitting to compute derivatives. Besides this advan-
tage, linear scale-space cumulates the disadvantages. After convolution with a Gaussian
kernel, the images are uniformly blurred, also the regions of particular interest like the
edges. Furthermore, the localization of the structures of interest becomes extremely im-
precise; if an object is found at one scale, one has to refine its contours along all finer
scales. At very large scales, the objects are not recognizable at all, from excess blurring,
but also from the appearance of spurious extrema in two dimensions. Various solutions
have been proposed to reduce this problem. Some notable examples include Perona and
Malik’s anisotropic diffusion inhibited by high gradient values [21] and its improvement by
Alvarezet al. and [2] using selective nonlinear image smoothing by mean curvature mo-
tion. Similar recent approaches include a tensor-dependent diffusion [30]. Such approaches
reduce the problems but do not eliminate them completely: spurious extrema may still
appear.
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Other nonlinear scale-spaces consider the evolution of curves and surfaces as a function
of their geometry. Among them we find the morphological approaches. The basic ingredi-
ents of all multiscale morphological operators are the dilations and erosions of increasing
size [5, 11, 14]. However, dilations and erosions by themselves cannot be used to represent
the successive scales because they displace the image boundaries [7]. The first morpholog-
ical scale-space approaches have been the granulometries associated to a continuous-scale
family of openings or closings; openings operate only on the peaks and closings only on
the valleys [11, 14]. They obey a semigroup relation:fmax(s,t)= ( fs)t . The standard mor-
phological openings (which are serial compositions of dilations and erosions) preserve well
vertical image edges but may displace the horizontal contours; however, openings and clos-
ings do not create spurious extrema. A more powerful class of morphological filters that
can also preserve the horizontal contours is theopenings and closings by reconstruction
[23, 29]. These filters, starting from areferencesignal f consisting of several parts and
a marker (initial seed)g inside some of these parts, can reconstruct whole objects with
exact preservation of their boundaries and edges. In this reconstruction process they sim-
plify the original image by completely eliminating smaller objects inside which the marker
cannot fit. Reconstruction filters have found numerous applications in a large variety of
problems involving image enhancement and simplification, geometric feature detection,
and segmentation. However, one of their disadvantages is that they treat asymmetrically
the image foreground (peaks) and background (valleys). A symmetric treatment of peaks
and valleys can be obtained using alternate sequential filters, which are extremely costly in
terms of computation, especially if one uses openings and closings by reconstruction [25,
29]. A recent solution to this asymmetry problem came from the development of a more
general powerful class of morphological filters, thelevelings, introduced by Meyer [16, 17].
They have also been studied by Matheron [15] and Serra [26]. Levelings are transformations
3( f, g) that depend on two signals, the referencef and the markerg, and include as special
cases the reconstruction openings and closings.

In this paper, which is a union of our two previous works [13, 18], we present a new
and extremely general nonlinear scale-space representation based on levelings with many
extremely interesting features. The most interesting is the preservation of contours. Further-
more, no spurious extrema appear. As a matter of fact, the transformation from one scale
to the next, called leveling, respects all the criteria listed above, except that it is not linear.
From one scale to the next, the structures of the image progressively vanish, becoming flat
or quasi-flat zones; however, as long they are visible, they keep exactly the same localiza-
tion as in the initial image. In Section 2, we present an algebraic characterization and the
scale-space properties of the simplest levelings. In Section 3 we show how to transform
any marker functiong into a leveling of a functionf using discrete algorithms based on
the algebraic definitions of levelings. We also present extensions of levelings and illus-
trate the algorithmic results with image examples. The scale-space analysis of levelings in
Sections 2 and 3 is algebraic and based on lattice theory. A different formulation, based on
ideas from dynamical systems and calculus, is presented in Section 4, where we develop a
nonlinear partial differential equation (PDE) that can generate the leveling of a reference
signal starting from a marker signal as initial condition. Finally we conclude in Section 5,
where we also outline the use of levelings for improving the Gaussian scale-space by using
the latter as an initial seed to generate multiscale levelings that have superior preservation
of image edges and boundaries.
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2. MULTISCALE REPRESENTATION THROUGH LEVELINGS

2.1. Flat and Quasi-flat Zones

We are working here on gray-tone functions defined on a digital grid. We call the set of
neighbors of a pixelp NG(p). The maximal (resp. minimal) value of a functionf within
NG(p) represents the elementary dilationδ f (resp. erosionε f ) of the function f at pixel p.

A path P of cardinaln between two pixelsp andq on the gridG is ann-tuple of pixels
(p1, p2, . . . , pn) such thatp1= p and pn=q, and for alli , (pi , pi+1) are neighbors.

We will see that simple levelings are a subclass of connected operators [23], which means
they extend flat zones and do not create new contours. More general levelings will extend
quasi-flat zones, defined as follows.

DEFINITION 2.1. Two pixelsx, y belong to the same R-flat zone of a functionf if and
only if there exists ann-tuple of pixels (p1, p2, . . . , pn) such thatp1= x and pn= y, and
for all i , (pi , pi+1) are neighbors and satisfy the symmetrical relationf pi R f pi+1.

The simplest symmetrical relation R is equality,f pi = f pi+1, for which the quasi-flat zones
are flat. As an example of a more complex relation R, let us define for two neighboring
pixelsp andq, f p≈ fq by | f p− fq| ≤ λ. This relation is symmetrical and defines quasi-flat
zones with a maximal slope equal toλ.

2.2. Characterization of Levelings

We will define a nonlinear scale-space representation of images based on levelings. An
imageg will be a representation of an imagef at a coarser scale ifg is a leveling of f ,
characterized by the following definition.

DEFINITION 2.2. An imageg is a leveling of the imagef iff ∀(p,q) neighbors:
gp> gq⇒ f p≥ gp andgq ≥ fq.

Remark. If the functiong is constant, no couple of neighboring pixels (p,q) may be
found for whichgp> gq. Hence the implication{gp> gq⇒ f p≥ gp andgq ≥ fq} is always
true, showing that a flat function is a leveling of any other function.

The relationg is a leveling of fwill be written asg≺ f . The characterization using
neighboring points, defining the levelings, is illustrated in Fig. 1b. In [17] we have shown
that adopting a different order relation, giving a new meaning togp> gq, leads to larger
classes of levelings; such levelings create new quasi-flat zones and enlarge existing ones.

FIG. 1. (a) f = reference function;h=marker function;g= associated leveling; (b) characterization of lev-
elings on the transition zones.
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If the new order relation is writtengpÂ gq and its negationgp¹ gq, then the symmetrical
relation R of Definition 2.1 is defined by{gp Rgq} ⇔ {gp¹ gq andgq ¹ gp}.

2.3. Properties of Levelings

2.3.1. Algebraic Properties

If two functionsg1 andg2 are both levelings of the same functionf , theng1 ∨ g2 and
g1 ∧ g2 are both levelings off . This property permits us to associate new levelings with
a family of levelings. In particular if (gi ) is a family of levelings off , the morphological
center (f ∨∧gi ) ∧

∨
gi of this family also is a leveling off .

2.3.2. Invariance Properties

In the Introduction, we have listed a number of desirable properties of transformations
on which to build a scale-space. They are obviously satisfied by levelings:

• Invariance by spatial translation.
• Isotropy: invariance by rotation.
• Invariance to a change of illumination:g being a leveling off , if g and f are submitted

to the same increasing anamorphosis, then the transformed functiong′ will still be a leveling
of the transformed functionf ′.

2.3.3. Relation between Two Scales

Levelings will construct a scale-space when a true simplification of the image occurs
between two scales. Let us now characterize the type of simplifications implied by levelings.

In this section we always suppose thatg is a leveling of f . As shown by the definition, if
there is a transition for the functiong between two neighboring pixelsgp> gq, then there
exists an even greater transition betweenf p and fq, as f p≥ gp> gq ≥ fq. In other words,
to any contour of the functiong corresponds a stronger contour of the functionf at the
very same location, and the localization of this contour is exactly the same. This bracketing
of each transition of the functiong by a transition of the functionf also shows that the
“causality principle” is verified: coarser scales can only be caused by what happened at
finer scales.

Furthermore, if we exclude the case whereg is a completely flat function, then the
“maximum principle” is also satisfied: at any scale change, the maximal luminance at the
coarser scale is always lower than the maximum intensity at the finer scale; the minimum
is always larger.

Let us now analyze what happens in the zones where the levelingg departs from the
function f . Let us consider two neighboring points (p,q) for which f p> gp and fq > gq.
For such a couple of pixels, the second half (f p≥ gp andgq ≥ fq) of the implication-defining
leveling is wrong, showing that the first half must also be wrong; i.e.,gp≤ gq. By reason
of symmetry we also havegp ≥ gq, and hencegp= gq. This means that ifg is a leveling of
f , the connected components of the antiextensivity zones{ f > g} are necessarily flat. By
duality, the same holds for the extensivity zones{ f < g}.

The last criterion, “no new extrema at larger scales,” also is satisfied, as shown by the
following section.
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2.3.4. Life and Death of the Regional Minima and Maxima

Levelings are a particular case of monotone planings:

DEFINITION 2.3. An imageg is a a monotone planing of the imagef iff ∀(p,q) neighbors:
gp> gq⇒ f p> fq.

THEOREM2.1. A monotone planing does not create regional minima or maxima. In other
words, if g is a monotone planing of f, and if g has a regional minimum(resp. maximum)
X, then f possesses a regional minimum(resp. maximum) Z⊂ X.

Hint of the Proof. If X is a regional minimum ofg, all its neighbors have a higher
altitude. To these increasing transitions ofg correspond increasing transitions off . It is
then easy to show that the lowest pixel forf within X belongs to a regional minimumZ
for f included inX.

2.3.5. Relations between Multiple Scales: Preorder Relation

We have now to consider the relations between multiple scales. Until now, we have
presented how levelings simplify images. To speak about scales, we need some structure
among scales. This structure is a lattice structure. To be a leveling is in fact an order relation
as shown by the following two lemmas.

LEMMA. The relation{g is a leveling of f} is symmetric and transitive: it is a preorder
relation.

LEMMA. The family of levelings, from which we exclude the trivial constant functions,
verify the anti-symmetry relation: if f is a nonconstant function and a leveling of g, and
simultaneously g is a leveling of f, then f= g.

Being an anti-symmetric preorder relation, the relation{g is a leveling of f } is an order
relation, except for functions which are constant everywhere. With the help of this order
relation, we are now able to construct a multiscale representation of an image in the form of a
series of levelings (g0= f, g1, . . . , gn), wheregk is a leveling ofgk−1, and as a consequence
of the transitivity,gk is also a leveling of each functiongj for j < k.

3. CONSTRUCTION OF THE LEVELINGS

3.1. A Criterion for Characterizing Levelings

It will be fruitful to consider the levelings as the intersection of two larger classes, the
lower levelings and the upper levelings, defined as follows.

DEFINITION 3.1. A functiong is a lower leveling of a functionf if and only if for any
couple of neighboring pixels (p,q): gp> gq⇒ gq ≥ fq.

DEFINITION 3.2. A functiong is an upper leveling of a functionf if and only if for any
couple of neighboring pixels (p,q): gp> gq⇒ gp≤ f p.

The name “upper leveling” comes from the fact that all connected components where
g> f are flat: for any couple of neighboring pixels (p,q):∣∣∣∣gq > fq

gp > f p

∣∣∣∣⇒ gp = gq.
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Similarly if g is a lower leveling of f , then all connected components whereg< f are
flat.

Obviously, a functiong is a leveling of a functionf if and only if it is both an upper and
a lower leveling of the functionf . Let us now propose an equivalent formulation for the
lower levelings:

Criterion. A function g is a lower leveling of a functionf if and only if for each pixel
q with a neighborp verifying gp> gq the relationgq ≥ fq is satisfied.

But the pixels with this property are those for which the dilationδ will increase the value;
i.e.,gq <δqg. This leads to a new criterion:

Criterion. A function g is a lower leveling of a functionf if and only if gq <δqg⇒
gq ≥ fq.

Recalling that the logical meaning of [A⇒ B] is [not A or B] we may interpret [gq <

δqg⇒ gq ≥ fq] as [gq ≥ δqg or gq ≥ fq] or in a equivalent manner [gq ≥ fq ∧ δqg]. This
gives the following criterion.

Criterion Low. A functiong is a lower leveling of a functionf if and only if g≥ f ∧δg.

In a similar way we derive a criterion for upper levelings:

Criterion Up. A functiong is an upper leveling of a functionf if and only if g≤ f ∨εg.

Putting everything together yields a criterion for levelings.

Criterion. A functiong is a leveling of a functionf if and only if f ∧ δg≤ g≤ f ∨ εg
(see [15]).

3.2. Openings and Closings by Reconstruction

We recall that a functiong is an opening (resp. closing) by reconstruction of a functionf
iff g= f ∧ δg (resp.g= f ∨εg). As it verifies the criterion Low (resp. Up), such a function
g is then a lower (resp. upper) leveling off . The reciprocal is also true. Hence:

PROPOSITION3.1. g is an opening(resp. closing) by reconstruction of a function f if and
only if g is a lower(resp. upper) leveling of f verifying g≤ f (resp. g≥ f ).

Using this characterization, we may particularize the initial definition of lower levelings
in the case wheref ≥ g:

PROPOSITION3.2. g is an opening by reconstruction of a function f if and only if g≤ f
and for any couple of neighboring pixels(p,q): gp> gq⇒ gq= fq.

PROPOSITION3.3. g is a closing by reconstruction of a function f if and only if g≥ f
and for any couple of neighboring pixels(p,q): gp> gq⇒ gp= f p.

Remark. If g is a leveling or lower leveling off , theng ∧ f is a lower leveling off
verifying g∧ f ≤ f , i.e., an opening by reconstruction off . Similarly if g is a leveling or
upper leveling off , theng∨ f is a closing by reconstruction off .

3.3. An Algorithm for Constructing Levelings

We finally adopt the following general criterion for levelings.
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Criterion. A functiong is a leveling of a functionf if and onlyif f ∧αg≤ g≤ f ∨βg,
whereα is an extensive operator; i.e.,αg≥ g, andβ is an antiextensive operator; i.e.,βg≤ g.

With the help of this criterion, we may turn each functiong into the leveling of a function
f . We will call the functionf the reference function and the functiong the marker function.
Given two functionsg and f , we want to transform g into a leveling off . If g is not a
leveling of f , then the criterion [f ∧ αg≤ g≤ f ∨ βg] is false for at least a pixelp. The
criterion is not verified in two cases:

• gp< f p∧αpg. Hence the smallest modification ofgp for which the criterion becomes
true isg′p= f p ∧ αpg. We remark thatgp≤ g′p≤ f p.
• gp> f p∨βpg. Hence the smallest modification ofgp for which the criterion becomes

true isg′p= f p ∨ βpg. We remark thatgp≥ g′p≥ f p.

We remark that for{gp= f p} the criterion is always satisfied. Hence another formulation
of the algorithm:

• lev−: On {g< f } do g= f ∧ αg.
• lev+: On {g> f } do g= f ∨ βg.

It is easy to check that this algorithm amounts to replacingg by the new valueg= ( f ∧
αg) ∨ βg= ( f ∨ βg) ∧ αg everywhere.

We repeat the algorithm until the criterion is satisfied everywhere. We are certain that
the algorithm will converge, since the modifications ofg are pointwise monotonics: the
successive values ofg get closer and closer tof until convergence.

To optimize the speed of the algorithm, we use a unique parallel step of the algorithm,
g= ( f ∧αg)∨βg. After this first step the algorithms [lev−] and [lev+] have no effect on
each other and may be used in any order. In particular one may use them as sequential algo-
rithms in which the new value of any pixel is used to compute the values of the neighboring
pixels. This may be done during alternating raster scans, a direct scan from top to bottom
and left to right being followed by an inverse scan from bottom to top and right to left. Or
hierarchical queues may be used, allowing us to process the pixels in decreasing order on
{g< f } and in increasing order on{g> f }.

Let us illustrate in Fig. 1a how a a marker functionh is transformed until it becomes a
function g which is a leveling off . This leveling uses forα the dilationδ and forβ the
erosionε. On{h< f }, the leveling increasesh as little as possible until a flat zone is created
or the functiong hits the functionf ; hence on{g< f }, the functiong is flat. On{h> f },
the leveling decreasesh as little as possible until a flat zone is created or the functiong hits
the function f ; hence on{g> f }, the functiong also is flat. For more general levelings,
quasi-flat zones are created.

If g is not modified, while this complete algorithm is applied to a couple of functions
( f, g), theng is a leveling of f . If, on the other hand,g is modified, one repeats the same
algorithm until convergence as explained above.

3.4. Robustness of Levelings

In this section, we will see that levelings are particularly robust: they are strong morpho-
logical filters. We recall that an operatorψ is called amorphological filterif it is:

• Increasing:g> h⇒ψg>ψh. This implies thatψ(h ∧ k)<ψh ∧ ψk andψ(h ∨
k)>ψh ∨ ψk.
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• Idempotent:ψψ =ψ . This means that the operator is stable: it is sufficient to apply
it once in order to get the final result. (For instance, the median filter, which is not a
morphological filter, is not stable and may oscillate when iterated.)

A morphological filter is calledstrong, if furthermoreψ(id ∨ ψ)=ψ(id ∧ψ)=ψ ,
whereid represents the identity operator. This property defines that functions within a given
range will yield the same result; i.e., for any functionh satisfying f ∧ ψ f < h< f ∨ ψ f ,
we haveψ f =ψh.

In our case, we have the leveling3( f, g), which we view as an operator mapping an
input signal f to its leveling. For a fixed marker functiong and a varying reference function
f , this operator is a strong morphological filter. If we call the opening by reconstruction
of f based on the markerg3−( f, g) and the closing by reconstruction3+( f, g), it can be
shown that

3( f, g) = 3−(3+( f, g), g) = 3+(3−( f, g), g). (1)

Thus, the leveling is a commutative product of a reconstruction opening followed by a recon-
struction closing, which is a sufficient condition for a leveling to be a strong morphological
filter.

Levelings depend upon several parameters. First, the type of leveling has to be chosen,
which depends upon the choice of the operatorsα andβ. Figure 2 presents three different
levelings, applied to the same reference and marker image. The operatorsα andβ used
for producing them are, from left to right, the following: (1)α= δ, β = ε; (2) α= id ∨
(δ− 1), β = id ∧ (ε+ 1); (3)α= id ∨ γ δ, β = id ∧ ϕε, whereγ andϕ are respectively
an opening and a closing. In Fig. 3a flat leveling based onδ andε is applied to the same
reference image (in the center of the figure), using different markers produced by an alternate
sequential filter applied to the reference image, marker 1 using disks as structuring elements
and marker 2 using line segments.

FIG. 2. Three different levelings applied to the same reference and marker image.
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FIG. 3. A leveling applied to the same reference image with distinct marker images.

3.5. Multiscale Levelings

We have now to consider the multiscale aspect, that is, when more than one scale is under
consideration. Levelings permit us to construct various multiscale families. Let us present
a few of them.

3.5.1. Levelings Associated to Monotone Families of Erosions and Dilations

We use here a family of leveling operators based on a family (αi ) of extensive dilations
and the corresponding family of adjunct erosions (βi ), satisfyingαi <α j andβi >β j for
i > j . We call3i f the leveling of f built with αi andβi and with a fixed markerg. That
is,3i f is the leveling obtained by iterating until convergence the operatorg= ( f ∧αi g)∨
βi g= ( f ∨ βi g) ∧ αi g.

It is easy to verify that fori > j we have f ∧ 3i f ≤3 j f ≤ f ∨ 3i f . But since3i a
strong operator, these inequalities imply that3i3 j f =3i f . This means that3i f also is
a leveling of each3 j f for i > j .

As an example one may construct slope levelings with increasing slopes by setting
αi = id ∨ (δ − i ), βi = id ∧ (ε + i ).

3.5.2. Levelings Associated to an Arbitrary Family of Marker Functions

Consider a fixed leveling3 associated to an extensive dilationα and the adjunct erosion
β. We may use an arbitrary family of marker functionsgi , i = 1, 2, 3, . . . , and consider the
associated levelings: we write3gi f for the leveling of f associated to the markergi . We
may then construct an increasing family of levelings associated with the family of markers
by the following mechanism:

`1 = 3gi f, `2 = 3g23g1 f, . . . , `n = 3gn3gn−1 · · ·3g23g1 f. (2)

The above sequence of steps ensures that` j is a leveling of̀ i for j > i . This is due to
the fact that “to be a leveling” is a transitive relation. Based on this idea, Fig. 4 presents one
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FIG. 4. Illustration of a multiscale leveling representation with markers produced by alternate sequential
filtering.

example of how levelings can be used to derive a multiscale representation of an image. In
Fig. 4 the multiscale markers are produced by alternate sequential filters with disks; i.e.,
g0= f is the original image andgi =ϕi γi gi−1 for i = 1, 2, 3, whereϕi andγi are standard
closings and openings by a disk of radiusi . The levelings are produced by following the
sequential hierarchy of (2). The markers (g1, g3, g5) and the leveling images (`1, `3, `5)
shown in Fig. 4 are arranged as follows:

g1 original `1

g3 original `3

g5 original `5
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Semigroup property of flat levelings.In the case where the leveling3 is the flat leveling
associated to the dilationδ and the adjunct erosionε, we have a stronger property, in the
form of a semigroup. Let us denote by3g f the leveling of f associated with the markerg.

Then for two different markersg andk we have the absorption property:3g3k3g f =
3k 3g f and3g3g3k f =3g3k f . It follows that the operator defined as

Ln = 3gn3gn−1 · · ·3g23g1 (3)

satisfies the following semigroup property:

LnLm = LmLn = Lmax(m,n).

This implies in particular thatLn is idempotent (n=m). Since it is also increasing, it is
a morphological filter.

In Bn is the invariance set ofLn, i.e., Bn={ f | Ln f = f }, the preceding semigroup
property implies thatBn= Ln(Bm) andBn ⊂ Bm for n>m.

3.5.3. Levelings Associated to an Alternating Family of Marker Functions

Consider again the fixed leveling3 associated to an extensive dilationα and the adjunct
erosionβ. But now the family of marker functionsgi , i = 1, 2, 3, . . . , is an alternating
family, because they satisfyg2k≤ · · · ≤ g4≤ g2≤ f ≤ g1≤ g3≤ · · · ≤ g2k−1. Using the
same notation as above, it is easy to verify that3gi is a reconstruction opening for any even
indexi and a reconstruction closing for any odd indexi . HenceLn=3g2n3g2n−1 · · ·3g23g1 f
is an alternating sequential filter, which obeys the usual semigroup property of such filters
[25]: L j Li = L j for j > i , but Li L j ≤ L j .

4. A PDE GENERATING LEVELINGS

In computer vision continuous models for scale-space image analysis based on partial
differential equations have been proposed. Motivations for using PDEs include better and
more inuitive mathematical modeling, connections with physics, and better approximation
to the Euclidean geometry of the problem. Inspired by the use of the classic heat PDE to
model the linear (Gaussian) scale-space [8], in 1992 three teams of researchers (Alvarezet al.
[1], Brockett and Maragos [5], and Van den Boomgaard and Smeulders [28]) independently
published nonlinear PDEs that model the nonlinear scale-space of elementary morphological
operators; each team focused on different aspects of the problem. The PDEs for flat dilations
and erosions by disks were numerically implemented by Arehartet al. [3] and Sapiro
et al. [24] using the Osher and Sethian [20] algorithm for solving Hamilton–Jacobi PDEs
of the curve evolution type. These implementations demonstrated the superiority of the
performance of the PDE approach over that of discrete morphology in terms of isotropy
and subpixel accuracy. A unified view of this new approach to mathematical morphology
and related problems based on differential equations and dynamical systems was presented
by Maragos [12].

In the rest of this section we shall present a PDE for levelings, first introduced in [13]. The
two basic ingredients in developing such a PDE are the PDEs for generating dilations and
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erosions. Therefore, before presenting the new PDE for levelings we review some PDEs1

required for multiscale morphology.

4.1. PDEs for Dilations and Erosions

All multiscale morphological operations, at their most basic level, are generated by mul-
tiscale dilations and erosions, which are obtained by replacing in the standard translation-
invariant dilations and erosions the unit-scale kernel (structuring element)k(x, y) with a
multiscale versionk(t)(x, y)

4= tk(x/t, y/t), t > 0. Themultiscale dilationof a 2D signal
f (x, y) by k(t) is the space-scale function

δ(x, y, t)
4= ( f ⊕ k(t)

)
(x, y) = sup

(a,b)
{ f (x − a, y− b)+ tk(a/t, b/t)}, t > 0,

whereδ(x, y, 0)= f (x, y). Similarly, the multiscale erosion off is defined as

ε(x, y, t)
4= ( f ª k(t)

)
(x, y) = inf

(a,b)
{ f (x + a, y+ b)− tk(a/t, b/t)}.

For 2D signalsf (x, y), and if k(x, y) is the 0/−∞ indicator function of the unit disk,
then the PDEs generating the multiscale flat dilationδ(x, y, t) and erosionε(x, y, t) of f
are

δt = ‖∇δ‖ =
√

(δx)2+ (δy)2, εt = −‖∇ε‖, (4)

with initial valuesδ(x, y, 0)= ε(x, y, 0)= f (x, y).
These simple but nonlinear PDEs are satisfied at points where the data are smooth, i.e.,

where the partial derivatives exist. However, even if the initial image/signalf is smooth, at
finite scalest > 0 the above multiscale dilation evolution may create discontinuities in the
derivatives ofδ, calledshocks, which then continue propagating in scale-space. Thus, the
multiscale dilations areweak solutionsof the corresponding PDEs.

The above PDEs for dilations of gray-level images by flat structuring elements directly
apply to binary images, because flat dilations commute with thresholding and hence, when
the gray-level image is dilated, each one of its thresholded versions representing a bi-
nary image is simultaneously dilated by the same element and at the same scale. How-
ever, this is not the case with gray-level structuring functions. For example, ifk(x, y)=
−a(x2+ y2),a> 0, is an infinite-support parabolic function, the dilation PDE becomes

δt = [(δx)2+ (δy)2]/4a. (5)

4.2. PDE for Levelings

Consider a 2D signalf (x, y) and a marker signalg(x, y) from which a leveling3( f, g)
will be produced.

If g≤ f everywhere and we start iteratively growingg via incremental flat dilations with
a disk of an infinitesimally small radius1t but without ever growing the result above the
graph of f , then in the limit we shall have produced theopening by reconstructionof f
(with respect to the markerg), which is a special leveling. The infinitesimal generator of this

1 Notation for PDEs: Foru = u(x, y, t), ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y,∇u = (ux, uy).
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signal evolution can be modeled via a dilation PDE that has a mechanism to stop the growth
whenever the intermediate result attempts to create a function larger thanf . Specifically,
let u(x, y, t) represent the evolutions off with initial valueu0(x, y)= u(x, y, 0)= g(x, y).
Thenu is a weak solution of the initial-value PDE system

∂u

∂t
= sign(f − u)

√(
∂u

∂x

)2

+
(
∂u

∂y

)2

(6)
u(x, y, 0) = g(x, y),

where sign(r ) is equal to+1 if r > 0,−1 if r < 0, and 0 ifr = 0. Sinceg≤ f , the above initial-
value PDE system models aconditional dilationthat grows the intermediate result as long
as it does not exceedf . In the limit we obtain the final resultu∞(x, y)= limt→∞u(x, y, t).
The mappingu0 7→ u∞ is the opening by reconstruction filter.

If in the above paradigm we reverse the order betweenf andg, i.e., assume thatg≥ f ,
and replace the positive growth (dilation) ofg with negative growth via erosion that stops
when the intermediate result attempts to become smaller thanf , then we obtain theclosing
by reconstructionof f with respect to the markerg. This is another special case of a leveling
whose generation can also be modeled by the same PDE (6) but with a marker that exceeds
f . This dynamical system models aconditional erosionthat keeps reducing the intermediate
result as long as it does not decrease belowf .

What happens if we use any of the above PDEs when there is no specific order betweenf
andg? In such a case the PDE (6) has a varying coefficient sign (f − u) with spatiotemporal
dependence which controls the instantaneous growth and stops it wheneverf = u. (Of
course, there is no growth also at stationary points where∇u= 0.) The control mechanism
is of a switching type: For eacht , at pixels (x, y) whereu(x, y, t)< f (x, y) it acts as
a dilation PDE and hence shifts outward the surface ofu(x, y, t) but does not move the
extrema points. Whereveru(x, y, t)> f (x, y) the PDE acts as an erosion PDE and reverses
the direction of propagation. The final resultu∞(x)= limt→∞u(x, t) is a generalleveling
of f with respect tog. We call (6) aswitched dilationPDE. The switching action of this
PDE model occurs at zero crossings off − u where shocks are developed. Obviously, the
PDEs generating the opening and closing by reconstruction are special cases whereg≤ f
and g≥ f , respectively. However, the PDEs generating the reconstruction filters do not
involve switching of growth.

The switching between dilation- and erosion-type PDEs also occurs in a class of nonlinear
time-dependent PDEs which was proposed in [19] to deblur images and/or enhance their
contrast by generating shocks and hence sharpening edges. For 2D images a special case
of such a PDE is

ut = −‖∇u‖sign(∇2u). (7)

A major conceptual difference between the above edge-sharpening PDE and our PDE
generating levelings is that in the former the switching is determined by the edges, i.e., the
zero crossing points of the Laplacian ofu, whereas in the latter the switching is controlled
by comparingu against the external reference signalf . Note also that, if at some point
there is an edge in the leveling output, then there must exist an edge of equal or bigger size
in the initial (reference) image.
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4.3. Discretization Algorithm and Experiments

To produce a shock-capturing and entropy-satisfying numerical method for solving the
general leveling PDE (6), we use ideas from the technology of solving PDEs corresponding
to hyperbolic conservation laws [9] and Hamilton–Jacobi formulations [20]. Thus, we
propose the following discretization sheme, which is an adaptation of a scheme proposed
in [19] for solving (7).

Let Un
i, j be the approximation ofu(x, y, t) on a grid (i1x, j1y, n1t)). Consider the

spatial forward and backward difference operators:

D+xUn
i, j
4= Un

i+1, j −Un
i, j

1x
, D−xUn

i, j
4= Un

i, j −Un
i−1, j

1x
. (8)

Similarly we define the difference operatorsD+y andD−y along thej direction. Then we
approximate the leveling PDE (6) by the nonlinear difference equation

Un+1
i, j = Un

i, j

−1t
[ · · · (Sn

i, j

)+√((
D−xUn

i, j

)+)2+ ((D+xUn
i, j

)−)2+ ((D−yUn
i, j

)+)2+ ((D+yUn
i, j

)−)2
+ (Sn

i, j

)−√((
D+xUn

i, j

)+)2+ ((D−xUn
i, j

)−)2+ ((D+yUn
i, j

)+)2+ ((D−yUn
i, j

)−)2]
,

(9)

whereSn
i, j = sign(f (i1x, j1y)−Un

i, j ), and we denote (r )+ = max(r, 0), (r )− = min(r, 0)
for any realr . For stability, (1t/1x+1t/1y)≤ 0.5 is required. Further, at each iteration
we enforce the sign consistency

sign(Un − f ) = sign(g− f ). (10)

We have not proved theoretically that the above iterated scheme converges whenn→∞,
but through many experiments we have observed that it converges in a finite number of
steps. Three examples of the action of the above 2D algorithm are shown in Fig. 5.

4.4. PDEs for Levelings with Quasi-Flat Zones

The levelings produced by running the PDE (6) consist of portions of the original reference
signal and of flat zones. Actually they enlarge the flat zones of the reference signal. Is it
possible to generate via PDEs generalized levelings that have quasi-flat zones (for example,
zones with constant linear slope or zones with parabolic surface)? The answer is yes. We
explain it via the parabolic example. If we replace the flat dilation PDE generator in (6)
with the PDE generator for multiscale dilations by a 2D unit-scale parabolak(x, y)=
−a(x2+ y2) we obtain the PDE for 2D parabolic levelings:

ut = 1
4a‖∇u‖2sign(f − u)

u(x, y, 0) = g(x, y).
(11)
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FIG. 5. Evolutions of the 2D leveling PDE on the reference top image (a) using three markers. Each column
shows evolutions from the same marker. In the second row the markers (t = 0) are shown, in the third and fourth
rows two evolutions att = 101t and t = 201t , and in the fifth row the final levelings (after convergence). For
the left column (b–e), the marker (b) was obtained from a 2D convolution off with a Gaussian ofσ = 4. For
the middle column (f–i), the marker (f ) was an opening by a square of 7× 7 pixels and hence the corresponding
leveling (i) is a reconstruction opening. For the right column (j–m), the marker (j) was a closing by a square of
7× 7 pixels and hence the corresponding leveling (m) is a reconstruction closing (1x=1y= 1,1t = 0.25).
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5. CONCLUSIONS AND DISCUSSION

A new morphological scale-space representation has been presented based on a gen-
eral class of morphological strong filters, the levelings, with many desirable features of a
scale-space. The algebraic and scale-space properties of this leveling scale-space have been
analyzed using tools from mathematical morphology and illustrated with image experi-
ments. Further, a PDE formulation has been developed for generating levelings as limits of
a switched-dilation growth.

Next, we briefly discuss various issues related to levelings which include some envisioned
applications, motivations for their PDE formulation, their use to improve the Gaussian scale-
space, and some directions for future research.

5.1. Some Envisioned Applications

In general, levelings are nonlinear filters with many interesting properties for image
enhancement and simplification. This coupled with the corresponding scale-space repre-
sentation developed in this paper makes them useful for numerous multiscale image analysis
and vision tasks. For example, the leveling scale-space has been applied with success to
reduce the bitstream of an MPEG-4 encoder, when the simplified sequence replaces the
original sequence. In this case, a sliding temporal window is processed and treated as a
3D volume, with two spatial dimensions and one temporal dimension: 3D markers and 3D
levelings are then used. Another important application is the simplification of the images
prior to segmentation. Since the levelings enlarge flat zones, these flat zones may be used
as seeds for a segmentation algorithm.

5.2. Why Use PDEs For Levelings?

In addition to the well-known advantages of the PDE approach (such as more insightful
mathematical modeling, more connections with physics, better isotropy, better approxima-
tion of Euclidean geometry, and subpixel accuracy), during construction of levelings or
reconstruction filters it is possible in some applications to need to stop the marker growth
before convergence. In such cases, the isotropy of the partially grown marker offered by
the PDE is an advantage. Further, there are no simple digital algorithms for constructing
levelings with quasi-flat zones, whereas for the PDE approach only a simple change of
the generator is needed, as we have demonstrated with the PDE producing levelings with
parabolic zones.

5.3. From Gaussian Scale-Space to Multiscale Levelings

Consider the hierarchical scenario of Eq. (2) to produce multiscale levelings of a reference
signal f based on a sequence of multiscale markersgi , i = 1, 2, 3, . . .. The sequence of
markersgi may be obtained fromf in any meaningful way. A particularly interesting choice
we consider next is the case where thegi are multiscale convolutions off with Gaussians
of increasing standard deviationsσi . Examples of constructing multiscale levelings from
Gaussian convolution markers according to Eq. (2) are shown in Fig. 6 for an imagef .
The sequence of the multiscale markers can be viewed as a scale-sampled Gaussian scale-
space. As shown in the experiments, the image edges and boundaries which have been
blurred and shifted by the Gaussian scale-space are better preserved across scales by the
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FIG. 6. Multiscale image levelings. The markers were obtained by convolving reference image with 2D
Gaussians of standard deviationsσ = 3, 5, 7. (The levelings were produced by running the leveling PDE with
1x=1y= 1,1t = 0.25.)
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multiscale levelings that use the Gaussian convolutions as markers. Thus, several computer
vision applications that employ the Gaussian scale-space may benefit by using the Gaussian
scale-space as a first phase and the above multiscale leveling scheme as a second phase that
sharpens the Gaussian convolutions toward the original image.

5.4. Future Research

Given the attractive properties of levelings and their scale-space formulations in this
paper, there are many interesting directions for research on this nonlinear scale-space. Some
ideas, which we plan to investigate in future papers, include the following: (1) alternative
systematic approaches for selecting a sequence of markers for multiscale levelings; (2) proof
of existence and uniqueness of the solution of the leveling PDE; (3) proof of convergence
of the numerical algorithm implementing this PDE; (4) comparison of the complexity of
the PDE-based numerical algorithm versus that of the discrete algorithm for constructing
levelings based on their algebraic properties; (5) continuous-scale levelings, corresponding
semigroups, and possible PDE formulation.
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