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Abstract— We study the effect of uncertain feature measurements
and show how classification and learning rules should be adjusted to
compensate for it. Our approach is particularly fruitful in multimodal
fusion scenarios, such as audio-visual speech recognition, where multiple
streams of complementary features whose reliability is time-varying are
integrated. For such applications, by taking the measurement noise
uncertainty of each feature stream into account, the proposed framework
leads to highly adaptive multimodal fusion rules for classification and
learning which are widely applicable and easy to implement. We further
show that previous multimodal fusion methods relying on stream weights
fall under our scheme under certain assumptions; this provides novel
insights into their applicability for various tasks and suggests new
practical ways for estimating the stream weights adaptively. The potential
of our approach is demonstrated in audio-visual speech recognition
experiments.

I. INTRODUCTION

Motivated by the multimodal way humans perceive their environ-

ment, complementary information sources have been successfully uti-

lized in many applications. Such a case is audiovisual speech recog-

nition (AV-ASR) [1], where fusing visual and audio cues can lead to

improved performance relatively to audio-only recognition, especially

in the presence of audio noise. However, successfully integrating

heterogeneous information streams is challenging, mainly because of

the need for adaptation to dynamic environmental conditions, which

dissimilarly affect the reliability of the separate modalities.

Using stream weights to equalize the different modalities is com-

mon to many stream integration methods. Stream weights operate

as exponents to each stream’s probability density and have been

employed in fusion tasks of different audio streams [2] and audio-

visual integration [3]. Despite its favorable experimental properties,

the technique requires setting the weigths for the different streams;

although various methods have been proposed for this purpose [4], a

rigorous approach to stream weight adaptation is still missing.

In our work we approach the problem of adaptive multimodal

fusion by explicitly taking feature measurement uncertainty of the dif-

ferent modalities into account. In single modality scenarios, modeling

feature noise has proven fruitful for ASR [5], [6] and has been further

pursued for applications such as speaker verification [7]and speech

enhancement [8]. We show in a rigorous probabilistic framework

how multimodal learning and classification rules should be adjusted

to account for feature measurement uncertainty; Gaussian Mixture

Models (GMM) and Hidden Markov Models (HMM) are discussed

in detail and modified EM algorithms for training are derived. Our

approach leads to adaptive multimodal fusion rules which are widely

applicable and easy to implement. This paper extends our previous

work [9], [10] by considering the effect of uncertain features not only

during decoding, but also during model training.

II. MULTIMODAL FUSION BY UNCERTAINTY COMPENSATION

For many applications one can get improved performance by ex-

ploiting complementary features, stemming from a single or multiple

modalities. Let us assume that one wants to integrate S information

streams which produce feature vectors xs, s = 1, . . . , S. If the fea-

tures are statistically independent given the class label c, application

of Bayes’ formula yields the class label probability given the full

observation vector x1:S ≡ (x1; . . . ; xS):

p(c|x1:S) ∝ p(c)
S∏

s=1

p(xs|c). (1)

In an attempt to improve classification performance, several authors

have introduced stream weights ws as exponents in Eq. (1), yielding

b(c|x1:S) = p(c)
S∏

s=1

p(xs|c)
ws , (2)

which can be seen in a logarithmic scale as a weighted average of in-

dividual stream log-probabilities. Such schemes have been motivated

by potential differences in reliability among different information

streams, and larger weights are assigned to information streams with

better classification performance. Using such weighting mechanisms

has been experimentally proven to be beneficial for feature integration

in both intra-modal (e.g. multiband audio [2]) and inter-modal (e.g.

audio-visual speech recognition [4], [11]) scenarios.

The stream weights formulation is however unsatisfactory in

various respects as it has been discussed in [9], [10], where we

have shown that accounting for feature uncertainty naturally leads

to a highly adaptive mechanism for fusion of different information

sources. More specifically, we consider a stochastic measurement

framework where we do not have direct access to the features xs and

our decision mechanism depends on their noisy version ys = xs+es.

The probability of interest is thus obtained by integrating out the

hidden clean features xs, i.e.

p(c|y1:S) ∝ p(c)
S∏

s=1

∫
p(xs|c)p(ys|xs)dxs. (3)

In the common case of clean features modeled with a gaussian mix-

ture model (GMM), p(xs|c) =
∑Ms,c

m=1 ρs,c,mN(xs; μs,c,m, Σs,c,m),

and gaussian observation noise at each stream, i.e. p(ys|xs) =
N(ys; xs + μe,s, Σe,s) (extension to gaussian mixture noise model

is trivial), we have shown in [9] that

p(c|y1:S) ∝ p(c)

S∏
s=1

Ms,c∑
m=1

ρs,c,mN(ys−μe,s; μs,c,m, Σs,c,m+Σe,s),

(4)

which means that in classification we should (1) use the enhanced
feature estimate ys − μe,s, instead of the noisy feature ys and (2)

increase the model covariances Σs,c,m by Σe,s. Note that, although

the measurement noise covariance matrix Σe,s of each stream is the

same for all classes c and all mixture components m, noise particu-

larly affects the most peaked mixtures, for which Σe,s is substantial
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Fig. 1. Decision boundaries for classification of a noisy observation
(square marker) in two classes, shown as circles, for various observation
noise variances. Classes are modeled by spherical Gaussians of means
μ1, μ2 and variances σ2

1
I, σ2

2
I respectively. The decision boundary is

plotted for three values of noise variance (a) σe = 0, (b) σe = σ1, and
(c) σe = ∞. With increasing noise variance, the boundary moves away
from its noise-free position.

relative to the modeling uncertainty due to Σs,c,m. The effect of

feature uncertainty compensation in a simple 2-class classification

task is illustrated in Fig. 1.

Although Eq. (4) is conceptually simple and easy to implement,

given an estimate of the measurement noise variance Σe,s of each

stream, it actually constitutes a highly adaptive rule for multisensor

fusion. To appreciate this, and also to show how our scheme is

related to the stream weights formulation of Eq. (2), we examine

a particularly illuminating special case of our result, when:

1) The measurement noise covariance is a scaled version of the

model covariance, i.e. Σe,s = λs,c,mΣs,c,m for some positive

constant λs,c,m interpreted as the relative measurement error.

2) For every stream observation ys the gaussian mixture response

of that stream is dominated by a single component m0.

Under these conditions, Eq. (4) can be written as [9]

p(c|y1:S) ∝p(c)
S∏

s=1

[
ρ̃s,c,m0

N(ys − μe,s; μs,c,m0
, Σs,c,m0

)

]ws,c,m0

(5)

ws,c,m0
=1/(1 + λs,c,m0

), (6)

with ws,c,m0
being effective stream weights; ρ̃s,c,m0

is a properly

modified mixture weight, independent of the observation ys. Note

that these effective stream weights are between 0 (for λs,c,m0
�

1) and 1 (for λs,c,m0
≈ 0) and discount the contribution of each

stream to the final result by properly taking its relative measurement

error into account; however they do not need to satisfy a sum-to-one

constraint
∑S

s=1
ws,c,m0

= 1, as is conventionally considered by

other authors. This is an appealing result and unveils the probabilistic

assumptions under stream weight-based formulations. It shows further

that our fusion rule in Eq. (4) acts as effectively selecting for each new

measurement ys and uncertainty estimate (μe,s, Σe,s) corresponding

stream weights fully adaptively with respect to both class label c and

mixture component m.

III. EM TRAINING UNDER UNCERTAINTY

In many real-world applications requiring big volumes of training

data, very accurate training sets collected under strictly controlled

conditions are very difficult to gather. For example, in audiovisual

speech recognition it is unrealistic to assume that a human expert

annotates each frame in the training videos. A usual compromise

is to adopt a semi-automatic annotation technique which yields a

sufficiently diverse training set; since such a technique can introduce

non-negligible feature errors in the training set, it is important to take

training set feature uncertainty into account in learning procedures.

Under our feature uncertainty viewpoint, only a noisy version

y of the underlying true property x can be observed. Maximum-

likelihood estimation of the GMM parameters θ from a training set

Y = {y1, . . . , yN} under the EM algorithm [12] should thus consider

the corresponding clean features X , besides the class memberships

M, as hidden variables. The expected complete-data log-likelihood

Q(θ, θ′) = E[log p(Y, {X ,M}|θ)|Y, θ′] of the parameters θ in

the EM algorithm’s current iteration given the previous guess θ′ in

the E-step should thus be obtained by summing over discrete and

integrating over continuous hidden variables. In the single stream

case this translates to:

Q(θ, θ′) =
N∑

i=1

M∑
m=1

log πmp(m|yi, θ
′)+

N∑
i=1

M∑
m=1

∫
log p(yi|xi)p(xi, m|yi, θ

′)dxi+

N∑
i=1

M∑
m=1

∫
log p(xi|m, θ)p(xi, m|yi, θ

′)dxi (7)

We get the updated parameters θ in the M-step by maximizing

Q(θ, θ′) over θ, yielding

rm =

N∑
i=1

ri,m, πm =
rm

N
, μm =

1

rm

N∑
i=1

ri,mx̂i,m,

Σm =
1

rm

N∑
i=1

ri,m

(
Σxi,m

+ (x̂i,m − μm)(x̂i,m − μm)T
)
, (8)

where (the prime denotes previous-step parameter estimates)

ri,m = p(m|yi, θ
′) ∝ π′mN(yi − μe,i; μ

′
m, Σ′m + Σe,i) (9)

x̂i,m = Σxi,m

(
(Σ′m)−1μ′m + (Σe,i)

−1(yi − μe,i)
)
, (10)

Σxi,m
=

(
(Σ′m)−1 + (Σe,i)

−1
)−1

. (11)

Two important differences w.r.t. the noise-free case are notable:

first, error-compensated scores are utilized in computing the re-

sponsibilities ri,m in Eq. (9); second, in updating the model’s

means and variances, one should replace the noisy measurements

yi used in conventional GMM training with their model-enhanced

counterparts, described by the expected value x̂i,m and variance

Σxi,m
. Furthermore, in the multimodal case with multiple streams

s = 1, . . . , S, one should compute the responsibilities by ri,m ∝
π′m

∏S

s=1
N(ys,i − μs,e,i; μ

′
s,m, Σ′s,m + Σs,e,i), which generalizes

Eq. (9) and introduces interactions among modalities. Analogous EM

formulas for HMM parameter estimation are given in the Appendix.

Similarly to the analysis in Section II, we can gain insight into the

previous EM formulas by considering the special case of constant and

model-aligned errors Σe,i = Σe = λmΣm. Then, after convergence,

the covariance formula in Eq. (8) can be written as

Σm =
1

1 + λm

Σ̃m, or, equivalently, Σm = Σ̃m − Σe, (12)

where we simply subtract from the conventional (non-compensated)

covariance estimate Σ̃m = 1

rm

∑N

i=1
ri,m(yi − μm)(yi − μm)T the

noise covariance Σe. The rule in Eq. (12) has been used before as
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Fig. 2. Visual Front-End. Upper-Left: Mean shape s0 and the first
eigenshape s1. Upper-Right: Mean texture A0 and the first eigenface
A1. Lower: Tracked face shape and feature point uncertainty.

heuristic for fixing the model covariance estimate after conventional

EM training with noisy data (e.g. [13]). We have shown that it is

justified in the constant and model-aligned errors case, and only after

convergence; otherwise, one should use the more general Eq. (8).

Another link of our training under uncertain measurements sce-

nario is to neural network training with noise (or noise injection)

[14], where an original training set is artificially supplemented with

multiple noisy instances of it and the resulting enriched set is used

for training. Training with noise is relatively immune to over-fitting

and leads to classifiers with improved generalization ability.

IV. AUDIO-VISUAL SPEECH RECOGNITION

To demonstrate the applicability of the proposed fusion scheme we

apply it in Audio-Visual Automatic Speech Recognition (AV-ASR),

a practical problem for which proper information fusion is important.

A. Visual Front-end and Visual Feature Uncertainty

Salient visual speech information can be obtained from the shape

and the texture (intensity/color) of the speaker’s visible articulators,

mainly the lips and the jaw, which constitute the Region Of Interest
(ROI) around the mouth [1].

We use Active Appearance Models (AAM) [15] of faces to accu-

rately track the speaker’s face and extract visual speech features from

both its shape and texture. AAM, first used for AV-ASR in [16], are

generative models of object appearance and have proven particularly

effective in modeling human faces for diverse applications, such as

face recognition or tracking. In the AAM scheme an object’s shape

is modeled as a wireframe mask defined by a set of landmark points

{xi, i = 1 . . . N}, whose coordinates constitute a shape vector s of

length 2N . We allow for deviations from the mean shape s0 by letting

s lie in a linear n-dimensional subspace, yielding s = s0+
∑n

i=1
pisi.

The deformation of the shape s to the mean shape s0 defines a

mapping W (x; p), which brings the face exemplar on the current

frame I into registration with the mean face template. After canceling

out shape deformation, the face color texture registered with the

mean face can be modeled as a weighted sum of “eigenfaces” {Ai},

i.e., I(W (x; p)) ≈ A0(x) +
∑m

i=1
λiAi(x), where A0 is the mean

texture of faces. Both eigenshape and eigenface bases are learned

during a training phase; see Fig. 2. Given a trained AAM, model

fitting amounts to finding for each video frame It the parameters

p̃t ≡ {pt, λt} which minimize the squared texture reconstruction

error It(W (pt)) − A0 −
∑m

i=1
λt,iAi; efficient iterative algorithms

for this non-linear least squares problem can be found in [15]. The

fitting procedure employs a face detector [17] to get an initial shape

estimate for the first frame.

As visual features for speech recognition we use the parameters

p̃t of the fitted AAM. We employ as visual feature uncertainty the

uncertainty in estimating the parameters of the corresponding non-

linear least squares problem [18, ch. 15]; plots of the corresponding

uncertainty in localizing the landmarks on the image for two example

faces are illustrated in Fig. 2.

B. Audio Front-end and Audio Feature Uncertainty

Our audio front-end is based on the Mel Frequency Cepstral

Coefficient (MFCC) audio representation. To employ our fusion

technique in the presence of auditory noise, we need (see Sec. II)

(1) an estimate of the enhanced MFCC features ys − μe,s, to use

instead of the noisy MFCC features ys, and (2) the uncertainty Σe,s

of the MFCC enhanced estimate. A number of recent audio-only
approaches to robust ASR have developed techniques which can be

used for this purpose; in our experiments we employ the speech

enhancement and uncertainty estimation framework proposed in [8].

Following [8], we utilize a prior clean speech model (in the form

of GMM in the MFCC space) and a non-linear parametric model of

the MFCC feature degradation under noise; based on these, we can

iteratively improve an estimate of the enhanced speech and estimate

its uncertainty; see [8] for further details. Alternative enhancement

procedures could be used provided that they give variance estimates

for the enhanced features.

C. Audio-Visual Speech Recognition Experiments

We evaluate our fusion approach in classification experiments on

the CUAVE audiovisual database [19]; the considered task is word

classification of isolated digits. By contaminating the clean audio

signal with babble noise from the NOISEX collection we extended

the database including its noisy version. We use MFCCs, along with

their first and second order derivatives, as audio features, comprising a

39-dimensional audio vector in total; the corresponding audio feature

uncertainty has been computed along the lines of Section IV-B.

In the visual front-end, we form a 18-dimensional visual feature

vector (6 shape and 12 texture features) and also add up to second

derivatives, for a 54-dimensional visual feature vector, which, along

with its variance, is computed as discussed in Section IV-A. Mean

Normalization has been applied to both the audio and visual features.

For the acoustic and visual observations modeling we constructed

8-state left-right word multi-stream HMMs [1] with a single multi-

dimensional Gaussian observation probability distribution per stream

at each state. The proposed incorporation of feature uncertainty in

the testing phase has been implemented in the HMM decoder by

increasing the observation variance in the modified forward algorithm

described in the Appendix. The models were trained on clean audio

data, while for the visual training data their corresponding variances

were taken into account into the modified EM algorithm of the

Appendix in the corresponding experiment. The baseline audiovisual

setup uses stream weights equal to unity for both streams.

Our experimental results, summarized in Table I, show that: (1)

Accounting for feature uncertainty in the case of audiovisual fusion

consistently improves accuracy (AV-UC/AV-ACT vs. AV). (2) While

in heavy noise (SNR under roughly 10 dB) the proposed audio-

visual fusion approach outperforms audio-only recognition, in clean

conditions (SNR greater than 10 dB) audio-only rates are better

(AV-UC/AV-ACT vs. A). This could be remedied by using discrim-

inatively set stream weights, in addition to our current uncertainty

compensation technique (which would then act as stream adaptation

mechanism). Such a combined scheme would clearly further increase

speech recognition performance, but we currently cannot justify it

theoretically; we leave its further experimental and theoretical study

for future work. (3) In agreement with the existing audio-visual
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TABLE I

WORD PERCENT ACCURACY (%) OF CLASSIFICATION EXPERIMENTS

ON CUAVE DATABASE FOR VARIOUS NOISE LEVELS ON THE AUDIO

STREAM: AUDIO (A), VISUAL (V), AUDIO-VISUAL FEATURES, WITH

STREAM WEIGHTS EQUAL TO UNITY (AV), WITH UNCERTAINTY

COMPENSATION IN TESTING (AV-UC), AND WITH UNCERTAINTY

COMPENSATION IN BOTH TESTING AND TRAINING (AV-UCT).

SNR A V AV AV-UC AV-UCT

clean 99.3 75.7 90.0 - -
15 dB 96.7 - 88.0 88.3 88.0
10 dB 91.3 - 88.3 88.7 87.7
5 dB 82.0 - 87.0 88.0 87.7
0 dB 62.7 - 84.3 87.0 87.3

-5 dB 40.3 - 81.7 82.0 83.0

ASR literature [1], using visual features clearly leads to noise-robust

ASR results; in our experiments audio-visual ASR results show little

degradation when audio SNR drops from 15 dB down to 0 dB.

V. CONCLUSIONS

The paper has shown that taking the feature uncertainty into ac-

count constitutes a fruitful framework for multimodal feature analysis

tasks. This is especially true in the case of multiple complementary

information streams, where having good estimates of each stream’s

uncertainty facilitates information fusion, allowing for proper training

and fully adaptive stream integration schemes. In order this approach

to reach its full potential, methods for reliably estimating the fea-

ture observation uncertainty are needed. Ideally, the methods that

we employ to extract features in pattern recognition tasks should

accompany feature estimates with their respective errorbars. Although

some progress has been done in the area, further research is needed

before we fully understand the quantitative behavior under diverse

conditions of popular features commonly used in pattern analysis

tasks such as speech recognition.
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APPENDIX

For the HMM, similarly to the GMM covered in Sec. III,

the expected complete-data log-likelihood Q(θ, θ′) =
E[log p(O, {Q,X ,M}|θ)|O, θ′] of the parameters θ in EM’s

current iteration given the previous guess θ′ is (E-step):

Q(θ, θ′) =
∑
q∈Q

T∑
t=1

log aqt−1qtP (O, q|θ′)+

∑
q∈Q

T∑
t=1

∫
log p(ot|xt, qt, θ

′)P (O, q, xt|θ
′)dxt+

∑
q∈Q

T∑
t=1

M∑
m=1

∫
log p(xt|mt, qt, θ

′)P (O, q, m, xt|θ
′)dxt+

∑
q∈Q

T∑
t=1

M∑
m=1

p(m|qt, θ
′)P (O, q, m|θ′) +

∑
q∈Q

log πq0P (O, q|θ′)

(13)

The responsibilities γt(i, k) = p(qt = i, m = k) are estimated

via a forward-backward procedure [20] modified so that uncertainty

compensated scores are utilized:

at+1(j) = P (o1:t, qt = j|θ′) =
[ N∑

i=1

αijat(i)
]
b′j(ot+1) (14)

βt(i) = P (ot+1:T |qt = i, θ′) =
N∑

j=1

αijb
′
j(ot+1)βt+1(j), (15)

where b′j(ot) =
∑M

m=1
ρmN(ot; μ

′
j,m+μet , Σ

′
j,m+Σet). Scoring is

done similarly to the conventional case by the forward algorithm, i.e.

P (O|θ) =
∑N

i=1
aT (i). The updated parameters θ are estimated us-

ing formulas similar to the GMM case in Section III. For μq,m, Σq,m

the filtered estimate for the observation is used as in (11).
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