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Abstract

Nonlinear systems based on chaos theory can model
various aspects of the nonlinear dynamic phenomena oc-
curing during speech production. In this paper, we explore
modern methods and algorithms from chaotic systems the-
ory for modeling speech signals in a multidimensional
phase space and extracting characteristic invariant mea-
sures such as the generalized fractal dimensions. Such
measures can capture valuable information for the char-
acterisation of the multidimensional phase space since
they are sensitive on the frequency that the attractor vis-
its different regions. Further, we integrate some of these
chaotic-type features with the standard linear ones (based
on cepstrum) to develop a generalized hybrid set of short-
time acoustic features for speech signals and demonstrate
its efficacy by showing slight improvements in HMM-
based phoneme recognition without the use of any lan-
guage model.

1. Introduction

For several decades the traditional approach to speech
modeling has been the linear (source-filter) model where
the true nonlinear physics of speech production are ap-
proximated via the standard assumptions of linear acous-
tics and 1D plane wave propagation of the sound in the
vocal tract. There is indeed strong theoretical and ex-
perimental evidence [22, 10, 25, 23] for the existence of
important nonlinear aerodynamic phenomena during the
speech production that cannot be accounted for by the
linear model. Thus, in our research we focus on the de-
velopment of nonlinear signal processing systems suitable
to detect such phenomena and extract related information
as acoustic signal features describing these nonlinear phe-
nomena in speech like turbulence.

To be physically meaningful mathematical representa-
tions and extracted features of speech signals should be de-
rived based on important aspects of the physics of speech
production, such as the acoustic dynamics of 3D speech
airflow, geometry of vocal tract, and nonstationarity of
speech. However, linear acoustics has been used for the
past 50 years to model speech signals both during genera-
tion by the human vocal tract as well as during perception
by the human auditory system, ignoring the true nonlinear
physics of speech production and hearing. The analysis

via nonlinear models aims to capture the invariant mea-
sures of the speech production system’s dynamics. By this
way, we shall gain insight on the phenomena which take
effect by quantifying various characteristics of them. The
analysis with generalized fractal dimensions [6, 12, 16]
provides a measure which has the potential to detect inho-
mogeneity or nonuniformity of a set, in which case the set
is called a multifractal . In this case the description of the
set with a class of generalized dimensions is indespens-
able. On the contrary, if the set is uniform then any fractal
dimension out of the class of generalized dimensions can
work as a representative.

The nowadays “standard” speech features used in au-
tomatic speech recognition (ASR) are based on short-
time smoothed cepstra stemming from the linear model
[19, 20]. This representation ignores the nonlinear as-
pects of speech. Adding new robust nonlinear informa-
tion is quite promising to lead to improved performances
and robustness. In this paper, we also develop a simple set
of nonlinear features based on chaotic models for speech
production and apply these features to increase the recog-
nition performance of ASR systems whose pattern classi-
fication part is based on Hidden Markov Models (HMM).

Section 2 of this paper summarizes the basic concepts
for analyzing speech signals with chaotic models ([17]),
extracting short-time feature vectors that contain relative
information and after integrating them with the standard
linear ones (cepstrum), develop a generalized set of acous-
tic features for improving HMM-based phonemic recog-
nition. Section 3 presents the analysis using concepts as
the generalized dimensions and a preliminary application
to speech phonemes.

2. Speech Analysis using Chaotic Models
and ASR Aplication

It has been shown experimentally and predicted the-
oretically that many speech sounds contain various
amounts of turbulence [14]. Several phenomena (airflow
separation[22, 25], instability, generation of vortices[25,
23]) encountered in many speech sounds lead to turbulent
flow; especially for fricatives, plosives and vowels uttered
with some speaker-dependent aspiration. It has been con-
jectured that geometrical structures in turbulence can be
modeled using fractals [13, 14], while its dynamics can
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be modeled using the theory of chaos. In a previous work
[15], one of the authors measured the short-time fractal
dimsension of speech sounds as a feature to approximately
quantify the degree of turbulence in them and used it to
improve phoneme recognition. Moving a step further, in-
stead of the quantification in the scalar phase space, we
extend our work [17] by using, concepts from chaos [1]
to model the nonlinear dynamics in speech of the chaotic
type and then compute characteristic invariant measures.
Previous work can be found in [18, 24, 5, 11].

A speech signal segment can be thought of as a 1D pro-
jection of a vector function applied to the unknown multi-
dimensional speech production system. It is possible that
this projection is responsible for a loss of information. By
a reverse procedure a multidimensional phase space is re-
constructed - using information provided by the scalar sig-
nal - satisfying the major requirement to be diffeomorphic
to the original phase space, so that determinism and differ-
ential information of the dynamical system are preserved
[21]. According to the embedding theorem [1], the recon-
structed space is formed by samples of the original signal
delayed by multiples of a constant time delay and defines
a motion in a reconstructed multidimensional space that
has many common aspects with the original phase space
(e.g. fractal dimensions and Lyapunov exponents). Thus,
by studying the constructible dynamical system we can
uncover useful information about the original unknown
dynamical system provided that the unfolding of the dy-
namics is successful. The parameters that need to be set
are the embedding dimension and the time delay; they are
determined respectively by use of a nonlinear correlation
measure i.e. the average mutual information of the signal,
and a measure that quantifies how much the manifolds in
the phase space are folded, due to projection. In the un-
folded phase space one can measure invariant quantities of
the attractor like fractal dimensions (corresponding to the
number of active degrees of freedom and the underlying
complexity) and Lyapunov exponents. The scale vary-
ing correlation dimension [7, 16], as an easy to compute
measure, has been evaluated [17].

We then attempted to extract features related to chaotic
dynamics and apply them to an automatic speech recog-
nition (ASR) system based on hidden Markov models
(HMM) (The HTK [26] HMM-recognition system was
used) . It is noted that no language model was used,
so as to explore only phonetic contribution of the fea-
tures, without any statistical information about the lan-
guage. The analysis described above has been applied to
each speech analysis frame (30-ms frames, updated ev-
ery 10 ms). The physical justification of embedding only
a frame instead of a whole phoneme is that the recon-
structed space in this occasion belongs to the short-time
phase space of the dynamic system during the time pe-
riod it produced the current frame. We compute a feature
vector that is related to the scale-varying correlation di-

mension and hence carried information about the chaotic
dynamics of each frame. Specifically, the following set of
elements has been selected: (1) the mean of scale-varying
correlation dimension at smaller scales, (2) its standard
deviation, (3) the mean of scale-varying correlation di-
mension at larger scales, and (4) its standard deviation.
The feature set is extended with the first and second time
derivatives and then merged with the standard MFCC’s
in 2 different probability streams for speech recognition
over the TIMIT database.

The recognition result of the hybrid feature set (ac-
curacy for hybrid feature set 53.91% , Baseline accuracy
53.41%) were slightly promising, even though our prelim-
inary first application of chaotic features used the fewest
and simplest possible such features. The relative pnone er-
ror rate reduction of 1.07% (with 16 mixtures) over using
only the standard features is possibly due to the detection
of nonlinear phenomena which remain “hidden” in the
1D dynamics. Unfolding the signal to the original phase
space enables the observation of the true dynamics of the
system; furthermore a broad variety of new measurements
will be performed on the unfolded attractor that can yield
fractal and/or chaotic features adding considerable infor-
mation even in a four-component feature vector.

3. Speech Analysis using Generalized
Dimensions

As an attempt towards the finer characterization (complex-
ity and strangeness) of phoneme attractors, the direction of
generalized dimensions ([16, 8]) (eg Renyi hierarchi) was
followen. The representation and description of a phase
space via one and only number (e.g. D1, D2), might be too
restricting to stand alone for the ammount of information
possibly residing in it, as far as the underlying probability
density distribution is concerned, since it might be more
populated in certain regions than others. Although fractal
dimensions of the probabilistic type (such as information
or correlation dimension) do take under consideration the
variable “visitability" of the attractor in different regions,
they still are a global weighted average.

A measure among others ([16]) that can be applied for
the extension of the analysis, is the generalized dimension
function which defines an infinite class of dimensions,
introduced in [2, 3] (where an extensive analysis can be
found). In brief, this is accomplished by an analysis of the
generic momments of nearest neighbors’distances among
randomly chosen points on the attractor. More precisely,
for a reference point x in the attractor X and a prede-
fined number of points n, if δ(n) is its nearest’s neighbor
distance ammong the n − 1 others, and P (δ, n) is the
probability distribution of δ, then the generic momment
of order γ of these distances is

〈δγ〉 ≡ Mγ(n) =
∫ ∞

0
δγP (δ, n)dδ. (1)



Since 〈δγ〉 is argued [2] to depend on n as ∼ n− γ
D(γ) the

dimension function is defined as:

D(γ) = − lim
n→∞

γ lnn

lnMγ(n)
(2)

where γ is the parameter that suppresses or enhances dif-
ferent δ scales of distances. Since for increasing γ the
larger distances are more weighted and vice versa, D(γ) is
a monotonic nondrecreasing function of γ. Among the in-
finite number of dimensions, one can find the Renyi class
of dimensions Dq for q ≥ 0 with which the corespon-
dance is given by the formula D[γ = (1 − q)Dq] = Dq.
Geometricaly the Dq’s are the intersection of the graph
of the D = D(γ) function with a series of straight lines
with slope 1

1−q (e.g. D0 is the point that γ = D(γ),
and D1 is the intersection with γ = 0) . The case
that D(γ) does not vary for different γ values yields
that the set is uniform with constant fractal dimension
(D0 = D1 = D2 = . . . = Dq, q ≥ 0).

The integral Equation 1 can be rewriten as a sum
for a discrete signal of finite length N : Mγ(n) =
1
N

∑N
i=1 δγ

i (n)P (δi, n) where index i stands for all the
reference points of the set. The second term in this
sum i.e. the probability density function P (δ, n) can
be computed for an arbitrary scale δj as the differ-
ence of volume estimates based on the resolution of
the successive scales [9]. Let Y = {y(k) : k =
1, . . . , M} be a set of uniform random numbers of the
same dimensionality as the data set X , and fδj (k) =
1 if dist(y(k), X) ≤ δj and 0 otherwise; given that
dist(y(k), X) = inf ‖y(k) − x‖ for x ∈ X . Then the
Monte Carlo volume estimate of a δj-cover of the set X

is: A(δj)≡ 1
M

∑M
i=1fδj

(k). Given the above, P (δj , N) ≈
A(δj) − A(δj+1) is the probability that some point has a
nearest neighbor at distance δ ∈ (δj+1, δj ].

When arbitrary signals are involved, an infinite (or
very large for implimentation reasons) ammount of data
is considered to be available (the number of points used in
[3] or [9] are of the order of 105, 106). Unfortunately this
is not the case for speech signals (due to non-stationarity),
especially if there has to be some physical interpretation
of the state that the speech production system was while
generating a certain phoneme. The more usual limita-
tions are observed in the computation of higher dimen-
sional histograms due to the insufficient statistics of the
data in the multi-dimensional bins. The random nature of
the approach described above, makes it appealing for an
experimental application on speech signals.

In Figures 3(a,b) the dimension functions D = D(γ)
are presented for different, – arbitrary selected – phonemes
(extracted from the TIMIT database). It can be clearly
seen that in some cases D(γ) is varying in the range of γ
values that has been computed, which might be different in
each case, because of, among others, the phoneme length,
speaker dependency and allophone dependency. Such de-
pendence of the dimension function on γ indicates non

uniformity of the set. Though, there have been observed
cases in which the dimension function is not monotonic
and/or nondecreasing (see Figure 3(a)), or cases that same
phonemes uttered either by the same speaker or not, had
totally different profile of dimension function.

To explore the existence of any classification capabil-
ity of the measures described above, certain simple char-
acteristic features have been selected such as: the mean
value of the generalized dimension function, the coeffi-
cients of a 1st or 2nd order polynomial fit to the gener-
alized dimension function. Further in order to quantify
our observations, we have used Gaussian Mixture Mod-
els (HTK toolkit,16 mixtures) for, speaker independent,
isolated broad class phoneme classification, yielding 83%
correct rate for vowels(V), 75% for fricatives(F) and 70%
for stops(S) with an overall correct rate of 78% (out of
32616 test phonemes ). In the same task the 12 cepstrum
coefficients alone (extracted framewise and then mapped
by averaging on one feature vector per phoneme, with-
out any deltas, so as to compare approximately under the
same terms) scored respectively 67%(V), 48%(F), 88%(S)
with overall correct rate of 67%. Concluding, these pre-
liminary experiments are promising because they provide
an efficient way to uncover some types of nonlinear in-
formation with good potential for categorization of broad
phoneme classes.

4. Conclusions

In this paper we have described how to apply modern
concepts and algorithms from chaotic systems to analyz-
ing speech signals in order to create a multidimensional
model that exploits nonlinear dynamic information and
measure invariant quantities like generalized fractal di-
mensions i.e. an infinite number of dimensions, which
carry much more information compared to a fractal di-
mension that consists of a single number. In our on-going
speech research, we are working to enhance the nonlin-
ear speech analysis described herein, in various directions
such as: exploring different ways for computing the gen-
eralized dimensions and apply them to a broad class of
phonemes; computation of Lyapunov exponents which
also contain dynamical information; analysis of features
as far as their dependencies upon various attributes is con-
cerned; extracting chaotic features in noisy environments;
application of chaotic features to large vocabulary speech
recognition problems. Further results will be presented in
a forthcoming paper.
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Figure 1: Generalized dimension for:(a) vowels /iy/ (·) and stops /b/ (�) uttered by the same speaker (mrws1); (b) fricatives
/v/ (◦), /z/ (�), and /f/ (×) uttered by mixed speakers.
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