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Abstract 

The Hilbert transform together with Gabor 's  analytic signal provides a standard linear integral approach to estimate 
the amplitude envelope and instantaneous frequency of signals with a combined amplitude modulation (AM) and 
frequency modulation (FM) structure. A recent alternative approach uses a nonlinear differential 'energy' operator to 
track the energy required to generate an A M - F M  signal and separate it into amplitude and frequency components. In 
this paper, we compare these two fundamentally different approaches for demodulation of arbitrary signals and of speech 
resonances modeled by A M - F M  signals. The comparison is done from several viewpoints: magnitude of estimation 
errors, computational complexity, and adaptability to instantaneous signal changes. We also propose a refinement of the 
energy operator approach that uses simple binomial convolutions to smooth the energy signals. This smoothed energy 
operator is compared to the Hilbert transform on tracking modulations in speech vowel signals, band-pass filtered 
around their formants. The effects of pitch periodicity and band-pass filtering on both demodulation approaches are 
examined and an application to formant tracking is presented. The results provide strong evidence that the estimation 
errors of the smoothed energy operator approach are similar to that of the Hiibert transform approach for speech 
applications, but smaller for communication applications. In addition, the smoothed energy operator approach has 
smaller computational complexity and faster adaptation due to its instantaneous nature. 

Zusammenfassung 

Die Hilberttransformation zusammen mit Gabors analytischem Signal erm6glicht eine lineare Integrali6sung zur 
Schiitzung der Amplitudeneinh/illenden und Momentanfrequenz fiir Signale mit kombinierter Amplitudenmodulation 
(AM) und Frequenzmodulation (FM). Eine kfirzlich vorgeschlagene alternative L6sung benutzt einen nichtlinearen 
differentiellen 'Energie'-Operator, um die zur Generation von AM-FM-Signalen erforderliche Energie nachzufiihren und 
eine Zerlegung in Amplituden- und Frequenzkomponenten vorzunehmen. In dieser Arbeit vergleichen wir diese beiden 
grundsfitzlich unterschiedlichen L6sungen zur Demodulation von beliebigen Signalen und Sprach-Resonanzen, 
modelliert durch AM-FM-Signale.  Der Vergleich wird unter mehreren Gesichtspunkten durchgefiihrt: Betrag von 
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Sch/itzfehlern, Rechenaufwand und Adaption auf momentane Signalver/inderungen. Wir schlagen weiterhin eine Verbes- 
serung der Energie-Operator-Lfsung vor, die eine einfache binomiale Faltung zur Gl~ittung der Energiesignale benutzt. 
Dieser gegi/ittete Energie-Operator wird mit der Hilberttransformation bezfiglich des Nachffihrens der Modulation in 
Sprachsignalen verglichen, die um ihre Formanten herum bandpaggefiltert sind. Die Effekte der Pitch-Periode und der 
BandpaB-Filterung auf beide Demodulationsverfahren werden untersucht, und es wird eine Anwendung zum Formant- 
Nachfiihren wiedergegeben. Die Resultate ergeben, dab die Sch/itzfehler beim gegl/itteten Energie-Operator bei der 
Anwendung auf Sprachsignale vergleichbar denen des Hilberttransformators sind, aber kleiner bei der Anwendung auf 
Nachrichtensignale. Weiterhin erfordert der gegl/ittete Energie-Operator einen geringeren Rechenaufwand und ist in der 
Adaption schneller wegen seiner Momentanwerteigenschaft. 

R~um~ 

La transformation de Hilbert ainsi que le signal analytique de Gabor fournissent une approche int6grale lin6aire pour 
l'estimation de l'enveloppe en amplitude et de la fr6quence instantan6e de signaux combinant modulation d'amplitude 
(AM) et modulation de fr6quence (FM). Une approche r6cemment d6velopp6e consiste fi utiliser un op6rateur diff6rentiel 
nonlin6aire 'd'6nergie' pour poursuivre l'6nergie requise pour g6n6rer un signal AM-FM et le s6parer en ses composantes 
d'amplitude et de fr6quence. Nous comparons dans cet article ces deux approches fondamentalement diff6rentes de 
d6modulation de signaux arbitraires et de r6sonances de signaux de parole mod61is6s par des signaux AM-FM. Cette 
comparaison est faite de diff6rents points de vue: amplitude des erreurs d'estimation, complexit6 de calcul, et adaptativit6 

des changements instantan6s des signaux. Nous proposons 6galement un raffinement de l'approche par op6rateur 
d'6nergie qui utilise des convolutions bin6miales simples pour adoucir les signaux d'6nergie. L'op6rateur d'6nergie adouci 
est compar6 fi la transformation de Hilbert sur la poursuite de modulations sur des signaux de parole de type voyelle, 
filtr6s passe-bande autour de leurs formants. Les effets de la p6riodicit6 de la fr6quence fondamentale et du filtrage 
passe-bande sur les deux approches de d6modulation sont examin6s et une application fi la poursuite de formants est 
pr6sent6e. Les r6sultats montrent clairement que les erreurs d'estimation obtenues avec l'approche par op6rateur 
d'6nergie adouci sont semblables ~ celles de l'approche par transformation de Hilbert pour des applications de parole, 
mais plus petites pour des applications de communications. De plus, l'approche par op6rateur d'6nergie adouci pr6sente 
moins de complexit6 de calcul et une adaptation plus rapide du fait de son caract6re instantan6. 

Key words: Demodulation; Energy operator; Hilbert transform; Speech processing 

1. Introduction 

Information in communication systems is usu- 
ally stored in signals that have a combined ampli- 
tude modulation (AM) and frequency modulation 
(FM) structure. Recently, such signals have been 
used in [11, 13, 14] to model time-varying ampli- 
tude and frequency patterns in speech resonances. 
Real-valued A M - F M  signals can be represented 
a s  

x(t) = a(t)cos toot + tOm q(z)dz + q~(0) . 

k J 
Y 

q~(t) 

(1) 

Thus x(t) is a cosine of carrier frequency coc, 
with a time-varying amplitude signal a(t) and 

a time-varying instantaneous angular frequency 
signal 

toi(t) & d~-~ (t) = toe + tomq(t), (2) 
f i t  

where q ( t ) E [ - 1 ,  1] is the frequency modulating 
signal, tom e [0, to¢] is the maximum frequency devi- 
ation, and ~b(0) is an arbitrary phase offset. 

A typical demodulation problem is, given x(t) 
and toe, to estimate the amplitude envelope la(t)l and 
instantaneous frequency toi(t). A standard approach 
to this problem is to use the Hilbert transform and 
the related Gabor's analytic signal [6]; this is well 
explained in many books on communications or 
signal processing, e.g., [18, 24]. An alternative ap- 
proach, recently developed by Maragos et al. 
[12, 14], uses an 'energy-tracking' operator to first 
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estimate the energy required for generating the 
AM-FM signal and then separate it into its ampli- 
tude and frequency components. This operator is 
defined for continuous-time signals s(t) as 

tP¢[s(t)] =~ [J(t)] z - s(t)g(t), (3) 

where g=ds/dt.  Its counterpart for discrete-time 
signals s(n) is 

~a[s(n)] ~--s2(n)--s(n - l )s (n+ 1). (4) 

[23]. Motivated by several nonlinear and time- 
varying phenomena during speech production, 
Maragos et al. [11, 13] proposed an AM-FM 
modulation model for the production of speech 
signals, by representing a single speech resonance 
(formant) within a pitch period as a damped 
AM-FM signal 

R(t) = a(t)cos(tOct + tOm f l  q(~)dz + O ) ,  (5) 

The nonlinear operators ~'~ and ~d were developed 
by Teager during his work on speech production 
modeling [25, 26] and were first introduced sys- 
tematically by Kaiser [8, 9]. When ~ is applied to 
signals produced by a simple harmonic oscillator, 
e.g., a mass-spring oscillator, it can track the oscil- 
lator's energy (per half unit mass), which is equal to 
the squared product of the oscillation amplitude 
and frequency. Thus, henceforth, we refer to ~c, ~d 
as the energy operators. The energy operator ap- 
proach to demodulation has many attractive fea- 
tures such as simplicity, efficiency, and adaptability 
to instantaneous signal variations [12, 14]. 

In this paper we compare these two funda- 
mentally different approaches to AM-FM signal 
demodulation. The Hilbert transform approach 
mainly involves a linear integral operator, whereas 
the energy operator approach uses a nonlinear dif- 
ferential operator. Both are briefly reviewed in Sec- 
tions 2.1 and 2.2. In Section 2.3 we introduce an 
improvement of the energy operator approach 
where the energy signals undergo some smoothing 
before being used for demodulation. We refer to the 
above three approaches to AM-FM demodulation 
as amplitude/frequency separation algorithms. In 
Section 3 we provide detailed comparisons among 
these separation algorithms, applied to arbitrary 
synthetic signals, from many different viewpoints: 
magnitude of estimation errors, computational 
complexity, behavior in the presence of noise, and 
adaptability rate in the presence of abrupt signal 
changes. Most of these issues are discussed on an 
experimental basis. 

A promising application area for the methods 
compared in this paper is the problem of tracking 
modulations in speech resonances, keeping in mind 
the importance of formants in speech processing 

where toc is the center value of the formant fre- 
quency, q(t) is the normalized frequency modula- 
ting signal, tOm is the maximum frequency deviation 
from tOc, and a(t) = e-O'A(t) is a time-varying am- 
plitude that includes an exponential decay and 
a generally nonconstant signal A(t). The instan- 
taneous value of the formant frequency is tOi(t) = 
tO~ + tOmq(t). Finally, the speech signal S(t) within 
a pitch period is modeled as the sum S(t)= 
~ =  1 Rk(t) of N such AM-FM signals, where N is 
the number of speech formants. 

The AM-FM modulation model and the energy 
separation algorithm have been used successfully 
for determining the center values of the formant 
frequencies in a speech segment [7]. Another ap- 
plication is the AM-FM modulation vocoder [7], 
which extracts theformant bands from the spectrum 
using a bank of adaptive Gabor filters. The formant 
bands are then demodulated to amplitude envelope 
and instantaneous frequency, decimated and coded. 
At the receiver, the speech bands are reconstructed 
from the modulating signals and added together. 
Finally, in [5] the energy operator is used to deter- 
mine formant tracks used for stop phoneme classi- 
fication. 

Before applying either demodulation approach 
to a single speech resonance signal, one needs first 
to isolate the resonance through band-passfiltering 
of the speech signal. Within certain constraints on 
the impulse response of the band-pass filters, Pa- 
poulis [19, Chapter 8] (in his discussion on spec- 
trum analyzers) and Flanagan [4] (in his work on 
coding of speech spectra) have shown that the effect 
of band-pass filtering can be expressed as a com- 
bined amplitude and phase modulation, whose 
components are identical to the short-time Fourier 
transform magnitude and phase extracted via the 
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Hilbert transform [4]. Another effect of band-pass 
filtering is to blur the true input modulating signals. 
In Section 4.2, following the work of Papoulis on 
this subject [19, Chapter 7], we analyze the blur- 
ring imposed by the filter on a general A M - F M  
input signal. In addition, speech vowel signals have 
the pitch periodicity which poses certain problems 
to A M - F M  modeling and demodulation. Hence, in 
Section 4 we compare experimentally the effects of 
these two unavoidable problems (i.e., band-pass 
filtering and pitch periodicity) when applying the 
Hilbert transform and energy operator demodula- 
tion approaches to speech vowels. Also, to demon- 
strate the underlying ideas from our experiments 
on real speech more clearly, several comparisons on 
synthesized speech vowels are presented in Sec- 
tion 4. We have found that the conclusions drawn 
from experiments on synthetic and real speech are 
similar. Further, since the parameters of the syn- 
thetic speech signals are known, the accuracy of the 
various demodulation approaches can be checked 
more easily. We conclude Section 4 with an ap- 
plication of the energy separation algorithm and 
the A M - F M  modulation model to formant track- 
ing. Three new algorithms are proposed, two that 
use an iterative demodulation approach and one 
with a multiband parallel architecture. Finally, in 
Section 5 we summarize our conclusions from the 
comparisons of the two A M - F M  demodulation 
approaches. 

2. Amplitude/frequency separation algorithms 

Consider a real-valued A M - F M  signal x( t )= 
a(t) cos [ ~ (t)] as in (1). By 'amplitude/frequency 
separation' or 'demodulation' we shall henceforth 
refer to the estimation of the amplitude envelope 
la(t)l and instantaneous frequency r_oi(t)= ~(t), 
which we call information signals. Assuming that 
tot is known, estimating col(t) is equivalent to esti- 
mating the frequency modulating signal q(t). Sim- 
ilarly, if a(t)>>, 0 for all t, one can write a(t)= 
A[1 + xb(t) ] where 0 ~< ~ ~< 1, Ib(t)l ~< 1, and A is 
some constant; estimating ]a(t)l is equivalent to 
estimating the amplitude modulating signal b(t). 
In general, amplitude signals a(t) may be non- 
negative, however, for the purposes of this paper 

we consider it sufficient to estimate the amplitude 
envelope. 

2.1. Hilbert transform separation algorithm 

The Hilbert transform of any A M - F M  signal 
x(t) = a(t) cos [q~(t)] is 

1 (6) ~(t) = x(t) * - -  
~t 

with Fourier transform 

)((co) = - j sgn(co) X(co), (7) 

where X(to) is the Fourier transform of x(t). Given 
the analytic sianal 

z(t) = x(t) + j~(t) = r(t) exp[jO(t)], (8) 

its modulus r(t) and phase derivative 0(t) can serve 
as (generally approximate) estimates for the ampli- 
tude envelope and instantaneous frequency of x(t). 
Thus the Hilbert transform separation aloorithm 
(HTSA) is given by the following two equations: 

r(t) = x / x 2 ( t )  + ~2(t)  ~ la(t)l, 

d f . [~(t)l '~ o(t)-- t arctan/ 3j ) 

(9) 

(10) 

Let the quadrature signal of x(t) be defined as 

Xq (t) = a (t) sin [ ~b (t) ]. (11) 

Clearly, if the Hilbert transform of x(t) is equal to 
its quadrature signal, then the HTSA estimates r(t) 
and 0(t) are equal to the actual information signals 
la(t)] and ~i(t). In general though, ~(t) and Xq(t) are  
not equal, thus an envelope e~(t) and frequency 
eo,(t) estimation error is present. These estimation 
errors are closely related to the quadrature error 
signal of the Hilbert transform defined as 

e(t) = ~(t) - Xq(t) = ~(t) - a(t)sin[q~(t)]. (12) 

Consider the complex-valued signal 

w(t) = x(t) + jXq(t) = a(t) exp[jdp(t)] (13) 

with Fourier transform W(og). Then 

X(co) = ½[W(o) + W*(-co)] .  (14) 
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Nuttal [16, 17] has shown that the total energy in 
the quadrature error signal is 

E =  f ~  le(t)l z d t =  ~l °f_~lW(og)l 2dog. (15) 

Therefore, if W(eo) is zero for negative frequencies 
the quadrature error e(t) will also be zero. When 
W(co) extends to negative frequencies, the quadra- 
ture error e(t) is nonzero and the magnitude of the 
error increases as the negative side of W(co) grows. 
In the special case of a cosine x(t) = A cos(ogct), the 
HTSA provides exact estimates of the amplitude 
and frequency, because ~(t) = A sin(ogct) and hence 
e(t) = 0 for all t. 

The quadrature error e(t) can provide bounds for 
the estimation errors of the information signals. 
The envelope estimation error ea(t) may be ex- 
pressed as 

e~(t) = la(t)l - r(t) = la(t)l - x//x2(t) + ;~z(t) 

= la(t)l - x/x2(t) + [Xq(t) + e(t)] 2 

= la(t)l 1 - 1 + 2alOSin[dp(t)] + 

e~(tl 

21a(t)l' 
- e(t) sgn [a(t)] sin [ ~b (t)] 

if le(t)l<<la(t)l, a(t) ¢ O. 

The phase estimation error is 

e,(t) = arctan Lx(t) J - ok(t) 

(16) 

e(t) ] 
= arctan tan[~b(t)] + a(t)c~s[ck(t)] - c~(t). 

Hence, 

e(t) 
a(t) cos [ ~b(t)] 

tan[e,(t) + q~(t)] = tan[g~(t)] + 

e(t) cos [ q~ (t)] 

a(t) + e(t)sin[ d~(t)] 
=*, tan[e,(t)]  = 

e(t) cos[ dp(t) ] 
a(t) 

e,(t) 

if le(t)l<<la(t)[, a(t) v~ O. (17) 

Finally, the instantaneous frequency estimation 
error e,o is simply the derivative of the phase error 
e,. In brief, for [e(t)l<<la(t)[ and a(t) # 0 

[ea(t)l ~< [e(t)l, (18) 

e(t) , (19) 
[e~(t)[ ~< a(t) 

d-Fe('Ic°s[*('ll] (20) 
[e,o(t)[ = IE¢(t)l ~ dt[_ a(t) 3[" 

For discrete-time signals x(n) their Hilbert trans- 
form J (n )=  x(n)*h(n) is defined [18] in the time 
domain as the convolution of x(n) with the infinite 
impulse response 

2 sin2 0m/2) 
h(n) = rt n n ~ 0, (21) 

0 n = 0 .  

In practice, one can implement the Hilbert trans- 
form by using an FIR approximation to the IIR 
h(n). Such FIR filter designs can be obtained either 
via the window method (e.g., Kaiser windows) or 
the equiripple method [18]. An alternative way of 
approximating the discrete-time analytic signal 
z(n) = x(n) + jR(n) is by using FFTs to implement 
a 90 ° phase splitter [18]. 
If x(n) = a(n) cos [ q~ (n)] and Xq (n) = a(n) sin [ ~b (n)], 
the total energy of the quadrature error becomes in 
discrete time 

E =  ~ I~(n)-  xq(n)[ e 

,fo = - I W(O)I 2 dr2, (22) 
- - T t  

where W(O) is the discrete Fourier transform of the 
signal w(n)= x(n)+ jxq(n). The envelope and in- 
stantaneous frequency estimation Eqs. (9) and (10) 
and error bound Eqs. (18), (19) and (20) also hold in 
discrete time. However, in addition to the quadra- 
ture error that depends on the signal x(n), any (FIR 
or FFT) discrete Hilbert transform implementation 
also incurs an additional error, by being an approx- 
imation of the exact IIR Hilbert transformer. 

In this paper, we will use two FIR Hilbert trans- 
formers designed via the window method: (i) a filter 
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with a short 19-sample impulse response, cutoff 
frequency at 500 Hz, and 10% maximum ripple in 
the passband; (ii) a filter with a long 139-sample 
impulse response, cutoff frequency at 200 Hz, and 
1% ripple. The two Hilbert transform separation 
algorithms corresponding to the above implemen- 
tations will be referred to as 'short HTSA' and 'long 
HTSA', respectively. Both implementations assume 
a sampling frequency of 20 kHz. 

2.2. Energy operator separation algorithm 

In [13, 15] it has been shown that, when ~c is 
applied to an A M - F M  signal 

x(t) = a(t)cos[ f i  ~oi(t)dt ] 

it can approximately estimate the squared product 
of the amplitude and frequency signals; i.e., 

tP¢[x(t)] ~ [a(t)toi(t)] 2 (23) 

assuming that the signals a(t) and co~(t) do not vary 
too fast (rate of change) or too greatly (range of 
value) with time compared to the carrier frequency 
o9~. For the demodulation of A M - F M  signals x(t), 
the following energy operator separation algorithm 
(EOSA) has been developed in [12, 14]: 

X]/i/, ~ oh(t), (24) 
[2(t)] 

~¢[x(t)] 

~¢ Ix(t)] ~ (25) ~ la(t)l. 

At each time instant the EOSA estimates the in- 
stantaneous frequency and the amplitude envelope 
of x, by using the output values of the energy 
operator applied to the signal x and the signal 
derivative 2. Upper bounds for the approximation 
errors in (23)-(25) have been found in [13-15]; the 
bounds are expressed in terms of the ratios of the 
bandwidths of a and toi versus the carrier o)c. If 
x(t) = A cos(toct) is a cosine with no AM or FM, 
the EOSA yields exact estimates of the constant 
amplitude and frequency. 

Similar methods can be applied to the discrete- 
time A M - F M  signal 

x(n) = a(n) cos [ ~b (n)] 

= a(n)cos(f2¢n + f2m f~ q(k)dk + 4)(0)) 

to estimate its amplitude envelope la(n)l and in- 
stantaneous frequency 

d~b 
f2i(n) = q---(n) = ~¢ + f2mq(n), 

o n  

where 0 ~< t2~, ~< I2c and Iq(n)l ~ 1. Note that the 
continuous-time frequencies me, (Dm and (hi have 
been replaced by their discrete-time counterparts 
f2¢, f2m and t2i, which are assumed to be in [0, r~]. If 
x(n) has resulted from sampling of a continuous- 
time signal, then 

~e'~¢ -~. o )¢Z ,  ~'~m = (DmT, ~t-~i = ° ) i T ,  

where T is the sampling period. It has been shown 
in [13, 15] that 

~d[x(n)] ~ a2(n) sin z [12i(n)]. (26) 

By applying q'd to both x and its backward differ- 
ence 

y(n) = x(n)-  x(n - 1) 

a discrete-time EOSA 
[12, 14]: 

arccos (1 

has been developed in 

~U~[y(n)] + %[y(n + 1)]'~ 
~i(n), } 4~Ud[X(n)] 

(27) 

j (    x,n,l ) 
1 -- 1 - ~d[y(n)] + ~a[y(n + 1)] 2 "~ la(n)l. 

4~a[x(n)] 
(28) 

The frequency estimation part assumes that 
0 < Oi(n) < n. Thus, the discrete EOSA algorithm 
can estimate instantaneous frequencies up to half 
the sampling frequency. The approximations in 
(26)-(28) are valid under assumptions similar to the 
continuous-time case. 
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One of the underlying ideas in the EOSA is that 
of signal estimation by using nonlinear combina- 
tions of the 'instantaneous' values of the signal and 
its derivatives. From this viewpoint, it is related to 
the signal modeling framework of [28]. However, 
the usage of an energy operator puts forth the 
additional interesting intuitive feature of tracking 
the energy required for generating the A M - F M  
signal and then separating it into amplitude and 
frequency components. 

2.3. Smoothed energy operator separation 
algorithm 

The precise result from applying the energy oper- 
ator to an A M - F M  signal is [12] 

~¢[a( t )cos(~( t ) )]  = (aq~) z + 
2 

EH 
A 

r ~(a)~ 

+ a2~sin(2~) + ~-- :cos(24))  . (29) 

The desired term is D = (a4~) 2, whereas EL and 
EH are the error terms in the approximation (23). 
Note that the energy operator approximation in- 
curs a low-frequency error component EL and 
a high4requency component En concentrated 

around 2toe, i.e., twice the carrier frequency of the 
A M - F M  signal. In addition, the desired term D is 
bandlimited with a highest frequency that is much 
smaller than ~oc (under the assumption that the 
bandwidth of the amplitude a(t) and the instan- 
taneous frequency ~(t) signals is also much smaller 
than ~oc). This means that the high-frequency error 
component is well separated from the desired term 
in the frequency domain. Thus, by filtering the 
energy operator output through an appropriate 
low-pass filter, one can eliminate the high-fre- 
quency error component without affecting the low- 
frequency desired term. 

Similarly, in discrete time, when the energy oper- 
ator ~d is applied to an A M - F M  signal, we get 
a high-frequency error component concentrated 
around 2f2~ as shown in Figs. 1 (a) and (b). The total 
error signal of the approximation and its spectrum 
are displayed for an AM-FM/cosine signal (50% 
AM, 20% FM) with carrier frequency at f2¢ = 0.2n. 
Clearly, the error has a high-frequency component 
around 212¢ = 0.4n that can be eliminated through 
low-pass filtering. 

The choice of an appropriate low-pass filter is 
not straightforward. Clearly, an 'expensive' filter 
with a long impulse response can decrease con- 
siderably the approximation error. We must keep 
in mind though, that one of the major advantages 
of the energy operator is its instantaneous nature, 
which guarantees excellent time resolution. This 
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~ 0 . ~  
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-0.015 
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s~tm~ (a) ~oP~t~,J~, ~ c v  ~P~ (b) 

Fig. 1. (a) The energy operator approximation error for the AM-FM signal x(n) = (1 + 0.5 cos(nn/50))cos[nn/5 + sin(nn/25) + ~]. (b) 
The magnitude of the Fourier transform of the approximation error. 
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x(t) = a(t) cosBp(t)] 

 x(t) t 

t Energy _1 Low-Pass 
Operator "] Filter 

Energy 
Operator , •  Low-Pass 

Filter 

Z 
" 0 

:, Z 

O 
O 

Fig. 2. The block diagram of the smoothed energy operator separation algorithm. 

a(t) 

~(t) 

property is valuable for applications where the in- 
formation signals may have abrupt transitions (e.g., 
pitch or phoneme transitions in speech analysis). 
To conserve the instantaneous nature and the sim- 
plicity of 7'd one can choose an FIR filter with 
a short impulse response. For our purposes we will 
use a seven-point linear binomial smoothing filter 
with impulse response (1, 6, 15, 20, 15, 6, 1). 1 This 
filter is equivalent to the three-point filter (l, 2, 1) 
applied to the energy operator output three times 
or to the two-point moving average filter (1, 1) 
applied six times. With this simple and computa- 
tionally inexpensive smoothing, the energy oper- 
ator approximation error decreases typically by 
50%. Also, the envelope and frequency estimation 
errors are reduced when the smoothed energy sig- 
nals are used in the separation algorithm. Hence- 
forth, we will refer to the envelope and frequency 
separation algorithm using the binomially 
smoothed energy signals, as the smoothed eneroy 

operator separation algorithm (SEOSA), sum- 
marized in Fig. 2. 

It is shown in [15] that the discrete-time oper- 
ator 7~d results from the continuous-time one ~uc by 

1Smoothing the output of the energy operator via low-pass 
filtering to reduce estimation errors has also been done in [22] 
when using the energy operator as detector of transient signal 
signatures in AM-FM background noise. 

approximating ~(t) by x(n) - x(n - 1). In addition, 
7'd followed by a three-point binomial filter (1, 2, 1) 
is equivalent to using the three-sample symmetric 
difference [x(n + 1) - x(n - 1)]/2 for approximat- 
ing ~(t). Approximations of :~(t) that involve more 
samples (longer derivatives) offer an alternative 
way of improving the performance of the energy 
operator, with results similar to the binomial filter 
smoothing. 

Finally, smoothing can be applied on the estim- 
ated information signals (post-smoothing) instead 
of the energy signals (pre-smoothing), as the envel- 
ope and frequency estimation error signals have 
a high-frequency component around 2tnc, very 
much like the energy operator error does. Both 
approaches (post- and pre-smoothing) yield similar 
results. There are applications though where post- 
smoothing is advantageous (e.g. when median fil- 
tering is also performed). 

3. Comparisons on synthetic signals 

The three amplitude/frequency separation algo- 
rithms (EOSA, SEOSA and HTSA) are compared 
here using discrete-time AM-FM/cosine  signals 
x(n) of the form 

x(n) = (1 + xcos(O~n)) 

x cos [f2¢n + (f2m/Or) sin(f2rn)]. (30) 
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Fig. 3. (a) AM FM signal x(n) = (1 + 0.6 cos(nn/lOO))cos[~n/5 + 4 sin(3nn/200)]. Estimated amplitude envelope using the (b) Hilbert 
transform separation algorithm (HTSA), (c) energy operator separation algorithm (EOSA) and (d) smoothed energy operator separation 
algorithm (SEOSA). 

The corresponding sinusoidal amplitude and in- 
stantaneous frequency signals are 

a(n) = 1 + ~ccos(f2an), (31) 

~-2i(n) = Qc + ~ m C O S ( Q f n )  . (32) 

The AM modulation index ~:e(0, 1) and the FM 
modulation depth ~'~m/~'~c • (0, 1) determine, respec- 
tively, the amount of AM and FM. An example of 
estimating the amplitude envelope and the instan- 
taneous frequency using the long HTSA (139- 
sample FIR design), the EOSA and SEOSA is 
shown in Figs. 3 and 4 for an AM-FM/cosine sig- 
nal with modulation amounts of 60% AM (x = 0.6) 
and 30% FM (t2~/t2¢ = 0.3). We observe that 
all three algorithms yield good estimates for the 

amplitude envelope and instantaneous frequency 
signals. A few small ripples found in the EOSA 
estimates are eliminated via the simple binomial 
smoothing involved in the SEOSA. 

From extensive experiments on the class of 
AM-FM/cosine signals the performance of the sep- 
aration algorithms was found to depend mainly 
upon the ratio f2¢/f2,,f where f2a.f = max(f2a, Of) 
(i.e., the ratio of the carrier frequency over the 
bandwidth of the information signals), the AM in- 
dex r, and the FM depth f2m/f2c. Henceforth, in this 
section we assume that f2a.f = ff~a = ~'2f. Extensive 
numerical comparisons among the HTSA [using 
both the short FIR (19 samples) and the long (139 
samples) implementations], the EOSA and SEOSA 
on AM-FM/cosine signals were performed by 
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varying these three parameters. A typical value for 
the ratio f2¢/Oa,f for speech analysis applications is 
about 10, since an average formant value is at 
2 kHz and the bandwidths of the amplitude/fre- 
quency modulating signals have been found at 
200 Hz on the average. However, in communica- 
tion systems the ratio t2c/f2~,f takes much higher 
values; e.g., in AM radio the ratio is in the order of 
100, whereas in FM radio it is in the order of 1000. 
For our experiments, the case where t2¢/f2a,f = 10 
will be referred to as speech specifications and the 
case where I2c/Oa,f ~> 100 will be referred to as 
communications specifications. 

Table 1 shows the mean absolute error for 
envelope and frequency estimation avera#ed 
over 100 different AM-FM/cosine signals with 
AM index varying from 5% to 50% (step 5%) and 

FM depth varying from 2% to 20% (step 2%). 
The carrier frequency was fixed at f2c = rt/5. 
The average errors are displayed for all four separ- 
ation algorithms for Oc/f2a,f = 10 and 100. Overall 
the long HTSA yielded approximately one order of 
magnitude smaller error than the EOSA and 
SEOSA for speech specifications. Yet, the short 
HTSA (with approximately the same computa- 
tional complexity as the EOSA) performed much 
worse than the EOSA. The smoothed EOSA es- 
timation error is 30%-50% smaller than the 
error of the EOSA without smoothing. For  com- 
munications specifications, the errors of both the 
EOSA and SEOSA decrease by one order of 
magnitude, becoming comparable or somewhat 
smaller than that of the long HTSA. Note that 
for Oc/~2a, r =  1000 the EOSA error becomes 
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Table 1 
Percent amplitude and frequency estimation mean absolute errors using separation algorithms on 
AM FM/cosine signals (f2¢ = n/5) 

105 

~c/~r~a = ~'~c/~*'~f = l O  St~c/~*'~ a = ~/K2f = 1 0 0  

Amplitude Frequency Amplitude 
Algorithm error % error % error % 

Frequency 
error % 

Short HTSA 4.41 4.60 4.39 4.46 
Long HTSA 0.03 0.04 0.03 0.03 
EOSA 0.39 0.32 0.03 0.02 
Smooth EOSA 0.25 0.22 0.02 0.01 

Table 2 
Percent amplitude and frequency estimation mean absolute errors 
AM-FM/cosine  signals with 30 dB noise 

using separation algorithms on 

12¢/f2a = f2~/f2f = 10 

Amplitude Frequency 
Algorithm error % error % 

Amplitude 
error % 

Frequency 
error % 

Short HTSA 4.87 5.06 4.85 4.93 
Long HTSA 1.83 2.15 1.84 2.19 
EOSA 4.81 4.43 4.71 4.35 
Smooth EOSA 1.37 1.87 1.28 1.72 

Table 3 
Computational complexity of separation algorithms (number of operations per sample) 

Multipli- 
Algorithm Additions cations arccos (.) x / ~  W 

Short HTSA 12 8 1 1 20 
Long HTSA 73 38 1 1 140 
EOSA 6 8 1 1 5 
Smooth EOSA 24 8 1 1 11 

* W is the number of samples in the moving window. 

one order of magnitude smaller than the long 
HTSA error. 

An important issue is how does the performance 
of the separation algorithms deteriorate in the pres- 
ence of noise. Table 2 shows the mean absolute 
estimation error (envelope and frequency) averaged 
over the same 100 cases of AM-FM/cosine signals 

used in Table 1, in the presence of added white 
Gaussian noise at a signal-to-noise ratio (SNR) of 
30 dB. For both speech and communication speci- 
fications, the long HTSA performs better than the 
EOSA. This is expected, since the HTSA involves 
an integral transform that does implicit smoothing, 
whereas the EOSA involves an 'instantaneous' 
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differential operator. Interestingly, the smoothed 
EOSA (which uses the simple seven-point binomial 
smoother) yields an error comparable or smaller 
than the long HTSA error. Finally, we note that all 
our comparisons of the estimation errors (both in 
the noise-free and noise-corrupted case) are based 
on numerical simulations and refer to the special 
case of AM-FM/cosine signals. A theoretical 
analysis of the HTSA approach for random signals 
can be found in [20], and a theoretical analysis 
for the performance of the EOSA in the presence 
of Gaussian noise has been recently developed 
in [2]. 

Table 3 shows that out of the four algorithms the 
EOSA has the smallest computational complexity 
and needs the smallest number W of input samples 
per single output estimate in its moving window. 
The smoothed EOSA needs a few more additions 
(due to the binomial smoothing) and a window 
twice as long. The short HTSA has computational 
complexity similar to EOSA but needs a four-times 
longer window. Finally, the long HTSA has about 
one order of magnitude higher computational com- 
plexity than the EOSA and 3-4 times higher than 
the SEOSA. The biggest drawback of the long 
HTSA is that it requires a window more than one 
order of magnitude wider than the window of the 
EOSA and SEOSA. Hence, the EOSA and SEOSA 
have the advantage of adapting instantaneously 
and needing an extremely small number of input 
samples to operate. Analysis of speech signals using 
one of the amplitude/frequency separation algo- 
rithms is done on a short-time basis. From speech 
analysis experiments, we observed that the long 
HTSA implementation needs an FIR length 
W ~ N, where N is the average length of the short- 
time speech analysis frame. Hence, in this case, the 
computational complexity of the HTSA is quad- 
ratic O(N2). In contrast, the complexity of the 
EOSA and SEOSA is always linear O(N), and the 
multiplicative constant is very small. 

Finally, in Fig. 5 we compare the amplitude 
envelope and instantaneous frequency estimation 
errors for the three algorithms (EOSA, SEOSA 
and long HTSA), for values of the ratio ~2~/f2,,f 
ranging from 10 to 1000 (f2¢ is set to rt/5 throughout 
the experiment). Each point in the errbr curves re- 
presents the average error over 100 experiments 

for AM-FM/cosine signals with a varying AM 
index K e[0.05,0.5] and a varying FM depth 
f2m/t2c e [0.02, 0.2] (as in Table 1). We observe that 
the EOSA error is decreasing linearly with the ratio 
f2c/f2a,f, while the HTSA error remains approxim- 
ately constant. For t2~/f2a.f = 10 the EOSA error is 
one order of magnitude larger than the HTSA 
error. As the ratio approaches 100 the EOSA and 
HTSA error are of comparable magnitude. Finally, 
when the ratio is in the neighborhood of 1000 the 
EOSA error is one order of magnitude smaller. The 
SEOSA error decreases linearly with ~r~c/~e'~a, f and is 
approximately half of the EOSA error. Note 
though, that the SEOSA envelope error reaches 
a satiation point for ratio values over 400 and then 
it becomes larger than the EOSA error. This 
happens because the binomial smoothing in the 
SEOSA eliminates part of the EOSA approxima- 
tion error, but it also degrades slightly the desired 
energy terms since it uses a non-ideal low-pass 
filter. Thus, for very large values of the ratio f2~/f2~,f 
the EOSA approximation error becomes smaller 
than the information signal degradation introduc- 
ed by the SEOSA. 

4. Experiments on real speech 

In this section, the above presented separation 
algorithms will be applied to real and synthetic 
speech signals to track the envelope and frequency 
modulation of speech resonances. A single speech 
resonance is modeled as an exponentially damped 
AM-FM signal (5); the speech signal is the sum of 
such AM-FM signals. 

Before applying the demodulation algorithms to 
a speech resonance, we must first extract the reson- 
ance through band-pass filtering. For this purpose, 
we will use a Gabor filter (for reasons presented in 
[12]), with impulse and frequency response: 

h(t) = exp( - ct 2 t 2 ) COS (O) c t), (33) 

H(e)) = ~ exp 

+ exp 4~ 2 . (34) 
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The center frequency o9¢ of the filter is chosen equal 
to the center formant frequency. The parameter 

controls the bandwidth of the Gabor filter; the 
effective bandwidth of the Gabor filter is equal to 

:~/,v/~. Note that in discrete time the impulse re- 
sponse h(n) is a sampled version O f (33). 

In addition to the need of band-pass filtering (to 
extract a single resonance), voiced speech signals 
also have the feature of the pitch periodicity. 
Henceforth, we will examine the performance of the 
long HTSA and the SEOSA for speech resonance 
demodulation. In particular, we will investigate 
how the separation algorithms are affected by the 
pitch periodicity, by band-pass filtering and by 
speech transitions. 

4.1. Effects of pitch 

The effects of pitch on envelope and frequency 
estimation are studied first on a synthesized signal 
s(n), modeling a single speech formant. In our 
example, s(n) is the output of a linear time-invariant 
speech resonator with a single resonance at 
1300 Hz (bandwidth = 30 Hz), excited by a peri- 
odic sequence of unit pulses with (pitch) frequency 
at 100 Hz. Figs. 6(a) and (b) show the signal s(n) 
and the excitation. The amplitude envelope and 
instantaneous frequency estimates for the energy 
operator and the Hilbert transform separation al- 
gorithms are shown at Figs. 6(c)-(f). The HTSA 
envelope estimate (c) shows clearly the exponential 
decay of the actual envelope, yet it also displays 
misleading modulations around the instants at 
which the pitch pulses occur. Similarly, the HTSA 
instantaneous frequency estimate (d) tracks cor- 
rectly the formant frequency at 1300 Hz, but in the 
neighborhood of the pitch pulses the frequency 
estimate is heavily modulated. The SEOSA estim- 
ated envelope (e) consists of decaying exponentials 
interrupted by a small spike at each pitch pulse. In 
the same way, the instantaneous frequency SEOSA 
estimate (f) is constant everywhere at 1300 Hz, ex- 
cept at the location of the pitch pulses where large 
(double) spikes occur. 

In brief, the SEOSA envelope and instantaneous 
frequency estimates deterioration (due to the pitch) 
is concentrated at the instants when the pitch 

pulses occur, while for the HTSA the estimation 
error is significant in a time interval of 3-5 ms 
around those instants. Clearly, the HTSA by using 
an integral transform does implicit smoothing (low- 
pass filtering) to the information signals. Thus, the 
high-frequency component of the event (pitch 
pulse) is filtered out and what we see in our plots is 
a low-pass filtered spike (with modulations). On the 
other hand, the energy operator is an 'instan- 
taneous' differential operator, whose discrete im- 
plementation involves a very short analysis window 
(a very few input samples per output sample). As 
a result, the SEOSA estimates have superior time 
resolution than the HTSA ones (e.g., abrupt 
transitions are better preserved). 

Of interest is also the general case of a discon- 
tinuity at the envelope or the instantaneous fre- 
quency of an AM-FM speech-like signal. Consider 
for example the case where a jump occurs to the 
carrier frequency ~oc of the AM-FM signal. As in 
the previous example, the HTSA estimation breaks 
down in the neighborhood of the instant when the 
carrier frequency discontinuity occurs, presenting 
erroneous modulations (especialy in instantaneous 
frequency estimation). The SEOSA estimates, how- 
ever, have a (single or double) spike at the jump 
instant and are 'correct' elsewhere. So, the actual 
envelope and instantaneous frequency around the 
discontinuity are easily recoverable from the SEOSA 
followed by median filtering. In addition, the spiky 
nature of the energy signals at the instant of the 
jump will inform us of the transition/event. Thus, 
the energy operator can serve as an event detector 
(as opposed to the Hilbert transform which tends to 
smooth out discontinuities). An application of the 
energy operator event detector property in under- 
water acoustics is presented in [21]. 

An example of how a discontinuous carrier fre- 
quency ~oc affects the instantaneous frequency es- 
timation is shown in Fig. 7. The carrier frequency of 
an AM-FM signal x(n)jumps by 1.43% at the 
250th sample, causing a discontinuity to the signal 
itself. The HTSA and SEOSA frequency estimates 
are shown (c, d). Clearly, the HTSA frequency esti- 
mate presents erroneous modulations in the neigh- 
borhood of the jump, while the SEOSA error is 
concentrated only in 10-12 samples, around the 
point of discontinuity. 
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4.2. Effects o f  band-pass filtering 

For  any A M - F M  signal x (t) = a (t) cos [ ~b (t) ] we 
may  write 

x(t) = a(t)cos[m¢t + p(t)-] 

= al( t)cos[t~c t-] - a2(t)sin[o)¢ t-], (35) 

where 

a(t) = xfla~(t) + a~(t), 

• l-a2(t)-] p(t)= arctan L a - ~ j .  ( 3 6 )  

Next, we filter x(t) th rough a band-pass filter with 
impulse response 

h(t) = h~(t) cos [~¢ t], (37) 

where ht(t) is the impulse response of the corres- 
ponding low-pass filter and co¢ is the carrier fre- 
quency of the A M - F M  signal x(t). Then the filtered 
signal £(t) = x(t) * h(t) will be given approximately 
by (the condit ions under  which the approximat ion  
holds can be found in [19, Chapter  7-]) 

£(t) = ~(t)cos[mct  +/~(t)]  

½ [a  1 (t) * he(t)] cos [toe t] 

- ½ [az(t) * hi(t)] sin [~oct] (38) 
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and the new amplitude envelope and instantaneous 
frequency will be 

a(tt 

½ x /  [ (a(t)cos[p(t) ]) * hz(t) ] 2 + [ (a(t)sin[p(t) ]) * hg(t) ] 2, 

(39) 

d 
~ i ( t )  = ~oc + ~ [ p ( t ) ]  

d F(a(t)sin[p(t)3)*hAt)l 
coc + ~ arctan L(a(t) cos [p(t)]) * h~(t) J" 

(40) 

We conclude that the amplitude envelope and in- 
stantaneous frequency of a band-pass filtered 
A M - F M  signal ~(t) are low-pass filtered versions 
of the actual information signals. 

4.2.1. Effects of Gabor filtering 
An example of how band-pass filtering affects the 

SEOSA and HTSA estimation is shown in Fig. 8. 
The vowel /a /wi th  formants at 600, 1200, 2500 and 
3600 Hz (and bandwidth, respectively, at 30, 50, 80 
and 110 Hz) is synthesized using time-invariant lin- 
ear resonators in cascade, excited by a sequence of 
unit pulses (pitch frequency at 100 Hz). Then, the 
synthetic signal is band-pass filtered around its 
third formant, using a Gabor  filter with center 
frequency at fc = 2500 Hz and bandwidth para- 
meter ~ = 1000 Hz. In Figs. 8(a) and (b) three pitch 
periods of the synthetic v o w e l / a / a n d  the extracted 
resonance are shown. The HTSA and SEOSA esti- 
mates for the amplitude envelope and the instan- 
taneous frequency of the resonance at 2500 Hz are 
shown in (c)-(f). Interestingly, both separation al- 
gorithms (HTSA, SEOSA) produce almost ident- 
ical estimates. The amplitude envelope estimates 
(c),(e) are exponentially decaying with smooth 
transitions at the instants when pitch pulses occur. 
The frequency estimates (d), (f) are everywhere 
equal to the center formant frequency (fc = 2500), 
apart from 3-5 ms around the pitch pulses, where 
they deviate considerably from ft. 

From Fig. 6 we know what the envelope and 
frequency estimates would be if filtering was not 
necessary to extract the resonance (single formant 
case). We observe that by band-pass filtering the 

original signal, double spikes turn into smooth 
'sinusoidal' curves (SEOSA frequency estimation 
(f)) and jumps into smooth transitions (SEOSA 
envelope estimation (e)). This is anticipated, be- 
cause band-pass filtering actually filters out the 
higher-frequency components of the envelope and 
instantaneous frequency signals (see Eqs. (39) and 
(40)). In that sense, after band-pass filtering of the 
original signal, the SEOSA and HTSA display sim- 
ilar results, as now both algorithms involve 
smoothing (or low-pass filtering) of the information 
signals. It is important to note, that when band- 
pass filtering is applied, the excellent time resolu- 
tion of the SEOSA is blurred (and the event-de- 
tector property is somewhat lost). In brief, the effect 
of the Gabor  filter is to smooth the spikes and the 
abrupt jumps (if any) of the original estimates (espe- 
cially for the EOSA where high-frequency compo- 
nents are preserved). 

In real-speech experiments we observe similar 
effects from the Gabor  band-pass filter. The shape 
of the information signal estimates, though, is dif- 
ferent from the linear synthetic case: The envelope 
and the instantaneous frequency are in many cases 
heavily modulated (especially for higher formants). 
In Fig. 9 we present a real-speech example of reson- 
ance demodulation for the vowel/e/ ,  around a for- 
mant (with center frequency) at fc ~ 3400Hz. 
A Gabor  filter with center frequency at 3400 Hz 
and bandwidth parameter ~ = 1000 Hz was used to 
extract the resonance. The HTSA and SEOSA es- 
timated envelope are shown in (c), (e), respectively. 
The estimates present only minor differences at 
envelope minima and apart from that are almost 
identical. The instantaneous frequency estimates 
(d), (f) look also very similar. Note that the very 
small ripples that appear at the HTSA frequency 
estimate can be eliminated by increasing the length 
of the FIR filter that implements the discrete 
Hilbert transformer. 

In numerous examples of speech analysis using 
SEOSA and HTSA, we saw only minor differences 
in the estimated amplitude envelope and instan- 
taneous frequency contours. In some cases, the 
Hilbert transform algorithm seems to yield slightly 
smoother estimates than the SEOSA (especially 
in frequency estimation and for lower formants). 
Also, in a few isolated instances, the SEOSA may 
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Fig. 8. (a) Synthetic speech signal x(n) (vowel / a / )  with formants at 600, 1200, 2500 and 3600 Hz and pitch frequency at 100 Hz 
(sampling frequency at 20 KHz), (b) speech signal after Gabor  filtering around the formant atf¢ = 2500 Hz (filter bandwidth parameter 

= 1000 Hz), (c) estimated amplitude envelope using HTSA, (d) estimated instantaneous frequency using HTSA, (e) estimated 
amplitude envelope using SEOSA, (f) estimated instantaneous frequency using SEOSA. 
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instantaneous frequency using SEOSA. 
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produce narrow spikes (e.g., at envelope minima 
and at the corresponding places of the instan- 
taneous frequency estimate). Note that the minor 
differences between the EOSA and HTSA es- 
timators usually occur around the envelope min- 
ima. Overall it seems that both algorithms yield 
similar and equally satisfying results for real-speech 
analysis. However, the SEOSA is faster and uses an 
extremely short analysis window. 

4.2.2. On determining the Gabor filter parameters 
A question that arises in speech demodulation 

experiments, is what happens to the envelope and 
the instantaneous frequency estimates, when the 
center frequency of the Gabor filter is not exactly 
equal to the center frequency of the formant. Using 
AM-FM speech-like signals, we observed that the 
estimated amplitude envelope and instantaneous 
frequency are close to the actual ones, for center 
frequency differences less than 100 Hz (and for suf- 
ficiently large filter bandwidth). In real-speech ex- 
periments, shifting the center frequency of the 
Gabor filter (in the neighborhood of a formant) 
affects the envelope and frequency contours mainly 
around envelope minima. Specifically, the instan- 
taneous frequency seems to be unstable around 
these points, presenting large peaks or valleys. In 
order to avoid such instabilities, the center formant 
frequency must be determined accurately. In [7], 
an iterative algorithm is proposed for determining 
the center formant frequency as the short-time 
average of the instantaneous frequency. 

Determining the bandwidth of the Gabor filter is 
more difficult; an obvious choice is the bandwidth 
of the signal in question. Carson's rule implies that 
the bandwidth of an AM-FM signal is twice the 
sum of the maximum frequency deviation and the 
bandwidths of the AM and FM information sig- 
nals. For our experiments, this would correspond 
to a bandwidth parameter ~ in the range of 
3000-5000 Hz. In real speech, we need to isolate 
(via filtering) spectral peaks that are 500-1000 Hz 
apart. Thus, in order to avoid the effects of the 
neighboring formants (see Section 4.3), we must 
limit the Gabor bandwidth to more conservative 
values, e.g., ~ = 1000 Hz. Next, we consider how 
the envelope and instantaneous frequency esti- 
mates contours are affected when the bandwidth of 

the filter is smaller than the effective bandwidth of 
the signal. 

We used synthetic AM-FM speech-like signals 
to address this question. The frequency modulation 
depth t2m/t2c parameter was selected to be 10% (in 
speech analysis rarely have we found larger 
amounts of FM). For various values of AM, we 
found that a bandwidth parameter in the range 

= 1000-1500 Hz gives good envelope and fre- 
quency estimates (correct shape and maximum ab- 
solute error from 5% to 10%). 

In real speech, it is hard to determine how the 
bandwidth parameter ~ affects the envelope and 
instantaneous frequency, because of the effects of 
the neighboring formants. It is clear though, that 
for smaller ct the bandwidth of the estimated in- 
formation signals decreases. 

Finally, there are algorithms for recovering the 
true information signals, by removing the blurring 
caused by the Gabor band-pass filter. For example, 
preliminary experiments have shown that the ac- 
tual information signals a(t) and O)i(t ) c a n  be re- 
stored from the filtered amplitude and frequency 
estimates (39) and (40) through deconvolution (for 
an accurately known carrier frequency). 

4.3. Effects of neighboring spectral peaks 

A neighboring spectral peak that has not been 
thoroughly eliminated through band-pass filtering 
can seriously affect the estimated envelope and 
instantaneous frequency contours. In 1-12] a model 
has been proposed for dealing with this problem. 
Specifically, suppose that oJ¢ and ~Ox are the center 
frequencies of a formant and its neighbor. Then the 
band-pass filtered signal y(t) will be for 2<<1 
(where 2 is the relative gain of the neighboring 
formant versus the center formant) 

y(t) = cos(ogct) + 2cos(ogxt + 0) 

cos[met - 2 sin(toft - 0)3 

+ 2 cos(ogft - /9)  cos(tort), (41) 

where e~f = e~c - Ogx. Thus, the neighboring spec- 
tral peak modulates the envelope and instan- 
taneous frequency estimates, with a modulation 



A. Potamianos, P. Maragos / Signal Processing 37 (1994) 95-120 115 o..[ 
0.7 

0.6 

0.5 i°i! 0.3 

0.2 

0.1 

270C 

22OO 
5 10 15 20 25 30 0 5 10 15 20 25 30 

Fig. 10. (a) SEOSA estimated amplitude envelope for the third formant (fc = 2500 Hz) of the band-passed synthetic speech vowel x(n) 
(formants at 550, 1550, 2500 Hz and pitch at 100 Hz, Gabor center frequency at f, = 2500 Hz and bandwidth parameter ~ = 1550 Hz), 
(b) estimated instantaneous frequency using EOSA. 

frequency (of equal to the difference of the central 
formant frequencies of the two spectral peaks. 

In Fig. 10 we present experimental evidence in 
support of this model. A synthetic speech vowel 
with formants at 550, 1550 and 2500Hz and 
pitch frequency of 100Hz is analyzed around 
fc = 2500 Hz. We have seen in Fig. 8, how the es- 
timated envelope and frequency curves look when 
the neighboring formants have been thoroughly 
eliminated through Gabor filtering with the appro- 
priate bandwidth. In our example we choose the 
bandwidth parameter to be ~ = 1550 Hz so that the 
formant peak at 1550 Hz is still in play. The esti- 
mates for the envelope and the instantaneous fre- 
quency are displayed in Figs. 10(a) and (b). The 
estimates are clearly modulated, with a modulation 
frequency equal to the difference between the two 
formant frequencies, i.e. 950 Hz. The amplitude 
of the modulations increases as the Gabor filter 
bandwidth increases. We have observed similar 
phenomena in real speech, due to neighboring 
formants. 

4.4. Analysis of transitions in real speech 

Formant finding and feature extraction during 
speech transitions is not a simple task, as most 
speech parameters change rapidly and short-time 

analysis assumptions do not hold. The usual ap- 
proach to this problem is to use continuity and 
smoothness constraints to interpolate the data 
from neighboring frames. Unfortunately, this 
method does not always produce satisfactory re- 
sults. 

We know that the energy separation algorithm 
has better time resolution than conventional short- 
time analysis methods (the estimates are computed 
at each sample instead of once over each analysis 
frame). Also, the Gabor filter followed by the 
SEOSA introduces minimal blurring/smoothing of 
rapidly varying speech modulation features. Thus, 
one can use the amplitude envelope and instan- 
taneous frequency estimates for parameter estima- 
tion and feature extraction during transitions in 
real speech. 

An example of tracking a transient formant fre- 
quency is presented in Fig. 11, during a transition 
from the unvoiced consonant /s / to  the vowel/e/. 
In our example, the vowel/e/has a strong spectral 
peak around 4500 Hz, while the consonant/s/does 
not have a formant around this frequency. We 
band-pass filter the speech signal, using a Gabor 
filter with center frequency at fc = 4850 Hz and 
bandwidth parameter ~ = 1500 Hz, in order to fol- 
low the formant track during the transition from 
/ s / t o / e f t  The SEOSA absolute envelope estimate 
(c) shows the energy increase as we pass from the 
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Fig. 11. (a) Speech signal x(n) (transition between unvoiced c o n s o n a n t / s / a n d  v o w e l / e / s a m p l e d  at 16 KHz), (b) spectral magni tude of 
the speech signal x(n) and of the G a b o r  filter (fc = 4850, ct = 1500 Hz), (c) estimated ampli tude envelope using SEOSA, after G a b o r  
filtering of x(n) around  f¢ = 4850 Hz (~ = 1500 Hz), (d) estimated ins tantaneous  frequency using SEOSA. 

unvoiced to the voiced sound. Similar amplitude 
modulation patterns can be seen in both sounds. 
The instantaneous frequency estimate (d) shows 
clearly the center frequency of the formant chang- 
ing rapidly during the transition. We observe 
a 500 Hz shift in the center formant frequency in 
a time period of approximately 5-10 ms. Note also 
that the vowel reaches a steady state 10-15 ms after 
voicing begins. 

4.5. An application." formant tracking 

In this section we describe an iterative energy 
separation algorithm [7] (iterative SEOSA) for 

tracking the center formant frequencies of a speech 
signal. Once the amplitude envelope a(t) and in- 
stantaneous frequency o~i(t) ofa formant are known 
(via the SEOSA), there are various ways of estima- 
ting the center formant frequency (over a short time 
interval). The simpler estimate is OgAV, the average 
value of the instantaneous frequency toi(t) 

(t°+ T 
= ogi(t) dt, (42) WAr T Jto 

where to is the start and T the duration of the 
speech analysis window. It can be seen through 
a crude voiced speech model (each formant band is 
a sum of harmonics), that the estimate 09AF can lead 



A. Potamianos, P. Maragos / Signal Processing 37 (1994) 95-120 1 1 7  

us to the center formant frequency through 
an iterative procedure. According to this model, 
at local envelope maxima the instantaneous 
frequency accurately tracks the formant value, 
while at local envelope minima the frequency 
curves present spikes that point towards the 
speech harmonic with the higher amplitude (in 
the bandpassed speech spectrum). Thus, if we 
iteratively use O)AF as the center frequency of 
the Gabor filter and perform the SEOSA on the 
extracted formant band, the refined estimate 
t~AV will converge to the formant frequency after 
a few iterations. 

We claimed above, that at envelope maxima the 
instantaneous frequency takes values that corres- 
pond to what we intuitively consider to be the 
center formant frequency at that instant. As an 
example, consider the envelope and instantaneous 
frequency of the sum of two sinusoids with time 
varying amplitudes al(t), a2(t) and constant fre- 
quencies 09~, ~o2. The instantaneous frequency at 
the instants t, where local envelope maxima occur 
can be seen to be 

al(tn)O91 + a2(tn)o92 
coi(t.) = (43) 

al(tn) + a2(tn) 

Keeping this result in mind, we can refine further 
the center formant frequency estimate (after the 
above described iterative procedure has reached 
a formant peak) by computing the average instan- 
taneous frequency at time intervals around the 
local envelope maxima only. 

Another formant frequency estimate [1, 6] that 
has been used in the past for formant tracking 1,3] is 
the first central moment Of the spectrum of the 
signal 

~+ot3 

t eolZ(eo)12 de ° 
- o o  

(~o) = ,+~ , (44) 

j-~o I/(°9)lz dt~ 

where Z(~o) is the Fourier transform of the analytic 
signal z(t) (8). It can be shown 1-10,27] that 
the average frequency (o9) in the spectrum is 
equal to the weighted time average (~ol) of the 

instantaneous frequency defined as 

f+fogi(t)lz(t)12dt 
( C O l )  = - , ( 4 5 )  

S+? _ Iz(012dr 

where z(0 is the analytic signal (8). We saw in 
Section 2.1 that for small quadrature error e(t), the 
modulus Iz(t)l of the analytic signal is an accurate 
estimate of the amplitude envelope [a(t)l. Thus, for 
small quadrature error, the above estimate of the 
center formant frequency can be expressed as 
a function of the envelope a(t) and instantaneous 
frequency ~oi(t) as 

~t t° •i(t)a(t) 2 dt 
+ T 

o 
O ) W A F  = t o + r ' (46) 

f a(t) 2 dt 
.)to 

where Tis the duration of the analysis window. The 
estimate can be refined iteratively in a scheme sim- 
ilar to the one described above. Attention must be 
paid to the boundary conditions when using the 
short-time equation (46); for frames 2-3 pitch 
periods long, though, the boundary effects are 
negligible. 

In order to start the iterative SEOSA, we must 
first find some initial formant estimates for each 
analysis frame. Raw formant estimates can be ob- 
tained either from the roots of the LPC polynomial 
or from morphological peak picking of the speech 
spectrum I-7]. Next, the speech signal is filtered 
through a bank of Gabor band-pass filters with 
center frequencies equal to the raw formant esti- 
mates and the SEOSA is applied on each speech 
band. The average instantaneous frequency maF or 
the weighted average frequency OgWAF is computed 
for each formant band and is used as the center 
frequency of the Gabor filter for the next step of the 
iteration. The bandwidth of the filter is constant 
(typically the bandwidth parameter ct is 1000 Hz). 
This procedure is repeated until convergence is 
reached; then the next analysis frame is processed 
(short-time analysis). 

In Fig. 12 an example of the iterative formant 
tracking algorithm is displayed for the word 
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Fig. 12. (a) The word 'thevenin' (sampled at 15 KHz), (b) formant tracks for 'thevenin" using the iterative SEOSA and the average 
instantaneous frequency (OAF as the center formant frequency estimate (frame duration 20 ms, updated every 10 ms), (c) formant tracks 
using the iterative SEOSA and the weighted average instantaneous frequency ~OWAF, (d) formant tracks from peak-picking of the LPC 
spectrum (LPC order is 20). 

'thevenin' (a). The center formant frequency values, 
where the iterative for•ant-tracking algorithm 
converged, are shown for consecutive analysis 
frames (20 ms of duration, 300 samples) at (b), (c). 
The center formant frequency estimate is ~OAF and 
(~WAF for (b) and (c), respectively. Finally, the LPC 
raw formant tracks are shown (d), obtained from 
peak-picking of the LPC smooth spectrum (LPC 
order is 20, sampling frequency for 'thevenin' is 
15 kHz). All three algorithms perform well. The 
iterative algorithm (b), (c) though, provides more 
detailed formant tracks than the LPC fo r • an t  
tracker (d) (e.g. observe the second and fifth for- 
mant track). Note also that the first f o r • an t  esti- 
mates are more accurate when ~OAF is used. Detailed 

comparisons between the two formant-tracking al- 
gorithms based on the iterative SEOSA are cur- 
rently being performed. 

Finally, an alternative formant-tracking algo- 
rithm using the O)AF and ¢OWAF estimates is the 
parallel multiband implementation, where the sig- 
nal is filtered through a bank of Gabor band-pass 
filters with constant center frequencies that cover 
the spectrum range of interest. The number of filters 
may vary: in our implementation we have used 
filters with center frequencies 50-100 Hz apart. For 
each speech band the center formant frequency 
estimate (O)AF or O.)WAF) is calculated. When the 
values of the formant estimates ~OA~.WA~ of tWO 
neighboring bands lie in the interval bounded by 
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the center frequencies of the bands (i.e. the Gabor 
filter center frequencies), we conclude that a for- 
mant exists in that interval. The exact formant 
value is calculated by linear interpolation of the 
formant estimates of the two adjacent bands. This 
algorithm needs no initial estimates and provides 
good formant tracks. 

5. Conclusions 

In this paper, we have compared two different 
approaches for estimating the time-varying ampli- 
tude envelope and instantaneous frequency of gen- 
eral AM-FM signals, as well as of speech reson- 
ances: the energy operator separation algorithm 
(EOSA) involving a nonlinear differential operator 
and the Hilbert transform separation algorithm 
(HTSA) involving a linear integral transform. We 
have also proposed a refinement of the EOSA, 
called the smoothed energy operator separation 
algorithm (SEOSA), that implements a very short 
binomial FIR smoothing of the energy signals. We 
have compared the three algorithms first on general 
synthetic AM-FM signals and then on speech 
vowel resonance signals extracted via Gabor band- 
pass filtering. Next, some important issues related 
to the application of the separation algorithms to 
speech resonance demodulation were investigated 
and briefly discussed. These include choosing the 
Gabor band-pass filter parameters, the effect of 
neighboring formants, and transient formant ana- 
lysis. Finally, an application of the SEOSA to for- 
mant tracking was presented. 

After extensive experiments on synthetic AM-FM 
signals, we have found that, in the absence of noise, 
when the ratio R of the carrier frequency versus the 
information signals' bandwidth is in the order of 10 
(as in speech applications) the EOSA yields a mean 
absolute error in the order of 10-1%; when this ratio 
becomes 100 or 1000 (as in communication applica- 
tions) the EOSA yields errors in the order of 10-2% 
and 1 0 - 3 ° ,  respectively. Note that even in the 
worst case (R = 10) the EOSA yields a relatively 
small error. The SEOSA almost always reduces the 
EOSA error by about 50%, except for very high 
values of R. The HTSA yields an error in the order of 
10-2% for all the above values of R. In the presence 

of 30 dB noise, both HTSA and SEOSA yield errors 
in the order of 1%, with the SEOSA yielding the 
smallest error. In the analysis of short time segments 
of speech vowel signals (synthetic or real) band-pass 
filtered around their formants, the SEOSA was 
found to yield modulating signals very close to the 
ones obtained via the HTSA. The fact that both 
algorithms yield similar results for speech signals is 
due to the band-pass filtering, which blurs the in- 
stantaneously varying features of the time waveform. 

For all signals, both EOSA and SEOSA have 
very small computational complexity, linear in the 
number of input samples. The HTSA has about one 
order of magnitude higher complexity. For speech 
applications the HTSA complexity becomes quad- 
ratic in the number of samples. Finally, while the 
EOSA or SEOSA requires for its operation an 
extremely small number of input samples in its 
moving window, the HTSA requires an order of 
magnitude longer window. 

In short, the SEOSA was found to yield compar- 
able estimation errors to the HTSA for tracking 
AM-FM modulations in speech signals. For com- 
munications applications, the SEOSA yields 
a smaller error. In addition, the SEOSA has the 
advantages over the HTSA of smaller computa- 
tional complexity and faster time-adaptivity. Fi- 
nally, the use of an energy operator gives the 
SEOSA an additional interesting intuitive feature: 
the tracking of the energy required for generating 
the AM-FM signal and the separation of the en- 
ergy into amplitude and frequency components. 
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