
196 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 3, MARCH 2001

Time-Frequency Distributions for
Automatic Speech Recognition
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Abstract—The use of general time-frequency distributions as
features for automatic speech recognition (ASR) is discussed in
the context of hidden Markov classifiers. Short-time averages of
quadratic operators, e.g., energy spectrum, generalized first spec-
tral moments, and short-time averages of the instantaneous fre-
quency, are compared to the standard front end features, and ap-
plied to ASR. Theoretical and experimental results indicate a close
relationship among these feature sets.

Index Terms—Speech analysis, speech processing, speech recog-
nition, time-frequency analysis.

I. INTRODUCTION

T IME-FREQUENCY distributions and short-time averages
of quadratic operators are very popular front-end features

for automatic speech recognition (ASR). Indeed, the “standard”
front-end feature set is the inverse cosine transformation of
the short-time-frequency energy distribution. Despite the stan-
dardization of the ASR front-end, there has been a significant
amount of research on using alternate time-frequency distri-
butions as (possibly additional) ASR features. A good review
of such efforts can be found in [7]. However, such efforts are
often lacking in theoretical or experimental justification. In this
paper, we attempt to outline the relationships between some
popular alternative feature sets and the “standard” front-end
features, and to present experimental ASR evidence that
supports these claims. We hope that this study will help guide
future ASR front-end research.

The following two types of nonparametric features are
investigated in this paper: i) short-time averages of quadratic
operators, e.g., energy spectrum [8], ii) generalized first
spectral moments and weighted short-time averages of the
instantaneous frequency. Note that the standard feature set is
included in the first family of time-frequency distributions. Our
goal is to show (both theoretically and experimentally) a close
relationship among these feature sets and the standard feature
set.
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The organization of the paper is as follows: First, we intro-
duce the energy operator and the energy spectrum, and com-
pare it to other spectral envelope representations. In Section III,
short-time instantaneous frequency estimators are proposed in
the context of the AM–FM modulation model, the sinusoidal
model, and spectral estimation. The estimators are compared
to the spectral envelope and their merits as ASR features are
discussed. Finally, experimental ASR results are given in Sec-
tion IV. The authors assume in the presentation some familiarity
with the sinusoidal speech model [5], the AM–FM modulation
model [3] and energy operators [2], [4].

II. QUADRATIC OPERATORS ANDENERGY SPECTRUM

The energy operator is defined for continuous-time signals
as

(1)

where . Its counterpart for discrete-time signals
is

(2)

The nonlinear operators and were developed by Teager
during his work on speech production modeling [11] and were
first introduced systematically by Kaiser [2]. When is ap-
plied to signals produced by a simple harmonic oscillator, e.g.,
a mass-spring oscillator, it can track the oscillator’s energy (per
half unit mass), which is equal to the squared product of the
oscillation amplitude and frequency; thus the termenergy oper-
ator. The energy operator has been applied successfully to de-
modulation and has many attractive features such as simplicity,
efficiency, and adaptability to instantaneous signal variations
[3]. The attractive physical interpretation of the energy operator
has led to its use as an ASR feature extractor in various forms,
see for example [12], [13].

The energy spectrum, introduced in [8], is a general time-
frequency distribution based on the energy operator. Assume
that is filtered by a bank of bandpass filters centered
at frequencies to obtain band-passed signals: ,

. The following time and frequency relations hold

(3)

where is the impulse response and is the fre-
quency response of theth filter and is the discrete-time
sample index. The energy spectrum is defined as the
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Fig. 1. Time-domain implementation of filterbank ASR front-end.

short-time average of the energy operator applied to the family
of band-passed signals , i.e.,

(4)

where is the length of the short-time averaging window (in
samples). Using Parseval’s relation one can show

(5)

assuming that is real. Thus

(6)

Assuming that is zero outside of the window
the energy spectrum can be expressed as

(7)

In Fig. 1, the time-domain implementation of a general fil-
terbank-based ASR front-end is shown. Following the notation
introduced above is filtered by a bank of filters. The
feature set at time index is defined
as the short-time average of the output of a quadratic operator

applied to each one of the band-passed signals , i.e.,

(8)

The general form of the quadratic operator is

(9)

where are constants. For the time-frequency
distribution obtained in Fig. 1 is the energy spectrum:

. For the time-frequency
distribution obtained is the short-time smooth power spectral
envelope1 where

(10)

1For computational efficiency the spectral envelopePS(n; k) is computed as
S(n; k) = (1=�) jX (!)j d! rather than in the time domain as in Fig. 1.

Fig. 2. Ratio of energy spectrum over power spectral envelope.

assuming is zero outside .
Using (7) and (10), the ratio between the power spectral en-

velope and the energy spectrum can be approximated by

(11)

The approximation is valid for narrowband signals
, where the spectral energy is concen-

trated around and the slowly-varying (in frequency)
term can be assumed constant within the band-

width of . Second-order approximations of (7), i.e.,
, can be shown

to cause formant spectral peak translation in addition to the
scaling apparent in (11). Specifically, formant peaks with
center frequencies up to Hz are translated toward the
lower frequencies in the energy spectrum, and vice-versa for
formant frequencies higher than (thus formant translation
is a function of the sampling frequency).

In Fig. 2, a time-slice of the ratio
is shown (solid line) together with the function
(dashed line). The ratio is computed for a single 20 ms

speech frame of the vowel /ih /. A uniformly-spaced Gabor fil-
terbank with 250-Hz 3-dB bandwidth per Gabor filter was used
for computing and (sampling frequency 16 kHz). Dif-
ferences between the computed and predicted ratio values are
due to second-order effects (ripples in Fig. 2 correspond to for-
mant translations in ) and to the use of the (approximate)
discrete Fourier transform instead of the discrete-time Fourier
transform. Most ASR front-ends use the inverse cosine trans-
form of the logarithm of as a feature set (cepstrum). In
the cepstrum domain, the difference between energy cepstrum
and “standard” cepstrum is approximately a time-independent
bias.

In general, using (5) the sum of any quadratic operator
output (e.g., see [4], [1]) can be expressed as

(12)
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where are arbitrary constants. For narrowband signals ,
can be assumed constant aroundand the short-time

average of can be expressed as

(13)

i.e., the difference between the log of any time-frequency dis-
tribution produced by the generalized ASR front-end in Fig. 1
and the log of the power spectral envelope is approximately a
time-independent bias vector(also in the cepstrum domain).

Given the similarity between the time-frequency distributions
of quadratic operators it is expected that ASR performance will
also be similar for various front-ends that use short-time aver-
ages of quadratic operators as features. However, as the size of
the short-time window decreases and/or the bandwidth of the
filter increases the differences among are no
longer time-invariant, i.e., and significant ASR per-
formance differences may arise between various front-ends (see
for example [12] where the energy operator is applied to the un-
filtered signal). The equivalence between ,
and as features (in the cep-
strum domain) for ASR is experimentally shown in Section IV.

III. SPECTRAL MOMENTS AND AVERAGE INSTANTANEOUS

FREQUENCY

In this section, we investigate the relation between various
time-frequency distributions motivated by the AM–FM mod-
ulation model [3], the sinusoidal speech model [5], and spec-
tral analysis. The distributions compute the short-time instanta-
neous frequency in different frequency bands. The distributions
are compared to the short-time spectral envelope and their ap-
plication to ASR is discussed.

The AM–FM modulation model, introduced in [3], describes
a speech resonance as a signal with a combined amplitude mod-
ulation (AM) and frequency modulation (FM) structure

(14)

where
“center value” of the formant frequency;
frequency modulating signal;
time-varying amplitude.

The instantaneous formant frequency signal is defined as
. The speech signal is modeled as the

sum of such AM–FM signals, one for
each formant. A general family of time-frequency distributions
of amplitude weighted short-time averages of the instantaneous
frequency is defined as

(15)

where , are the amplitude envelope and the instanta-
neous frequency, respectively, of the narrow-band signal

in (3), and is an arbitrary constant. Note that for ,
, was used for fundamental frequency estimation

in [10] and for , ,
(also referred to as the “pyknogram”) was used for formant
tracking in [9].

The sinusoidal model [5] models the speech signal as
a superposition of short-time varying sinusoids. Similarly the
narrow-band signals can be modeled using a sinusoidal
model as

(16)

where , , are the constant (in an analysis frame
) amplitudes, frequencies, and phases, respec-

tively, of the sinusoids modeling . A general
time-frequency representation can be obtained as a weighted
average of as follows:

(17)

where is an arbitrary constant. Note that the summation index
is a frequency index.
Finally a third type of time-frequency distribution is the gen-

eralized first spectral moment

(18)

where is an arbitrary constant. Note that for
has been used as an ASR feature in [6]. Next we investigate
the relationships among the three time-frequency distributions

, , and defined above.
Clearly is a short-time estimate of the generalized spec-

tral moment, i.e., . As goes to infinity in (16)
(i.e., more sinusoidal components are included in the approxi-
mation) the time-frequency representations , become
equal. The relation between and is more complicated
and depends on the value of the amplitude weight. Specifi-
cally, for , it is easy to show that all three time-frequency
distributions are equivalent, i.e., [9]. For

, one can show (along the lines of the proof for
in [10]) that under the assumption that are harmonically re-
lated

(19)
where is the amplitude of the sinusoid

with the greatest amplitude. Thus,we have established that
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, , are equivalent for around 2. Next, we in-
vestigate the relationship between and the standard ASR
front-end.

The standard ASR front-end computes the short-time
spectral energy in each of the frequency binsas follows:

, where is defined
in (3). Assuming that in (3) is the real Gabor filter’s
impulse response, the frequency response can be expressed as

(20)

where is proportional to the bandwidth of the filter. For
and for a Gabor filterbank, the spectral moment time-frequency
distribution can be expressed as a function of the standard
front-end feature set as follows2

(21)

where is the derivative of the short-time spectral
energy distribution with respect to the center frequency of the
filterbank filter .

Given the close relationship between and it might
be expected that both distributions will perform similarly when
used as features for ASR. However,is a zeroth-order spectral
estimator while is a first-order one [see (18)]. Thus,
is expected to be a less robust estimator and have inferior classi-
fication performance. Indeed, we have experimentally verified
that the separability of phonemic classes in the space is
significantly better than in the space. Efforts to aug-
ment the standard feature setby one of are expected
to have little success [6] due to the high correlation between
the two feature sets exemplified by (21). Note, however, that
gains may be observed when different analysis time-scales are
used for the two distributions or for mismatched ASR condi-
tions (in training and testing), e.g., noisy speech. Further, since

for the above statements are also
valid for and .

IV. EXPERIMENTS

In this section, the recognition accuracy of the various fea-
ture sets is compared for a connected digit recognition task.3 A
hidden Markov model (HMM) recognizer was used with eight
Gaussian mixtures per HMM state. Each digit was modeled by
a left to right HMM unit, 8–10 states in length. The test set
consists of 4304 digit strings (13 185 digits) collected over the
public switched telephone network.

The front-ends evaluated were (all with 20 ms analysis
window, 10 ms update, and identical filterbank spacing and
bandwidths)

1) “standard” mel-filterbank front-end using trian-
gular filters;

2) mel-filterbank front-end using Gaussian filters ;
3) energy spectrum ;

2The approximation error is greatest for! close to 0 and for large values of
bandwidth parameter�.

3Similar results were obtained on the TIMIT phone recognition task.

TABLE I
DIGIT ERRORRATE FOR DIFFERENTTIME-FREQUENCYDISTRIBUTIONS AS

ASR FEATURE SETS (C IS THE INVERSECOSINE TRANSFORM)

4) amplitude weighted average instantaneous frequency
for .

For all front ends the feature set consisted of the mean square of
the signal (“standard energy”), the inverse cosine of the above
described time-frequency distributions (cepstrum), and the first
and second derivatives of these features.

The results are shown in Table I. As expected the performance
of , and is very similar, while performs signifi-
cantly worse. This is consistent with the theoretical results ob-
tained in Sections II and III.

V. CONCLUSIONS

We have established the close relationship among var-
ious short-time distributions and provided baseline results
comparing the ASR performance of these alternative feature
sets with the standard ASR front-end. Specifically, it was
shown that 1) the difference between cepstrum ASR features
derived from short-time averages of quadratic operators and the
standard ASR front-end is a time-independent bias, provided
that identical time-frequency tiling and narrowband filters are
used in the ASR front-end and 2) , and are
equivalent time-frequency representations when amplitude
squared weighting is used ( ), and can be expressed
as the derivative of the spectral energy distribution. The
implications of these results for speech recognition were also
discussed and experimentally verified. For matched training
and testing conditions, ASR front-ends using cepstrum derived
from averages of quadratic operators were shown to perform
similarly to the standard ASR front end, while front-ends
using first spectral moment features were shown to perform
significantly worse.
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