
Experiments on Far-field Multichannel Speech
Processing in Smart Homes

I. Rodomagoulakis1,3, P. Giannoulis1,3, Z.–I. Skordilis1,3, P. Maragos1,3, and G. Potamianos2,3

1. School of ECE, National Technical University of Athens, 15773 Athens, Greece

2. Department of CCE, University of Thessaly, 38221 Volos, Greece

3. Athena Research and Innovation Center, 15125 Maroussi, Greece

irodoma@cs.ntua.gr, maragos@cs.ntua.gr, gpotam@ieee.org

Abstract—In this paper, we examine three problems that rise
in the modern, challenging area of far-field speech processing.
The developed methods for each problem, namely (a) multi-
channel speech enhancement, (b) voice activity detection, and (c)
speech recognition, are potentially applicable to a distant speech
recognition system for voice-enabled smart home environments.
The obtained results on real and simulated data, regarding the
smart home speech applications, are quite promising due to
the accomplished improvements made in the employed signal
processing methods.

Index Terms—smart homes, microphone arrays, array pro-
cessing, speech enhancement, voice activity detection, speech
recognition

I. INTRODUCTION

The recently emerged intelligent applications for smart

domestic environments [1] are designed to offer new opportu-

nities to security, awareness, comfort, and full environmental

control in daily indoor life. A major effort [2] in this re-

search field refers to impaired or elderly people with physical

disabilities. Among all the employed interaction and sensing

technologies, speech processing technology has a great po-

tential to become one of the major interaction modalities, en-

abling natural and fast human-computer interaction without the

necessity of body- or head-mounted microphones. Although

voice interfaces enable potentially richer interactions, one of

the major issues that prevents the development of speech

technology in real home settings is the poor performance of

Automatic Speech Recognition (ASR) in noisy environments,

as well as the unsolved challenges that emerge in complex

acoustic scenes with multiple, possibly overlapping events.

The corruption of speech signals is due to interfering sounds

and reverberation. These sources of signal degradation can be

effectively suppressed by combining multiple microphones for

signal processing. The research in the field of microphone ar-

ray processing deals with problems such as source localization,

separation, and enhancement for Distant Speech Recognition

(DSR) [3] in acoustic environments with multiple events.

Although such array processing techniques have received great

attention in the signal processing community over the last

years, the research in ASR ignores a great amount of their

benefits [4].

This research was supported by the European Union project DIRHA with
grant FP7-ICT-2011-7-288121.

A DSR system with a microphone array usually consists

of speaker localization, beamforming (BF), post-filtering, and

ASR. First, the speaker’s position is estimated and then, given

the estimation, the beamformer emphasizes the signal coming

from a direction of interest. The beamformed signal can be

further enhanced by applying post-filtering and, finally, the

enhanced signal is fed to the ASR system. A real domestic en-

vironment usually involves non-speech acoustic events which

must be distinguished from the voice segments by applying

Voice Activity Detection (VAD).

The contributions of this paper lie on three problems of

the DSR system, namely (a) speech enhancement, (b) voice

activity detection, and (c) speech recognition. In Section II,

a state-of-the-art multichannel speech enhancement system

with beamforming and post-filtering is presented. The system

includes a source localization module for data-driven esti-

mation of the source location, which is needed for effec-

tive beamforming. The source localization algorithm uses a

closed-form source location estimator and is, therefore, fast

and introduces small overhead to the enhancement system.

Section III presents supervised and unsupervised methods for

speech/non-speech classification in multichannel simulations

in a realistic home environment. Noisy conditions and mul-

tiple acoustic events that may overlap frequently comprise

a challenging environment. The proposed classifier performs

accurately and close to real time. Finally, Section IV describes

the implementation of an ASR system with efficient acoustic

and language modelling for a large vocabulary Greek task,

targeting spontaneous speech recognition in a reverberant

room with noisy conditions.

Overall, the above contributions led to promising results

and improvements on a variety of challenging problems in

the examined field of DSR for smart home applications. Such

applications are explored within the recently launched EU

project under the name “Distant-speech Interaction for Robust

Home Applications” (DIRHA) [5].

II. MULTICHANNEL SPEECH ENHANCEMENT

The use of microphone arrays presents the advantage that

spatial information is captured in the recorded signals. There-

fore, in addition to spectral characteristics, spatial character-

istics of speech and noise signals can also be exploited for
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Fig. 1. Multichannel Speech Enhancement System with Post-Filter

speech enhancement. To exploit spatial information, beam-

forming algorithms have been proposed [6]. In addition to

beamforming, post-filtering is often applied to further enhance

the desired signal. Commonly used for speech enhancement

are the minimum mean-square error (MMSE), the short time

spectral amplitude (STSA) [7], and the log-STSA [8] esti-

mators, each of which is equivalent to a Minimum Variance

Distortionless Response (MVDR) beamformer followed by a

single-channel post-filter [9], [10], [11].

In this paper, a state-of-the-art speech enhancement system

is presented, which implements the aforementioned estimators

and consists of a source localization and time alignment

module, an MVDR beamformer, and a post-filter (Fig. 1).

A. Multichannel Speech Enhancement System

The system inputs are the signals recorded by a set of M
microphones in a noisy environment. It is assumed that the

signal sm(t) recorded by microphone m can be modeled as:

sm(t) = s(t) ∗ rm(t) + vm(t), m = 1, 2, . . . ,M (1)

where s(t) is the source signal, rm(t) is the impulse response

of the acoustic path from the source to microphone m,

and vm(t) is an additive noise component. For enhancement

purposes, this signal model will be simplified by assuming that

reverberations are negligible, namely rm(t) = αmδ(t − τm),
where αm is the attenuation factor and τm is the time needed

for the source signal to travel to the m-th microphone, so that

sm(t) = αms(t− τm) + vm(t).
The time alignment module temporally aligns the input

signals. To do so, the Time Differences of Arrival (TDOAs)

of the speech signal to the microphones must be estimated. To

compute the TDOAs, speech source localization is first per-

formed. The speech source is localized using a TDOA-based

source localization algorithm. First, TDOAs are independently

estimated for various microphone pairs of the array, using

the Crosspower-Spectrum Phase Coherence Measure (CSP-

CM) [12]. For the microphone pair m1, m2, the CSP-CM:

Csm1
sm2

(τ, t) =

∫ ∞

−∞

Sm1(f, t)S
∗
m2

(f, t)

|Sm1
(f, t)||Sm2

(f, t)|e
j2πfτdf, (2)

where Sm1
(f, t) and Sm2

(f, t) are the Short Time Fourier

Transforms (STFTs) of sm1
(t) and sm2

(t), respectively, is

expected to have a prominent peak at τ = τm1
− τm2

.

Once the TDOAs have been estimated, the Directions of

Arrival (DOAs) of the source signal to each microphone

pair are computed. Adopting a far-field propagation model

and assuming that the microphones and the source are co-

planar, the DOA for each microphone pair m1, m2 is a

Fig. 2. MEMS Microphone Array

straight line that passes trough the midpoint of the micro-

phone pair baseline with an incident angle of θm1m2
=

cos−1(c(τm1 − τm2)/dm1m2), where c is the speed of sound

and dm1m2 is the distance between microphones m1, m2 [13].

Ideally, the DOAs intersect at a single point, i.e. the speech

source location. However, due to errors in the TDOA esti-

mates, this is not the case in practice and the source location

has to be estimated using an error minimization criterion. The

approach taken is to find the point on the plane that minimizes

the sum of squared distances from the DOA lines. Expressing

the DOA line for each microphone pair i in parametric form

as yi = xi + λri, λ ∈ R , i = 1, 2, . . . , N , where N is the

number of available microphone pairs, xi is the midpoint of

the microphone pair baseline, ri is the unit vector in the DOA

direction, and λ is a parameter that spans R so that yi spans

the points on the line, the source location estimator a0 that

satisfies this minimization criterion is:

a0 = A−1
N∑
i=1

(Aixi) , A =

N∑
i=1

Ai , Ai = I− rir
T
i , (3)

where I denotes the identity matrix. The estimated source

location combined with knowledge of the microphone posi-

tions enables calculation of the τm quantities and consequently

alignment of the signals sm(t).
The MVDR beamformer operates on the aligned signals and

produces a single output, which is then processed by the post-

filter to obtain the enhanced signal. The MVDR beamformer

weights and the post-filter transfer function for each of the

MMSE, STSA and log-STSA post-filters are estimated using

the estimation procedure proposed in [14].

B. Experimental Results

Experiments were conducted on the CMU database and with

signals recorded with a MEMS (Micro-Electro-Mechanical

System) microphone array. As an objective speech quality

measure, the segmental Signal to Noise Ratio (SSNR) was

used [15].

TABLE I
SPEECH ENHANCEMENT RESULTS FOR THE CMU DATABASE

Estimator SSNR Enhancement (dB)

MMSE 14.2320
STSA 13.9078

log-STSA 14.0848



Fig. 3. Speech Enhancement Results using the MEMS Microphone Array: utterance “DIRHA answer the phone” (in Greek)

1) CMU database: The CMU database [16] contains

16kHz recordings of 130 utterances with an 8–element linear

microphone array with 7cm microphone spacing. Table I

shows the average SSNR enhancement (SSNRE) achieved,

which is calculated as the dB difference between the SSNR

of the noisy signal at the central microphone of the array and

of the enhanced output. A substantial SSNRE of about 14dB

was achieved.
2) MEMS Microphone Array: A few preliminary experi-

ments were also conducted with a microphone array consisting

of MEMS microphones, a newly developed technology of

very compact sensors. Technical details regarding the MEMS

sensing elements can be found in [17]. The MEMS array used

consists of 8 sensors streaming audio at 48kHz, which can

be configured in any desired geometry. For the preliminary

experiments, the microphones were configured linearly with

8cm spacing. The configuration is shown in Fig. 2.
A few DIRHA related commands in Greek were uttered

by a human talker at various positions relative to the array.

Significant enhancement of the speech signal was observed.

Indicative results are shown in Fig. 3, which depicts the

experiment in which the sentence “DIRHA answer the phone”

(in Greek) was uttered by a human speaker standing 1m from

the array center at an angle of 45 degrees relative to the array

carrier-line. The significant enhancement achieved is evident.

III. VOICE ACTIVITY DETECTION

Voice activity detection (VAD) refers to the problem of

distinguishing speech from non-speech segments in an audio

stream. The non-speech regions could include silence, noise,

or a variety of other acoustic signals. Also in case of overlap

between speech and other events, there is need of detection and

separation. Speech/non-speech segmentation of the acoustic

input constitutes a crucial step that provides important infor-

mation to other system components, such as speaker localiza-

tion, automatic speech recognition, and speaker recognition.

Especially in the case of human-computer interaction, it needs

to perform in a highly precise and real-time manner. In our

work, we discuss some VAD algorithms, and compare their

performance in the DIRHA database environment. Our best

effort performs quite fast and accurately.

A. Teager Energy Based Segmentation

This algorithm, reported in [18], was developed in or-

der to achieve accurate speech/non-speech segmentation in

highly noisy environments. In contrast to other energy-based

algorithms that use traditional energy and zero crossing rate

(e.g. [19]), this method employs Teager energy as a feature,

combined with an adaptively computed threshold for making

a speech/non-speech decision. The Teager energy operator

is defined as Ψ[x(t)] = ẋ2(t) − ẍ(t)x(t). The new energy

representation is derived through Gabor filtering the signal in

various frequency bands, estimating their average Teager ener-

gies, and keeping the maximum of them (the most active one).

For each frame, the feature computed is maxk (Ψ(s ∗ hk)),
where s is the speech signal, hk is the impulse response of

the kth Gabor filter, and {·} denotes short-time averaging. The

algorithm is unsupervised, in the sense that it does not require

a training procedure.

B. GMM Classifier Using Mel Band Energy Features

In this approach, a Gaussian mixture model (GMM) based

speech/non-speech classifier is trained, and subsequently ap-

plied over a short-time sliding window, making a binary

decision on whether it corresponds to speech or non-speech.

32 Mel band log-energy (MBLE) features are extracted over

short-time windows of 25ms in duration, without proceeding

to the DCT based compression/de-correlation stage that yields

the traditional Mel-frequency cepstral coefficients (MFCCs)

[20]. For each frame, we compute MBLEk = logE(s ∗ hk),
where E is the classic energy operator, and hk denotes here the

impulse response of the kth triangular filter of Mel-filterbank.



TABLE II
PERFORMANCE OF THE FOUR SPEECH/NON-SPEECH SEGMENTATION

SYSTEMS PRESENTED, DEPICTED IN TERMS OF SPEECH/NON-SPEECH

FRAME CLASSIFICATION ERROR.

VAD Approach test1 test2

Teager Energy 25.25% 27.07%
Teager Energy + GMM/MFBE 19.03% 20.80%
GMM classifier/MFBE features 7.83% 8.80%

GMM/MFBE, 2-mic fusion 6.69% 7.14%

For speech/non-speech modelling, Gaussian mixtures with full

covariances are employed, in particular six such mixtures per

class. The GMM is trained on a subset of the DIRHA database,

using the expectation-maximization algorithm [20]. During

testing, the GMM is applied over feature sequences that cor-

respond to short-time sliding windows of 0.5s in duration and

a 0.25s overlap. The final speech/non-speech decision is thus

obtained every 0.25s, based on the accumulated log-likelihood

difference of the two models over the 0.5s window, also biased

by an appropriately chosen global threshold that plays the role

of a decision confidence. It is worth saying that this VAD

implementation permits close to real-time performance.

C. Combined Teager Energy and GMM Based Segmentation

In this approach, the Teager energy based speech/non-

speech segmentation system, mentioned earlier, is considered

as the first step of a two-stage cascade. The second step

of the algorithm applies the GMM based speech/non-speech

classifier to provide a final decision as to whether each

segment detected as speech by the Teager energy based sub-

system should be classified as speech or non-speech. This

system thus has the ability to reject erroneously detected

speech segments (e.g., segments where other acoustic events

are present), however it lacks the ability to further refine

such segments into possible speech and/or non-speech sub-

segments.

D. Multiple Microphone Combination

The above approaches have been considered using data from

a single microphone, but can be easily extended to employ data

from multiple microphones in the DIRHA scenario. A simple

such algorithm has been developed in conjunction with the

speech/nonspeech segmentation system “B” above, using data

from two microphones under a decision fusion framework.

In more detail, under this approach, a particular frame is

classified as speech if both microphones classify it as speech

with a confidence above a threshold Ta, or if at least one of the

microphones does so with a confidence above a rather higher

threshold Tb > Ta.

In Table II we summarize the results obtained from the

different VAD algorithms using two DIRHA testing sets, while

in Fig. 4 we show an example of their performance on a single,

1min recording.

IV. LARGE VOCABULARY SPEECH RECOGNITION

This section addresses the Large Vocabulary Continuous

Speech Recognition (LVCSR) problem in voice-enabled au-

tomated home environments, based on single-channel distant-
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Fig. 4. Examples of application of speech/non-speech segmentation algo-
rithms “A” (upper diagram) and “B” (lower diagram) on a DIRHA recording.
Acoustic waveforms (blue), the ground truth (lower, solid green rectangles),
and the derived speech segments (higher, dashed red rectangles) are shown.
In this recording there is strong overlap between speech, alarm, and water
noise.

speech input. Recognition in distant-talking environment is a

challenging task due to environmental noise, room acoustics,

interfering sources etc.

The implemented Greek LVCSR system aims to recognize

speech signals s(t) for multiple combinations of speaker and

microphone positions in a room of a smart home. The formed

source-microphone channels affect the signal in different ways

depending the distance and the room reverberation effects.

The main challenge in building LVCSR systems for such

scenarios is to achieve robustness against reverberation and

noise effects. One direction to achieve robustness in recogni-

tion is to combine multichannel information in signal, feature

or decision level. Speech enhancement and voice activity

detection, as described before, belong to this class of methods.

Another direction is modelling, in which acoustic and language

models can be effectively designed to compensate environmen-

tal changes and large vocabulary issues. The next paragraphs

describe the implementation of language and acoustic mod-

elling for the Greek language. Speaker independent recogni-

tion experiments for simulated distant speech are also reported.

A. Language Modelling

Bigram and tri-gram models are build for the Greek jour-

nalism domain, in a collection of text mixed up from various

sources, containing 12.2 million words, from which the 90%

is used for training and the other 10% (total set) is used

for testing. The vocabulary size of the total text amounts to

242k words, but only a subset of 37k words are considered

for modelling, those contained in the transcriptions of the

“Logotypographia” [21] corpus in which LVCSR experiments

are conducted. A portion of “Logotypographia” transcriptions

is included in the language modelling text to decrease the

model perplexity when measured in the logo set. The logo
set consists of the corresponding transcriptions of the 1k eval
set, used for the LVCSR evaluation in the “Logotypographia”

corpus.

Language modelling is implemented with the Carnegie

Mellon University language modelling toolkit [22] which

supports Good-Turing discounting for better modelling of



TABLE III
PERFORMANCE OF THE DEVELOPED GREEK BIGRAM AND TRI-GRAM

LANGUAGE MODELS IN TERMS OF PERPLEXITY (PP) MEASURED ON THE

TWO EVALUATION SETS total AND logo.

model type size PP-total PP-logo

bigrams 335k 297 143
tri-grams 424k 192 30.1

.

low-frequency word sequences. The performance in terms

of perplexity is presented in Table III. Perplexity is defined

as PP = P̂ (w1, w2, . . . , wm)−
1
m , where P̂ (w1, w2, . . . , wm)

is the probability estimate assigned to the word sequence

(w1, w2, . . . , wm) by the language model. Out-of-vocabulary

(OOV) rates were also measured for both total and logo
sets. The obtained rates were 8% and 0%, respectively. Zero

OOV for the logo set was due to the closed vocabulary type

of the trained language model. Notice that for the LVCSR

experiments presented next only tri-grams are incorporated in

decoding due to their superior perplexity.

B. Simulated data for distant-speech

Simulations of distant-speech are considered for experimen-

tation due to lack of real recordings in home environments.

The simulations have been acquired by applying eq. (1)

in a original set of 27 hours close-talk recordings of the

multi-speaker Greek journalism database “Logotypographia”

[21]. Two simulation sets were produced for experimenta-

tion, reverb1 and reverbR. In reverb1, conditions are

constant, i.e source in position LA (see the map of Fig. 5),

microphone LR3 and additive ambient noise with gain 3.

In reverbR, conditions are randomly changed by applying

10 source-microphone impulse responses (LA-L3R, LA-LC1,

LA-L4R, LA-L2R, LC-LC1, LC-L4R, LC-L1R, LD-LC1, LD-

L1R, LD-L4R) combined with 3 noise levels (3, 6, 9). With

these two sets, we can test the ability of the ASR system

to recognize distant speech from multiple speakers in multiple

positions inside the simulation room as it is depicted in Fig. 5.

C. Acoustic Modelling

Three sets of acoustic models are developed for distant

speech recognition experiments, one for the original clean
data and the other two for the simulated data reverb1
and reverbR. Using these models, we are able to test the

robustness of the LVCSR system in home environments. Also,

we are able to test how the system behaves in mismatched

training and testing conditions.

The traditional 39-dimensional MFCC and Perceptual Lin-

ear Prediction (PLP) front-end is employed [24] for the

extraction of 13 MFCCs or PLPs including the coefficient

C0 and augmented by their first and second order time

derivatives. Feature extraction is applied on 32ms length

windowed segments of the pre-emphasized speech waveform

producing features at a 100Hz rate. Utterance-level cepstral

mean normalization is also applied to reduce data variability.

The acoustic modelling is based on a set of 28 linguistically

approved Greek phonemes. The open source HTK framework

TABLE IV
WER, %, OF THE BASELINE GREEK LVCSR SYSTEM ON THE

EVALUATION SET IN BOTH MATCHED AND MISMATCHED

TRAINING/TESTING CONDITIONS.

testing conditions
training clean reverb1 reverbR
conditions MFCC PLP MFCC PLP MFCC PLP

clean 3.34 3.30 83.21 82.86 85.13 84.24
reverb1 96.24 93.57 9.53 11.05 12.87 15.13
reverbR 94.25 91.24 17.08 16.94 14.56 16.57

[24] is used for the development of 3-state, 16-Gaussian tied-

state triphones. The training procedure is applied indepen-

dently for each set of acoustic models using approximately

20 hours of speech by 58 speakers. First, monophone models

are trained by employing “flat-start” initialization due to the

absence of time labels in the transcriptions and then, training

of triphones, state-tying, and Gaussian mixture splitting are

performed resulting to tied-state triphones for the clean,

reverb1, and reverbR conditions respectively. The num-

ber of models per set ranged from 4000 to 5700. This deviation

is due to the decision-tree based state clustering which depends

on features. Finally, models for silence and noise have been

trained. The noise model aims to capture the transcribed non-

speech sounds such as “breath”, “clear throat”, “paff noise”,

“side speech”, “paper rustle”, and “phone ring”.

D. Experimental Setup and Results

To evaluate the developed Greek LVCSR system, recog-

nition experiments are conducted in matched and mismatched

conditions for the clean, reverb1, and reverbR baseline

acoustic models, in a speaker independent framework. In

particular, a test (eval) set is selected for system evaluation

Fig. 5. Simulation map of the DIRHA apartment living room [23]. Green
(dashed) and red (solid) lines correspond to the source-microphone location
pairs which were simulated in the reverb1 and reverbR sets, respectively.



consisting of 1k utterances which correspond to approximately

2.3 hours of speech by 15 speakers (different from the training

set ones). The decoding parameters such as the word insertion

penalty, the weights for the acoustic and language models, and

the pruning threshold are optimized on a held-out (dev) set of

500 utterances. The decoding vocabulary contains 37k words.

Recognition results are reported in terms of WER, %, in

Table IV. Overall, the performance under matched conditions

is considered quite satisfactory, especially given the large

vocabulary size, exhibiting similar WERs for MFCCs and

PLPs. The observed low WER of 3.30% for clean speech can

be justified by the exhibited low language model perplexity.

As expected, there is a performance degradation in the distant

speech data that is more pronounced in the more challeng-

ing reverbR scenario. Moreover, when acoustic models

are trained and tested in mismatched conditions, the WER

increases significantly compared to the matched condition

results. Such degradation is less prominent between the two

noisy conditions, compared to the degradation between the

noisy and clean conditions. Comparing the two employed

feature sets, MFCCs performed slightly better in all noisy

matched conditions, although PLPs proved to be more robust

in the most mismatched conditions. It is worth noting that

if the tri-gram language model is not trained on “Logoty-

pographia” text, its perplexity increases to 598 for the 1k eval
set and the WER more than doubles by using MFCC features,

reaching values of 11.49%, 24.73%, and 32.19% on the

clean, reverb1, and reverbR matched training/testing

conditions, respectively.

V. CONCLUSIONS

This work focused on the problems of multichannel speech

enhancement, voice activity detection, and large vocabu-

lary continuous speech recognition (LVCSR). The presented

multichannel speech enhancement system achieved a high

SSNR enhancement of approximately 14dB for the CMU

database. Furthermore, the preliminary experiments with the

newly developed technology of MEMS microphones showed

very promising results. Regarding the VAD problem, the

multichannel approach achieved very satisfying results in

a real environment, yielding approximately 7% frame-level

speech/non-speech classification error. Finally, the developed

LVCSR system performed very satisfactorily for matched

training/testing conditions achieving 3.3% WER for clean

speech; the performance degraded gracefully in noisy condi-

tions under matched training/testing. In future work, we will

explore how the multichannel front-end processing methods,

including speech enhancement and voice activity detection,

can be used to improve the robustness of the ASR system in

adverse conditions.
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