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ABSTRACT
Tongue Ultrasound imaging is widely used for human speech
production analysis and modeling. In this paper, we propose
a novel method to automatically detect and track the tongue
contour in Ultrasound (US) videos. Our method is built on a
variant of Active Appearance Modeling. It incorporates shape
prior information and can estimate the entire tongue contour
robustly and accurately in a sequence of US frames. Exper-
imental evaluation demonstrates the effectiveness of our ap-
proach and its improved performance compared to previously
proposed tongue tracking techniques.

1. INTRODUCTION

The shape and dynamics of the human tongue during speech
are crucial in the analysis and modeling of the speech pro-
duction system. Currently, ultrasound (US) imaging is one of
the most convenient ways to acquire such information. It is
relatively simple to use, does not expose the subject to radia-
tion and achieves frame rates that can capture the fast tongue
movement. Since even a few minutes of recorded speech cor-
respond to tens of thousands of US frames, automatic extrac-
tion of the tongue contour at every time instant can be signif-
icantly helpful. This is a quite difficult problem, given that
the US images contain high amounts of speckle noise, some
parts of the tongue contour are not visible and the remaining
parts are only weakly visible. In this paper, we introduce a
novel approach to tackle the automatic tongue tracking prob-
lem building on Active Appearance Models.

Few methods addressing this problem are reported in the
literature. Li et al. [1] developed the EdgeTrak, a publicly
available semi-automatic system for tongue tracking in US
videos. It is based on a Snake model that is designed for this
application and incorporates information on edge gradient, in-
tensity and contour orientation. It works quite well in frame
subsequences where the same part of the tongue is visible,
but when a part disappears, the corresponding tracked contour
is erroneous and the method cannot afterwards recover from
such errors. Therefore, this system very often needs manual
refinements. More recently, Aron et al. [2] introduced var-
ious improvements. Their method is also based on Snakes,
but preprocesses the US frames to enhance the tongue visi-
bility and poses boundary constraints on the snake to prevent

it from shrinking. In addition, the contour is initialized in
every frame using the information from the optical flow be-
tween two consecutive frames and two electromagnetic (EM)
sensors that are glued on the tongue. This method, which we
refer to as Constrained Snakes, has been reported to be more
accurate than the Edgetrak system. On the other hand, it also
needs manual refinements, though less often than Edgetrak.

In this paper, we propose a novel tracking method that in-
corporates prior information about the shape variation of the
contour of the tongue. This method is robust even in cases of
bad tongue visibility. Further, it not only extracts the visible
tongue contour parts in every frame, but also extrapolates the
contour in the nonvisible parts, thanks to the model of shape
variation. The methodology of Active Appearance Models
(AAMs) [3, 4] is used, properly adapted to the specific appli-
cation. The shape variation model of the tongue is trained on
annotated X-ray videos of the speaker’s head during speech.
The texture model, i.e. the model of the US image intensities
around the tongue contour 1, is trained on manually annotated
US frames. The tracking problem is formulated in a bayesian
framework, involving estimation of the model parameters in
every frame. The experimental results demonstrate the ef-
fectiveness of the proposed method and its improved perfor-
mance, as compared to the methods of [1] and [2].

2. PRELIMINARIES

Acquisition setup The acquisition setup that is used in this
work is the one described in [2, 5]. Among other modalities,
it includes US imaging of a speaker’s tongue at 66 Hz. Figure
1(a) shows an example of an acquired US frame. Only a part
of the intersection of the inner vocal tract wall with the mid-
sagittal plane is visible. We refer to this intersection as tongue
contour, since its major part corresponds to the tongue.

Using X-rays to model the tongue shape variation To
model the shape variation of the tongue contour we use X-
ray videos of the same speaker during speech (Fig.1(b)). In
contrast to US images, the entire tongue contour is visible in
the X-ray images and this makes them more appropriate for
shape modeling. As will be revealed in section 3, the ap-
plied shape modeling methodology requires that the shape is

1As usually in AAMs, the term “texture” is used as in computer graphics.
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Fig. 1. Ultrasound and X-ray images of the speaker, with the
registered Vocal Tract grid superimposed.

represented by a constant number of points. But the main dif-
ficulty in the shape modeling of the tongue is that, contrary
to other applications (e.g. faces or hands), the point corre-
spondence between frames is not obvious; it is not possible
to manually annotate the same set of tongue points in differ-
ent tongue images. Therefore, similarly to [6], we use a vocal
tract grid (which we refer to as VT grid) that has a constant
shape and whose pose (i.e. position, orientation and scale) is
fixed with respect to the palate (Fig.1(b)). The intersections of
the tongue contour with the lines of this grid form the points
that represent the tongue shape.

Note that the tongue shape model could be based on other
modalities that are easier to acquire than X-rays, such as MRI.
The same model could be used for a different speaker as well
after reliable adaptation.

Estimation of the VT grid’s pose To build the tongue
shape model and afterwards use it for tracking, it is necessary
that the VT grid’s pose is estimated at every X-ray and US
frame (Fig.1). This can be achieved if we know the position
of the palate in every frame. For the X-rays, this is straight-
forward, since the palate is visible. However, this is not the
case for the US frames. Therefore, the MRI of the speaker’s
head, where the palate is also visible, is registered with every
US frame. This registration is performed by the method de-
scribed in [5], using position data of EM sensors on the US
probe and the head.

Preprocessing of the US frames To improve the visibil-
ity of the tongue contour we first filter the US images using
the method proposed in [2]. This method eliminates the US
speckle patterns (see image in Fig.2) and has been found to
enhance the robustness of tongue tracking. These filtered US
frames, together with the VT grid’s pose for each frame, are
the inputs of the proposed tongue tracking system.

3. AAM-BASED TONGUE TRACKING

3.1. Representation of Tongue Appearance in US frames

Using a framework similar to AAMs [3, 4], we represent the
appearance of the tongue in the filtered US frames. This
consists of the shape of the tongue contour and the texture,
namely the intensities around the visible parts of this contour.

k = 1

k = a1

line �Ck(τ)

k = Ns

s
k

Fig. 2. Filtered US frame and representation of tongue ap-
pearance in US images. The points (dots) on the VT grid
represent the tongue contour. The vectors are on the texture-
active grid lines and show the windows where the image is
sampled to form the texture vector.

Let the registered VT grid consist of Ns lines. The tongue
shape is represented by the shape vector s = [s1, .., sNs

]T ,
which contains the scalars sk that determine the intersection
points of the Ns lines of the VT grid with the tongue con-
tour. Each sk is the distance of the intersection point from the
starting point of the corresponding grid line (see Fig.2).

The texture vector g(s) represents the texture around
some parts of the tongue contour, as these are defined from
the grid lines subset Gact={a1, .., aNa

}⊂{1, .., Ns}, which
we call texture-active grid lines (see Sec.3.3 for how choos-
ing this subset). The reason for using only a subset of the
grid lines is that some parts of the tongue contour are never
or rarely visible in the US images. The Ng-dimensional vec-
tor g(s) is formed by sampling the preprocessed US frame
u(x, y) in 1D windows on the grid lines k ∈ Gact around the
corresponding tongue points sk (see Fig.2):

g(s) =

[
[ua1

(sa1
+t)]

T

t∈W︸ ︷︷ ︸
1×NW

· · ·
[
uaNa

(saNa
+t)

]T

t∈W︸ ︷︷ ︸
1×NW

]T

where W = {−d,−d + 1, .., d} · δ� is the sampling window
with step δ� and NW =2d+1 samples, and uk(τ) = u(�Ck(τ))

is the restriction of u(x, y) to the k-th grid line �Ck(τ). 2

3.1.1. Differences from classic AAMs

Compared to conventional AAMs [3], the used represen-
tation contains various modifications, in order to exploit
application-specific properties. The a priori knowledge of
the pose of the VT grid in every US frame allows us to re-
duce the complexity of the appearance representation and
model. First, the shape points are represented by the scalars
sk instead of 2D coordinates (Ns vs 2Ns measurements re-
spectively). Also, there is no need to independently account

2Not any global linear mapping of image intensities is considered in the
formation of the texture vector, since all US frames are acquired under similar
conditions.
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for any alignment of the shapes via similarity transforms; by
using the VT grid, the shape variation caused by the move-
ment of the speaker’s palate is implicitly excluded from the
model. In addition, the texture vector is formed by scanning
on the grid lines around the shape points, instead of scanning
entire 2D regions and warping on a mean shape, therefore it
typically has much smaller dimensionality.

Due to the above simplifications, the AAM fitting involves
simpler analytic expressions and can be done by solving a
lighter and more reliable optimization problem than in the
classic approach (Sec. 3.4). Note that the use of a grid that
is designed for a specific deformable shape could be adopted
for other applications as well and not only for tongue track-
ing. If the pose parameters of such a shape-specific grid are
not known a priori as herein, they could be inferred by in-
serting them in the optimization process of the AAM fitting,
incorporating also constraints about their dynamics.

3.2. Modeling Shape Variation

For the prior tongue shape model we exploit the manually
extracted tongue contours from Nx X-ray frames of the same
speaker during speech. Using the information about the VT
grid position in every frame, Nx training shape vectors are
extracted. As in [3], a linear model is considered for the shape
vector:

s ≈ s0 + Qsb , (1)

where s0 is a base shape, b is the vector that contains the Nb

shape parameters, with Nb<Ns, and Qs is an Ns×Nb matrix
whose columns define the modes of shape variation. Qs and
s0 are statistically learned from the Nx training vectors, using
Principal Component Analysis (PCA): s0 is the mean vector
and the columns of Qs contain eigenvectors that correspond
to the Nb biggest eigenvalues of the training set’s covariance
matrix. The scale of each one of these eigenvectors is chosen
so that b has unit covariance. Consequently, assuming that b

follows a Gaussian distribution, the optimum approximation
of its probability density function (pdf) is p (b)=N (b|0, INb

),
where IM denotes the M×M identity matrix and N (x|μ, Σ)
stands for the multivariate Gaussian pdf on x with mean μ

and covariance matrix Σ.

3.3. Modeling Texture Variation

We use here manual annotations from Nus US frames, where
only the parts of the tongue contour that are visible have been
marked. As texture-active are classified the VT grid lines
that intersect the annotated visible parts of the tongue in more
than πactNus training frames. Since πact<1, in some train-
ing US frames, the shape coordinates of some texture-active
grid lines may be missing, because the tongue visibility in this
lines could be absent or very low for the human annotator. In
these cases, the shape vector is extrapolated by MAP estima-
tion of the shape parameters, using the derived model of shape

variation. Afterwards, the Nus training texture vectors can be
formed. This training set is separated into 2 subsets, T1 and
T2. In analogy to the shape modeling, a linear model is used
for the texture vector:

g = g0 + Qgλ + ε , (2)

where λ is the texture parameters vector of dimension
Nλ<Ng and ε is the error of the reconstruction of the texture
vector g using the texture model3. The training set T1 is used
to learn g0 and Qg, using the same procedure described in
Sec.3.2. Assuming a Gaussian distribution for λ, we have
p (λ)=N (λ|0, INλ

). It is also assumed that ε follows a zero
mean Gaussian distribution with covariance matrix of the
form Σε=Q̃gdiag(ρ1, .., ρNg

)Q̃T
g , where the columns of Q̃g

contain all the orthonormal eigenvectors of the covariance
matrix of g, as derived from the training set T1. Therefore,
for ε we have p (ε)=N (ε|0, Σε). The optimum parameters
ρ1, .., ρNg

are learned using the reconstruction errors {εi} of
the training set T2.

Note that the tongue shape and texture are considered
statistically independent (independent AAM). The reason is
that not the entire tongue contour is visible in the US frames
and thus the shape model had to be learned from a different
modality (X-ray) than the texture model.

3.4. Tracking via Model Fitting

In the described framework, the extraction of the tongue con-
tour from the US frames can be achieved via fitting of the ap-
pearance model in every frame. For that, a MAP estimation
of b and λ is used. Our goal is to maximize the posterior:

p (b, λ|u(x, y)) ∝ p (u|b, λ) p (b, λ) = p (ε) p (b) p (λ)

where u(x, y) is the filtered US frame and ε=g(s(b))–g0–
Qgλ is the texture reconstruction error. The above maximiza-
tion is equivalent to the minimization of the following energy:

E(b, λ) = − ln p (b, λ|u) = C+ 1
2

{
‖b‖2+‖λ‖2+εT Σ−1

ε ε
}

where C is a constant. The gradients of E(b, λ) can be easily
derived, using the chain rule:

∇bE = b + Qs
T (∂g/∂s)

T
Σ−1

ε ε

∇λE = λ − Qg
T Σ−1

ε
ε

(3)

where the k-th column, 1≤k≤Ns, of the Jacobian ∂g/∂s is:

∂g

∂sk

=

⎧⎪⎨
⎪⎩

[
0 · · · · · · 0

]T
, if k /∈ Gact[

0 · · · 0︸ ︷︷ ︸
(k−1)NW

[u′

k(sk+t)]
T

t∈W
0 · · · 0︸ ︷︷ ︸

(Ns−k)NW

]T
, if k ∈ Gact

3In the shape model, we do not include such an error because the tongue
contour is not directly observable in the US frames.
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Fig. 3. Tongue tracking and extrapolation of the whole inner
vocal tract wall in a US image sequence, using the proposed
method: results from frames of the sequence.

 

Manual

 

EdgeTrak
Constr.Snakes
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Fig. 4. Frame from a sequence where the tongue tracking
methods have been applied. Left: manually annotated con-
tour. Right: comparison of the methods’ results.

We use a simple gradient descent for the minimization of
E, based on (3). At every frame, we initialize b from the
previous frame result and λ from the result of the maximiza-
tion of the posterior p (λ|g(s(b0))). Note however that more
efficient minimization methods can be applied, since the 2nd-
order partial derivatives of E have simple analytic forms, too.

4. EXPERIMENTAL RESULTS

In our experiments, the dimension of the shape vector was
Ns=30 and the shape model was learned using Nx=700 train-
ing X-ray frames and Nb=6 parameters, so that the model
could explain 96% of the shape vectors’ variance. Also, the
dimension of the texture vector was Ng=1215 and in the tex-
ture model training, we used Nus=400 US frames and we set
πact=50% and Nλ=35, which explained 93% of the texture
vectors’ variance.

Figure 3 demonstrates results of the proposed tracking
method. We observe that the visible part of the tongue contour
has been accurately detected and extrapolated in a sensible
way. For evaluation, we have applied the proposed method,
as well as the method of Edgetrak [1] (without any manual
refinements) and Constrained Snakes [2], to a sequence of
200 US frames for which manually annotated tongue con-
tours are available. In Fig. 4, an example from these re-
sults is shown (for the proposed method, only the tracked
points on the texture-active grid lines are considered here).
Edgetrak appears to erroneously extend the tongue contour
while the Constrained Snakes demonstrate improved perfor-
mance. The proposed method, which is the only one that
incorporates prior shape information, yields the most plau-
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Fig. 5. Evaluation of the proposed method in compari-
son with state-of-the-art approaches. Manually determined
tongue contours were used as ground truth. The results have
been binned for better visualization.

sible result. In Fig. 5, quantitative measures are shown, us-
ing the symmetric RMS distance error ed=

√
(d2

om + d2
mo)/2,

where dom (dmo) is the RMS distance of the points of the
output (manual) contour from the manual (output) contour. It
seems that the proposed method outperforms the previous ap-
proaches. The above results demonstrate the potential of this
novel approach for tongue tracking.
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