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Abstract. We propose a nonlinear image interpolation method, based
on an anisotropic diffusion PDE and designed for the general case of
vector-valued images. The interpolation solution is restricted to the sub-
space of functions that can recover the discrete input image, after an
appropriate smoothing and sampling. The proposed nonlinear diffusion
flow lies on this subspace and its strength and anisotropy effectively
adapt to the local variations and geometry of image structures. The de-
rived model efficiently reconstructs the real image structures, leading to
a natural interpolation, with reduced blurring, staircase and ringing ar-
tifacts of classic methods. This method also outperforms other existing
PDE-based interpolation methods. We present experimental results that
prove the potential and efficacy of the method as applied to graylevel
and color images.

1 Introduction

Image interpolation is among the fundamental image processing problems and
is often required for various image analysis operations. It is therefore of interest
for many applications such as biomedical image processing, aerial and satellite
imaging, text recognition and high quality image printing. In this paper, the term
image interpolation is used in the sense of the operation that takes as input a
discrete image and recovers a continuous image or a discrete one with higher
resolution. The case where the output image is discrete appears in the litera-
ture with several other names: digital zooming, image magnification, upsampling,
resolution enhancement.

There exists a large variety of image interpolation methods, which can be clas-
sified to two main classes, linear and nonlinear methods (see [1] for a detailed
review). The linear methods (e.g. bicubic, quadratic and spline interpolations)
perform convolution of the image samples with a single kernel, equivalent to a
lowpass filtering. These methods yield relatively efficient and fast algorithms,
but they cannot effectively reconstruct the high-frequency part of images and
inevitably introduce artifacts. Nonlinear methods perform a processing adapted
to the local geometric structure of the image, with main goal to efficiently recon-
struct image edges. This class includes variational (e.g. [2,3,4]) and PDE-based
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(e.g. [5,6]) methods, some of which will be presented in the following sections.
Such methods (e.g. [7,8,9]) have also been developed for two closely related prob-
lems, image inpainting [10] and scattered data interpolation.

In this paper a novel nonlinear method for the interpolation of vector-valued
images is proposed. We pose a constraint, which effectively exploits the available
information of input image. Then, we design an anisotropic diffusion PDE, which
performs adaptive smoothing but also complies with this constraint, thanks to an
appropriate projection operation. The diffusion strength and anisotropy adapt
to the local variations and geometry of image structures. This method yields
a plausible result even when the resolution of input image is relatively low and
reduces the artifacts that usually appear in image interpolation. The paper is or-
ganized as follows: In Sect. 2, some interpolation models related to the proposed
method are discussed. Sect. 3 presents our novel interpolation PDE model. In
Sect. 4, we demonstrate results from interpolation experiments, that show the
potential and efficacy of the new method.

2 Preliminaries and Background

2.1 Reversibility Condition Approach to Interpolation

The problem of image interpolation is viewed here in a way similar to [2,3].
The continuous solution of interpolation u(x, y) should yield the known, low
resolution discrete image z[i, j], after a lowpass filtering followed by sampling.
To pose this reversibility condition formally, let us consider that z[i, j] is defined
on an orthogonal grid of Nx×Ny points with vertical and horizontal steps hx

and hy respectively. Also let u(x, y) be defined in the domain Ω=[hx

2 , Nx+hx

2 ]×
[hy

2 , Ny + hy

2 ], which contains the grid points. Then, the reversibility condition
for the solution u(x, y) can be written as follows:

(S ∗ u)(ihx, jhy) = z[i, j] , for all (i, j)∈{1,..,Nx}×{1,..,Ny} , (1)

where hx, hy are hereafter considered unitary (hx = hy = 1), “∗” denotes con-
volution and S(x, y) is a smoothing kernel that performs the lowpass filter-
ing and has Fourier transform with nonzero values for all the baseband fre-
quencies (ω1, ω2) ∈ [−π, π]2. For example, S(x, y) could be the mean kernel,
i.e. S(x, y)=1l[− 1

2 , 1
2 ]2(x, y), where 1lB denotes the indicator function for any set

B ⊂ IR2. Note that (1) degenerates to the exact interpolation condition when
S=δ(x, y) (2D unit impulse). However, condition (1) with an appropriate low-
pass filtering can be more realistic, as it can better model the digitization process,
which is the final step of image acquisition systems [4]. In addition, this lowpass
filtering is desirable, as it reduces the aliasing effects at the acquired image. The
problem of finding u(x, y) in (1) is ill-posed, as (1) is satisfied by infinitely many
functions. Let Uz,S be the set of these functions. It is easy to see that Uz,S is
an affine subspace of the functions defined in Ω. Therefore, some extra criterion
must be posed to choose among the functions of Uz,S .
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A simple linear interpolation method arises by imposing the additional con-
straint that u(x, y) is a bandpass 2D signal, similarly to Shannon’s theory. Then,
the solution of (1), which we refer to as (frequency) zero-padding interpolation,
is unique and can be easily derived using the Sampling theorem (note that it
depends on the kernel S(x, y)). This method reconstructs image edges without
blurring or distorting them, but usually introduces strong oscillations around
edges [3]. The cutoff of high frequencies is thus undesirable, as the bandlimited
assumption is not true for most real-world images. Therefore, a more appropri-
ate method of selection among the functions of Uz,S is needed. Such methods
will be presented in the following sections.

Total Variation Based Interpolation. Guichard and Malgouyres [2,3] pro-
posed to choose as solution of the interpolation the image that minimizes the To-
tal Variation (TV), E[u] =

∫∫
Ω

‖∇u‖dxdy , under the constraint that u∈Uz,S .
This minimization problem is solved in [2] by applying a constrained gradient
descent flow, described by the following PDE:

∂u(x, y, t)/∂t = PU0,S {div (∇u/ ‖∇u‖)} , (2)

supplemented with the initial condition that u(x, y, 0) is the zero-padding in-
terpolation of z[i, j]. PU0,S {·} denotes the operator of orthogonal projection on
the subspace U0,S , which corresponds to the condition (1) with z[i, j] = 0 for all
(i, j). This projection ensures that u(x, y, t)∈Uz,S , ∀t > 0, since u(x, y, 0)∈Uz,S .
The authors propose two options for the smoothing kernel of condition (1): the
mean kernel and the sinc kernel, which provides an ideal lowpass filter as its
Fourier transform is 1l[−π,π]2(ω1, ω2).

This method leads to reconstructed images without blurring effects, as it
allows discontinuities and preserves 1D image structures. However, TV mini-
mization is based on the assumption that the desirable image is almost piece-
wise constant, which yields a result with over-smoothed homogeneous regions.
In addition, the diffusion in (2) is controlled by the simple coefficient 1/ ‖∇u‖,
therefore it cannot remove block effects, especially in the regions with big im-
age variations. Further, the mean kernel vanishes too sharply, so the projection
PU0,S {·} reintroduces block effects and the sinc kernel is badly localized in space
and oscillates, so PU0,S {·} causes formation of oscillations in reconstructed edges.

Belahmidi-Guichard (BG) Method. Belahmidi and Guichard [5] have im-
proved the TV-based interpolation by developing a nonlinear anisotropic PDE,
hereafter referred as BG interpolation method. In order to enhance edge preser-
vation, this PDE performs a diffusion with strength and orientation adapted
to image structures. The reversibility condition (1) is taken into account (with
the choice of mean kernel for S(x, y)) by adding to the PDE an appropriate
fidelity term, so that the flow u(x, y, t) stays close to the subspace Uz,S (see
[5] for details). This method balances linear zooming on homogeneous regions
and anisotropic diffusion near edges, trying to combine the advantages of these
two processes. Nevertheless, the diffusion is not always desirably adapted to real
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image structures and the fact that the PDE flow is not constrained to lie inside
Uz,S may decrease the accuracy of the result.

2.2 PDE Model of Tschumperlé and Deriche (TD)

Tschumperlé and Deriche [11,6] proposed an effective PDE method for vector-
valued image regularization. This PDE scheme, which we refer to as TD PDE,
is mainly designed for image restoration applications, but it is presented here
because we utilize it to the design of the new interpolation PDE (Sect. 3). Their
model is an anisotropic diffusion flow, which uses tensors to adapt the diffusion
to the image structure. Let u(x, y, t) = [u1,..,uM ]T be the output vector-valued
image at time t and M be the number of vector components. Then, the TD PDE
model can be described by the following set of coupled PDEs:

∂um(x, y, t)
∂t

= trace
(

T
(
Jρ(∇uσ)

)
· D2um

)

, m=1,..,M , (3)

with initial condition that u(x, y, 0) is the input vector-valued image. D2um

denotes the spatial Hessian matrix of the component um(x, y, t) and T is the
2×2 diffusion tensor :

T
(
Jρ(∇uσ)

)
=

[
1 + (N/K)2

]− 1
2 · w−wT

− +
[
1 + (N/K)2

]−1 · w+wT
+ , (4)

where N =
√

λ+ + λ− and K is a threshold constant similar to the diffusivity
of [12].1 Also, λ−≤λ+ and w−,w+ are the eigenvalues and unit eigenvectors of
the 2×2 structure tensor :

Jρ(∇uσ) = Gρ ∗
M∑

m=1

∇(Gσ ∗ um) (∇(Gσ ∗ um))T . (5)

The 2D isotropic Gaussian kernels Gσ and Gρ are of standard deviation σ and ρ
respectively.2 The structure tensor Jρ(∇uσ) measures the local geometry of im-
age structures (convolutions with Gσ,Gρ make this measure more coherent [13]).
The eigenvectors w− and w+ describe the orientation of minimum and maxi-
mum vectorial variation of u and the eigenvalues λ− and λ+ describe measures
of these variations (the term N is an edge-strength predictor which effectively
generalizes the norm ‖∇u‖). Thus, the diffusion is strong and isotropic in ho-
mogenous regions (small N ), but weak and mainly oriented by image structures
near the edges (big N ). Consequently, this method offers a flexible and effective
control on the diffusion process (see [6] for more details).

Application to the Interpolation. Among various applications, the generic
PDE model (3) of [11,6] is applied to image interpolation (we refer to the derived

1 This is a slightly more general version of the original model [11,6], where K = 1.
2 The original model corresponds to σ=0 but we use the more general version of [13].
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method as TD interpolation method). This method casts image interpolation as
a special case of the image inpainting problem [10]. It imposes the constraint
that the solution must coincide with the input at the appropriate pixels in the
new coarser grid (exact interpolation condition). Thus, the inpainting domain
(i.e. the domain where the image values are unknown) consists of the remaining
pixels. The image values in this domain are processed according to PDE (3),
with a modified diffusion tensor [11]:

T
(
Jρ(∇uσ)

)
=

[
1 + (N/K)2

]− 1
2 · w−wT

− . (6)

The bilinear interpolation of the input image is chosen as initial condition
u(x, y, 0) and the interpolation solution is derived from the equilibrium state.
Contrary to the effectiveness of the TD PDE model for image restoration, the
derived interpolation method suffers from some inefficiencies. The initialization
by the bilinear interpolation contains edges with significant blurring. Also, the
information of each input value z[i, j] is not spread to all the corresponding pixels
of the coarser grid, as some pixels stay anchored whereas the rest pixels change
without constraint. Furthermore, the diffusion tensor (6) is fully anisotropic even
in regions with small image variations, therefore it may distort image structures
and create false edges.

3 The Proposed Anisotropic Diffusion-Projection PDE

The aforementioned PDE interpolation methods outperform classic linear meth-
ods, as they reconstruct the edges without blurring them. In some cases though,
they yield artifacts such as over-smoothing of homogeneous regions, block ef-
fects or edge distortion. In order to improve the effectiveness of these methods,
we propose a novel PDE model, which performs a nonlinear interpolation. It is
based on an efficient combination of the reversibility condition approach and TD
PDE (3). The model is designed to deal with vector-valued images in general
and processes the different channels in a coupled manner.

More precisely, the design of our model has been based on the observation that
the TV-based interpolation PDE (2) can be derived from a non-minimization
point of view: it is in fact a modification of the zero-fidelity (λ=0) TV PDE [14]:

∂u(x, y, t)/∂t = div (∇u/ ‖∇u‖) , (7)

which can be viewed as a special case of the general nonlinear diffusion of [12].
This modification is done by replacing the right hand side (RHS) of the PDE
with its projection to U0,S. Thanks to this projection, the whole flow remains
into the subspace Uz,S , provided that u(x, y, 0) ∈ Uz,S . We followed a similar
approach to design the proposed PDE model, but instead of TV PDE (7), we
chose to modify the TD PDE (3), as it is an effective and robust diffusion PDE
model for image regularization (see Sect. 2.2).

Before we proceed to the description of our model, let us mention that we
straightforwardly generalize the condition (1) for vector-valued images: it should
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be satisfied independently by every channel. This generalized reversibility con-
dition can be equivalently written as:

〈Sij , um〉L2(Ω) = zm[i, j] , (8)

where (m, i, j) ∈ {1,..,M}×{1,..,Nx}×{1,..,Ny} and zm[i, j], um(x, y) are the
m-th of M components of the discrete input and interpolated image respectively.
Also, Sij(x, y) = S(i−x, j−y) and 〈·, ·〉L2(Ω) denotes the inner product of L2(Ω).
Let Uz,S be the set of vector-valued images u(x, y) that satisfy the generalized
reversibility condition (8).

Description of the Model. We derive the interpolated image from the equi-
librium solution of the following system of coupled PDEs:

∂um(x, y, t)
∂t

= PU0,S

{

trace
(

T
(
Jρ(∇uσ)

)
· D2um

)}

, m=1,..,M , (9)

where PU0,S {·} denotes the operator of orthogonal projection on the subspace
U0,S and the tensors T (Jρ(∇uσ)) and Jρ(∇uσ) are again given by (4) and
(5) respectively. We have chosen the following initial conditions for (9): every
um(x, y, 0) is derived from the zero-padding interpolation (see Sect.2.1) of the
symmetrically extended zm[i, j]. This initialization, which is similar to the one
of PDE (2) proposed in [2], can be easily computed and contains efficient re-
constructions of image edges (see also the following discussion of the model’s
properties). The reflection that we added before zero-padding offers a slight im-
provement of the initial estimate, as it eliminates the ringing effects near the im-
age borders. Note that u(x, y, 0)∈U z,S, so PU0,S {·} ensures that u(x, y, t)∈U z,S ,
∀t > 0.

Let us now derive an expression for the projection PU0,S {·}. First of all,
the subspace U0,S can be defined as the set of functions v(x, y) that satisfy
〈Sij , v〉L2(Ω) = 0, for all (i, j)∈{1,..,Nx}×{1,..,Ny}. If we assume for the chosen
smoothing kernel that:

S(x, y) = 0 , for all (x, y)∈/[−1/2, 1/2]2 , (10)

each Sij takes nonzero values only inside a different square of Ω. Therefore
〈Sij , Si′j′ 〉L2(Ω)=‖S‖2

L2(IR2) δi−i′,j−j′ (where δi,j is the 2D discrete unit impulse),
which means that the set of all Sij is an orthogonal basis of U0,S . Consequently,
a relatively simple expression for the projection PU0,S {·} can be derived:

PU0,S

{
v
}

= v − ‖S‖−2
L2(IR2)

Nx∑

i=1

Ny∑

j=1

〈Sij , v〉L2(Ω) · Sij , (11)

The assumption (10), apart from simplifying the expression for PU0,S {·}, it is also
realistic for most image acquisition systems: during the digitization process, the
measured value at any pixel (i, j) depends mainly on the intensities of points that
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lie in the interior of this pixel’s area, i.e. the domain Ωij = [i−1
2 , i+1

2 ]×[j−1
2 , j+1

2 ].
Therefore we have chosen the following smoothing kernel:

S(x, y) = 1l[− 1
2 , 12 ]2(x, y) · Gσ̂(x, y)

∫∫
[− 1

2 , 1
2 ]2 Gσ̂(x′, y′)dx′dy′ , (12)

where Gσ̂(x, y) is the 2D isotropic Gaussian of standard deviation σ̂. Multipli-
cation with 1l[− 1

2 , 1
2 ]2(x, y) is done to satisfy the assumption (10) and the denom-

inator of (12) normalizes the kernel to have unitary mean value. Note that σ̂
must be neither too small nor too big. If σ̂ is too small, S(x, y) is too localized
in space and the information of each input value z[i, j] is not spread properly to
all the corresponding pixel area Ωij . In addition, if σ̂ is too big, S(x, y) reduces
to the mean kernel. This kernel though is undesirable, because we want to re-
lax the constraints near the border of each Ωij and thus prevent PU0,S {·} from
producing block effects.

Properties of the Model. As already mentioned, the zero-padding interpo-
lation, which we use as initial condition of (9), efficiently reconstructs image
edges without blurring or distorting them, but also introduces strong oscilla-
tions around edges (see [3]). It can thus be viewed as a desirable interpolation
result degraded by a significant amount of noise. The scope of the proposed PDE
(9) is to effectively regularize the image u(x, y, 0) by removing these oscillations.
Note also that (11) shows that the projection PU0,S {v} subtracts the compo-
nent of v that does not comply with the reversibility condition. This subtraction
does not affect the basic characteristics of the regularization that the velocity
vm = trace(T ·D2um) tends to apply to the image. Therefore, PDE (9) performs
an anisotropic smoothing with properties very similar to (3). This fact, in com-
bination with the analysis of Sect. 2.2, shows that the proposed PDE efficiently
removes the undesirable oscillations and simultaneously preserves the important
image structures. Namely, the proposed PDE can be considered as a diffusion
flow towards elements of Uz,S with “better” visual quality. Additionally, the
projection PU0,S {v} offers the advantage that there is no need to specify the
stopping time as an additional parameter. The best regularized image is derived
at t→∞, where the flow equilibrates thanks to the term that PU0,S {v} subtracts
from the velocity v.

Numerical Implementation. The continuous result u(x, y) of the proposed
model is approximated by a discrete image u[i′, j′], defined to a coarser grid than
the input image z[i, j], i.e. a discrete interpolation is performed. We consider only
the case where the grid step of z[i, j] is a multiple of the grid step of u[i′, j′]
by an integer factor d, which we call zoom factor. Namely, the input image is
magnified d×d times. For the sake of simplicity, we hereafter assume that the
coarser grid of u[i′, j′] has unit step, hence the grid of input z[i, j] has step d. In
the discretization of PDE (9), we used an explicit numerical scheme with finite
differences, similar to [11]. The discrete time step δt was chosen sufficiently small
for stability purposes (the typical value of δt=0.2 was used). Due to the fact that
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the output image is given at the equilibrium, we stop the iterative process when
un+1 differs from un by a small constant, with respect to an appropriate norm.

4 Experimental Results and Comparisons

In order to compare the interpolation methods and extract performance mea-
sures, we use the following protocol: We choose a reference image with a relatively
good resolution and negligible noise. We reduce the dimensions of this image by
an integer factor d (i.e. the image is reduced to 1

d× 1
d of its size), using a deci-

mation process, i.e. (anti-aliasing) lowpass filtering followed by subsampling. We
implement the lowpass filtering by a convolution with a bicubic spline, which
results to a reliable and commonly used decimation process. Finally, we apply
the interpolation methods to enlarge the decimated image by the zoom factor d,
so that the output images have the same size as the reference image. Note that
we implemented the other PDE-based interpolation methods with a way similar
to the implementation of the proposed method, as briefly described in Sect. 3.
Also, we used the range [0, 255] for image values and in the case of color, we
applied the corresponding PDE methods representing the images in the RGB
color space. The reference image can be considered as the ideal output of the
interpolation, as it is noiseless. Therefore the difference between the reference
image r[i, j] and the output of a method u[i, j] can be viewed as reconstruction
error and is quite representable of the method performance.

We use two measures for this error, the classic peak signal-to-noise-ratio
(PSNR)3 and the mean structural similarity (MSSIM) index [15], which seems
to approximate the perceived visual quality of an image better than PSNR or
various other measures. MSSIM index takes values in [0,1] and increases as the
quality increases. We calculate it based on the code available at: http://www.
cns.nyu.edu/~lcv/ssim/, using the default parameters. In the case of color im-
ages, we extend MSSIM with the simplest way: we calculate the MSSIM index
of each RGB channel and then take the average.

We repeat the above procedure for different reference images from a dataset
and for zoom factors d=2,3 and 4. For every zoom factor and interpolation
method, we compute the averages of PSNR and MSSIM for all the images in the
set, which we consider as final measures of performance.

We followed the above experimental protocol using a dataset of 23 natural im-
ages of size 768×512 pixels.4 We run two series of experiments, the first for the
graylevel versions (where we applied bicubic, TV-based, BG and the proposed
method) and the second for their color counterparts (where we applied bicubic,
TD and our method.5) For the methods that needed specification of parame-
ter(s), we utilized fixed values in all the dataset, which we empirically derived
based on a visual plausibility criterion. We have hence chosen the parameters
3 We use the definition PSNR=10 log10

�
2552M/var {‖u[i, j] − r[i, j]‖}

�
, where ‖·‖ de-

notes here the Euclidean norm of vectors with M components.
4 The kodak collection, available from http://www.cipr.rpi.edu/resource/stills/.
5 TV-based and BG methods are applicable to graylevel images only.

http://www.cns.nyu.edu/~lcv/ssim/
http://www.cns.nyu.edu/~lcv/ssim/
http://www.cipr.rpi.edu/resource/stills/
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σ=0.3d, ρ=0.4d, σ̂=0.6d and K=1 for the proposed method. Also, in TD method
we used the same values ρ=0.4d, K=1 and in BG method we used K=3 for the
corresponding threshold constant. An extensive demonstration of these results
can be found at http://cvsp.cs.ntua.gr/∼tassos/PDEinterp/ssvm07res.

Figure 1 is a snapshot of the results for graylevel image interpolation (for the
sake of demonstration, the input image has been enlarged by the simple zero or-
der hold (ZOH)). It can be observed that the bicubic interpolation significantly
blurs the edges (e.g. note the flower boundary in Fig. 1(b)). The TV-based in-
terpolation over-smooths some homogeneous areas (e.g. the interior of the flower
in Fig. 1(c)), creates block effects (e.g. the thin black branch at the upper right
of Fig. 1(d)) and oscillations in reconstructed edges (e.g. the shutter behind
the flower in Fig. 1(c)). BG interpolation shows an improved performance but it
maintains the block effects in some regions (e.g. the flower boundary in Fig. 1(e)).
Figure 1(f) shows that the proposed method yields the most effective reconstruc-
tion of image structures and the most plausible result. Observe finally how the
shutter is desirably reconstructed only by the proposed method.

(a) Input (enlarged by ZOH) (b) Bicubic Interpolation (c) TV [2], sinc kernel

(d) TV [2], mean kernel (e) BG interpolation [5] (f) Proposed method

Fig. 1. Details of 4×4 graylevel interpolation using the 7th image of dataset

Figure 2 demonstrates a detail of the results for interpolation in color images.
We observe that bicubic interpolation gives again a result with blurring but
also significant staircase effects (e.g. note the edges of motorbikes in Fig. 2(b)).
Fig. 2(c) shows that TD interpolation yields an excessively synthetic aspect to

http://cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res
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the result, as it has distorted image edges and created false thin edges around
the real ones. The proposed method yields again a result (Fig. 2(d)) which has
not any notable artifact and seems the most aesthetically satisfying. This result
contains sharper and better localized edges than the bicubic interpolation (e.g.
note the more effective reconstruction of motorbikes’ edges) and looks much
more natural than the result of TD interpolation.

(a) Input (enlarged by ZOH) (b) Bicubic Interpolation

(c) TD interpolation [11,6] (d) Proposed method

Fig. 2. Details of 4×4 color interpolation using the 5th image of dataset

Table 1 contains the overall performance measures of the interpolation meth-
ods, for the two series of experiments in the dataset of the 23 images. We see
that the proposed method yields improved PSNR and MSSIM results in all the
cases of zoom factors and series of experiments. This improvement may be at-
tributed to the fact that the proposed method performs a more flexible adaptive
smoothing and reliably exploits the input image data to increase the accuracy
of the result.

Interpolation of Biomedical Vocal Tract images. In this experiment, we have
used an MRI midsagittal image of a speaker’s vocal tract from: http://www.
speech.kth.se/~olov/. Fig. 3(a) is a close-up of a denoised (using anisotropic
diffusion) version of this image. Image data of this type are important for the
analysis and modeling of the human speech production system. Similarly to
the above experiments, we used this image as reference and we reduced its
dimensions by a factor d=3 (see Fig. 3(b)). Finally, we applied the proposed
method to (3×3) interpolate the decimated image (Fig. 3(c)). We see that the

http://www.speech.kth.se/~olov/
http://www.speech.kth.se/~olov/


114 A. Roussos and P. Maragos

Table 1. Average error measures in all results using the 23 images, for different zoom
factors d

Experiments with graylevel images
Average PSNR (dB) Average MSSIM

Interpolation Method d=2 d=3 d=4 d=2 d=3 d=4
Bicubic interpolation 29.14 26.68 25.55 0.8561 0.7464 0.6953
TV based [2], sinc kernel 29.75 26.87 25.94 0.8739 0.7567 0.7105
TV based [2], mean kernel 29.53 26.83 25.82 0.8714 0.7578 0.7114
BG interpolation [5] 28.36 26.58 25.60 0.8253 0.7402 0.7004
Proposed method 30.22 26.96 26.05 0.8816 0.7671 0.7194

Experiments with color images
Average PSNR (dB) Average MSSIM

Interpolation Method d=2 d=3 d=4 d=2 d=3 d=4
Bicubic interpolation 29.11 26.66 25.56 0.8524 0.7425 0.6921
TD interpolation [11] 26.77 23.89 23.37 0.7925 0.6330 0.6147
Proposed method 30.16 26.96 26.06 0.8779 0.7631 0.7157

(a) Reference image (b) Input(enlarged by ZOH) (c) Proposed method

Fig. 3. Interpolation (3×3) of a vocal tract image using the proposed method

proposed method yields a very satisfactory reconstruction of vocal tract shape,
even though the decimated input image has notably low resolution. This simple
example reveals that the proposed model can be also used to effectively enhance
the resolution of medical image data of the vocal tract.

5 Conclusions

In this paper, we have proposed a model for the interpolation of vector-valued im-
ages, based on an anisotropic diffusion PDE. Our main contribution is an efficient
combination of the reversibility condition approach [2] with the Tschumperlé-
Deriche PDE model [6]. The proposed mopdel reduces the undesirable effects of
classic linear and similar PDE based interpolation methods. Extensive experi-
mental results have demonstrated the potential and efficacy of the method as
applied to graylevel and color images.
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Finally, we remark that the proposed PDE (9) is only one possible choice,
as it is derived using the RHS of TD PDE (3), and a similar approach can be
obtained using the RHS of other effective regularization PDEs. For example,
based on the general anisotropic diffusion model of [13], one can use the RHS
div(T·∇um), with the tensor T given by (4). This method performs very similarly
to the proposed method, yielding a slight improvement, as revealed by some
preliminary experiments that we performed. In addition, note that the proposed
model assumes that the input image is noise free. It can be modified to handle
noisy inputs, if the projection operator is replaced by an appropriate fidelity
term. These issues are part of our ongoing research and we plan to present them
in a following paper.
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