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Abstract

The problem of separating a mixture of periodic signals into its constituent components occurs in sound detection,
biomedical signal processing, and in communications. Existing approaches to solving it are either based on harmonic
selection in the frequency domain or on linear comb filtering in the time-domain. In this paper, the recently proposed
matrix algebraic separation approach is analyzed in the frequency domain. The insight obtained via this analysis leads to
the development of harmonic restoration techniques that fill in the information missing at the harmonics shared by the
components and also to the development of constraints on the carrier frequencies and bandwidths for narrowband,
bandpass, and periodic AM—FM components for minimum information loss. The restored methods are then applied to
mixtures of sines and AM—FM signals. Differences between this improved approach and a similar improvement of the
comb filtering approach are also emphasized. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Das Problem der Zerlegung einer U® berlagerung periodischer Signale in seine Komponenten taucht in akustischer
Detektion, biomedizinischer Signalverarbeitung und Kommunikation auf. Die vorhandenen Lösungen beruhen auf
harmonischer Selektion im Frequenzbereich oder linearer Kammfilterung im Zeitbereich. In der vorliegenden Arbeit
wird eine Analyse im Frequenzbereich vorgestellt, die die kürzlich vorgeschlagene Methode der matrixalgebraischen
Separation untersucht. Die dadurch gewonnenen Ergebnisse führen sowohl zur Entwicklung von harmonischen Res-
taurationstechniken, die verlorene Information in den gemeinsamen Harmonischen der Komponenten ersetzen, als auch
zur Entwicklung von Beschränkungskriterien an die Trägerfrequenzen und Bandbreiten von Schmalband-, Bandpa{-
und periodischen AM—FM Komponenten, mit dem Ziel, minimalen Informationsverlust zu erhalten. Die Restaurations-
methode wird auf eine Mischung von Sinus- und AM—FM Signalen angewandt. Darüberhinaus werden die
Unterschiede zwischen dieser verbesserten Methode und einer ähnlichen Verbesserung des Kammfilter-Ansatzes
hervorgehoben. ( 1998 Elsevier Science B.V. All rights reserved.
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Résumé

Le problème de la séparation d’un mélange de signaux périodiques en ses constituants se retrouve en détection de son,
en traitement des signaux biomédicaux, et en communications. Les approches existantes de résolution de ce problème
sont basées soit sur une sélection harmonique dans le domaine fréquentiel soit sur un filtrage linéaire “en peigne” dans le
domaine temporel. Dans cet article, l’approche récemment proposée de séparation algébrique matricielle est analysée
dans le domaine fréquentiel. L’éclairage obtenu à l’aide de cette analyse conduit au développement de techniques de
restauration harmoniques qui pallient le manque d’information sur les harmoniques partagées par les composantes et
également au développement de contraintes sur les porteuses en fréquence et les bandes passantes des composantes
bande-étroite, passebande, et AM—FM périodiques pour une perte d’information minimale. Les méthodes de restaura-
tion sont ensuite appliquées à des mélanges de sinusoı̈des et de signaux AM—FM. Les différences entre cette approche
améliorée et une amélioration similaire de l’approche par filtrage en peigne sont également soulignées.
( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Separation of an additive mixture of periodic
or quasi-periodic signals into its constituent
components, where one or both components con-
tain useful information (hereafter referred to as the
separation of periodic mixtures (SPM) problem) is
an important signal processing and detection task
encountered: (i) when dealing with the recovery of
multiple sinusoids in noise [5], (ii) in biomedical
signal processing problems such as separating a fe-
tal ECG signal from a composite ECG signal which
also contains the maternal ECG signal [6], (iii)
when dealing with interference rejection in com-
munication systems that transmit information us-
ing narrowband bandpass signals [2], and (iv) in
the area of concurrent vowel separation and in the
process of separating a speech signal from an inter-
fering speech signal [1,3].

The SPM problem can be approached as a fre-
quency domain harmonic reassignment problem,
i.e., selection of the harmonics that belong to either
component from the composite signal spectrum.
Time-domain estimates are obtained via the inverse
FFT of their respective spectral impulse trains [3].
The SPM problem can also be approached as
a time-domain filtering problem where component
separation is accomplished via comb filtering [1].
Matrix algebraic separation of periodic signal mix-
tures was introduced in [7,8], where the compo-
nents of an additive mixture of two periodic signals
were separated using their periodicity and samples

of the composite signal in a matrix framework via
linear algebra techniques. As shown in [4], this
matrix algebraic separation (MAS) technique can
separate a mixture of two periodic narrowband
bandpass components even when there is complete
spectral overlap. Although a time-domain analysis
of the MAS algorithm was presented in [4], there is
lack of understanding of this technique in the fre-
quency domain.

In this paper, we present a harmonic analysis of
the SPM problem and then analyze the automated
approaches of the MAS algorithm [7,8] and linear
comb filtering [1] in this context both in the time
and frequency domains. Using the insight gained
from this analysis we then propose harmonic
restoration techniques for both of the separation
methods to improve their performance. These im-
proved methods are then applied to mixtures of
sinusoidal and periodic AM—FM signals.

2. Harmonic analysis of the general separation
problem

2.1. Common harmonics

The fundamental step in both the comb filtering
and the MAS algorithms is the modeling of the
components as periodic signals with fundamental
period N

i
:
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2Note that the dc frequency, X"0, is always a shared har-
monic for any R.

Periodicity of the components implies a discrete
spectrum with impulses at multiples of its funda-
mental frequency 2p/N

i
:

X
i
(X)"2p

=
+

m/~=

a
im

dAX!

2pm

N
i
B, i"1,2. (2)

On the other hand, the composite signal
x[n]"x

1
[n]#x

2
[n] is also periodic with a repeti-

tion period P"lcm(N
1
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) and has a discrete

spectrum
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The inverse problem of component separation be-
comes equivalent to the task of obtaining the se-
quences Ma

im
N from the sequence Mb

m
N, i.e.,

reassigning the spectral content of the composite
signal to the components. If R"gcd(N

1
,N

2
)"1,

then the harmonics of the fundamental fre-
quencies of the two components are distinct2
and reassignment is straight-forward. However,
when R'1, the component spectra share har-
monics and confusion arises regarding the re-
assignment of the R common harmonics at the
frequencies

X
k
"A

2p

RBk, k"0,1,2,(R!1). (4)

At these frequencies the spectral impulse ampli-
tudes of the components are superimposed:

A
1k
#A

2k
"B

k
, k"0,1,2,(R!1), (5)

where MA
ik
N and MB

k
N are the spectral impulse am-

plitude sequences of the ith component and the sum
at X"X

k
. The superposition of the spectral im-

pulse amplitudes at X"X
k

results in a loss of
information at these frequencies. All separation al-
gorithms more or less can recover the distinct har-
monics from the composite spectrum, however,
they are confronted with the difficult task of

recovering the individual impulse amplitudes MA
ik
N

from their sum MB
k
N.

2.2. Four basic options and the ratio method

The basic options for reallocation of the spectral
impulse amplitudes at X"X

k
are classified as

OP1: Give it entirely to the second component:
A

2k
"B

k
, A

1k
"0, ∀k.

OP2: Give it entirely to the first component:
A

1k
"B

k
, A

2k
"0, ∀k.

OP3: Give them to both components in propor-
tion to a ratio j

k
"A

1k
/A

2k
, j

k
3C.

OP4: Give them to neither component:
A

1k
"A

2k
"0 Q B

k
"0, ∀k.

Note that OP4 is generally a bad option because
it may result in a violation of the known in-
formation in Eq. (5) when B

k
O0. If we allow

the parameter j
k

in OP3 to assume infinite
values, i.e., j

k
3CXMRN then OP3 includes

OP1 and OP2 as special cases when j
k
"0

and R:
OP1: j

k
"0 Q A

1k
"0, A

2k
"B

k
,

OP2: j
k
"R Q A

1k
"B

k
, A

2k
"0.

(6)

For the experiments in this paper, we use the
same ratio parameter for all X"X

k
, i.e., j

k
"j,

∀k.
In general, we need additional information to

provide a non-arbitrary value of j. One heuristic
approach we have developed to automatically
find a satisfactory value of j is to assume that
each component is narrowband and bandpass. One
specific class of narrowband bandpass periodic
signals that we examined are the class of periodic
AM—FM signals whose Carson bandwidth is much
smaller than their carrier frequencies. Assuming
for simplicity that the information signals are
sinusoidal, the composite signal is the super-
position of two narrowband bandpass AM—FM/
cosine components:
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3These constraints place the common harmonics in the tail
end of the spectrum of the component signal where there is
negligible signal energy. The Carson bandwidth of each AM—
FM signal component is a conservative estimate of its effective
bandwidth.

where X
i
[n] and A

i
[n] are the instantaneous fre-

quency and amplitude information signals, X
ci

and
A

ci
are the carrier frequencies and amplitudes,

X
fi

and X
ai

are the bandwidths of the frequency
and amplitude information signals, and X

mi
/X

ci
and

i
i
are the FM and AM relative amounts on a unit

scale. If the common harmonics do not lie within
the passband of either component, then informa-
tion loss at these points is not critical3 and this
happens when the components satisfy:

Bandwidth constraint:

)2p/R,

Carrier frequency constraint:

min
k

DX
ci
!X

k
D*(X

mi
#X

fi
#X

ai
). (8)

The heuristic rule for the reassignment at X"X
k

via options OP1 or OP2 in the case of mixtures of
two sinusoidally modulated AM—FM signals is to
force spectral nulls on the component with carrier
frequency furthest from X"X

k
, i.e.,

min
k
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k
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(9)

This heuristic reduces the damage caused by
X"X

k
falling on or close to either carrier fre-

quency. Another approach to restore some of the
lost information at X"X

k
is to interpolate the

spectral values MA
1k

N of the first component from
neighboring spectral values and then to use Eq. (5)
to fill in the values MA

2k
N for the second component.

This approach is valid when spectral correlation in
the neighborhood of X"X

k
exists; the inverse FFT

is used to obtain time-domain estimates. Only
nearest-neighbor interpolation, i.e., linear interpo-
lation of the spectral magnitude from harmonics
immediately adjacent to each X"X

k
using

a 3 point and weights of M0.5,0,0.5N is implemented
here.

3. Harmonic restoration of the two separation
methods

3.1. Restoration for matrix algebraic separation

Consider a two-component periodic signal x[n],
where the fundamental periods of the components
are N

1
and N

2
samples, respectively. Relating

N samples of the composite signal to the samples
of the components yields the basic separation
system

(10)

where I
N1

denotes the identity matrix of order
N

1
and the rank of the separation matrix S is

r(S)"N
1
#N

2
!R [7,8]. This information defi-

ciency at X"X
k
translates into the rank deficiency

of S. The extra constraint/equation needed to com-
plete the basic separation system for coprime peri-
ods is typically a dc value condition of the form

N1~1
+
n/0

x
1
[n]"0. (11)

When the periods are not coprime the
R"gcd(N

1
,N

2
) constraints needed are obtained as

(N1@R)~1
+
j/0

x
1
[Rj#i]"0, i"0,1,2,(R!1). (12)

The components are obtained via the least—squares
solution to the augmented separation system

(13)

84 B. Santhanam, P. Maragos / Signal Processing 69 (1998) 81–91



4Downsampling the components by the factor R transforms
them into components with periods corresponding to incom-
mensurate fundamental frequencies.

where the homogeneous dc value constraints at the
scale of R form the constraint matrix C. The effec-
tive separation system for each of the components
is of the form [4]

zL"SI sxI "(STS#CTC)~1STx,

xL
1
"[I

N1CN1
0
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]zL"Ss
1
x, (14)

xL
2
"[0
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I
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]zL"Ss
2
x,

where the notation SI T stands for the matrix trans-
pose, SI s corresponds to the least-squares inverse of
the matrix SI and Ss

1
, Ss

2
are the effective MAS

algorithm inverse systems for each component.
The component periods are estimated using the

double difference function (DDF) algorithm [1],
i.e., by finding integers NK

1
, NK

2
that minimize the

following mean absolute error

DDF[NK
1
,NK

2
]

"

L~1
+

m/0

Dx[n#m]!x[n#m#NK
1
]

!x[n#m#NK
2
]#x[n#m#NK

1
#NK

2
]D,

(15)

where ¸ is the duration and n is the origin of the
analysis frame.

The MAS algorithm also implicitly uses the har-
monic reassignment approach. This can be seen
clearly by looking at the constraint system in the
time-domain rewritten as matrix constraints

C
1
x
1
"0 or C

2
x
2
"0, (16)

where MC
i
N
lm
"d[(m!l)

.0$ Ni
] and d[n] is the dis-

crete-time unit pulse function which has unit ampli-
tude for n"0 and is zero elsewhere. These
constraints together with Eq. (5) implicitly perform
the harmonic reassignment task. This becomes evi-
dent after multiplying both sides of Eq. (16) by the
DFT matrix W

R
, where MW

R
N
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"exp(!j2plm/R).

Using the structure of the matrix product W
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i
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The constraints on the x
i
[n] in the frequency do-

main can then written as
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So the constraints in the time-domain that force the
dc value of the subsampled4 versions of x

i
[n] to

zero are equivalent in the frequency domain to
forcing spectral nulls on x

i
[n] at X"X

k
.

The spectral amplitude of the composite signal at
X"X

k
can also be divided between the compo-

nents by using the time-domain matrix constraints
or their frequency-domain counterparts:
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k
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These constraints use a single parameter j to dis-
tribute the spectral amplitude of the composite
signal identically at X"X

k
corresponding to the

option OP3.
The fourth option corresponds to the case where

the constraints are applied on both components

A
C
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0

0 C
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x
1

x
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k
)"X

2
(X

k
)"X(X

k
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corresponding to the option OP4 and in this case
Eq. (5) will not be satisfied at X"X

k
unless the

frequency content of the composite signal at these
frequencies is already zero.

3.2. Restoration for comb filter separation

Component separation can also be accomplished
via harmonic cancelation based FIR comb filters
with impulse responses h

i
and frequency responses

H
i
:

h
i
[n]"

1

2
Md[n]!d[n!N
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2 B,

(21)
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where N
i
the periodicity of the ith component has

been exploited to eliminate its spectral content at
multiples of the corresponding fundamental fre-
quency. These comb filters only use the periodicity
information regarding the components and do not
exploit simultaneously the additive nature of the
signal mixture. These filters eliminate the spectral
content of both components at the common har-
monics and therefore may violate the known in-
formation in Eq. (5). These filters also do not have
the requisite frequency resolution to sufficiently
attenuate the harmonics of the interfering compon-
ent and accentuate the harmonics of the desired
component when those harmonics are close and fall
within the same cycle of the factor sin(XN

i
/2) in the

frequency response.
If the periodicity information is used in conjunc-

tion with the additive nature of mixture, i.e.,

x
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1
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(X)#X

2
(X)"X(X),

(22)

we obtain the component separation system com-
prising of the two IIR filters:
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with R"gcd(N
1
,N

2
). At X"X

k
the frequency re-

sponses via the L’Hospital’s rule become

¹
1
(X

k
)" lim

X?2pk@R

¹
1
(X)"

fN
2

N
1
#fN

2

,

¹
2
(X

k
)" lim

X?2pk@R

¹
2
(X)"

N
1

N
1
#fN

2

.
(24)

The spectral amplitude distribution ratio of the first
to the second component at X"X

k
is j

k
"fN

2
/N

1
and corresponds to the inclusive option OP3 of the
SPM problem. A parameter value of f"0 corres-
ponds to the option OP1, when f"N

1
/N

2
the amplitudes are divided equally, and f"R

corresponds to the option OP2. Note that

¹
1
(X)#¹

2
(X)"1 at all frequencies including

X"X
k
, thereby satisfying the known information

in Eq. (5).

4. Experimental results

4.1. Experiments with sinusoidal signals

Consider the example of a mixture of two
sinusoidal signals with carrier frequencies of
X

ci
"p/2, p/2.005 and amplitudes of A

ci
"2,4. The

exact periods of the components are N
1
"4 and

N
2
"401 samples, respectively. The component

period estimates from the DDF algorithm are
NK

1
"392 and NK

2
"401 samples as shown in

Fig. 1(b). Note that using the DDF period estimate
NK

1
which is a multiple of the actual period N

1
does

not affect the results of the MAS algorithm. The
estimated periodicities are coprime and X"0 is the
only common harmonic between the components.
The spectral harmonics of the two components,
however, are extremely close to each other.

The carrier frequencies of the components are
extremely close. The comb filters with f"0.587 are
implemented using FFTs of ten times the compon-
ent period duration. These comb filters due to their
frequency resolution problems are unable to effect
simultaneous harmonic restoration and time-do-
main separation, thereby producing RMS separ-
ation errors of 24.8% and 6.49%. This is evident
from both the time-domain estimates shown in
Fig. 1(e,f) showing attenuation of the first compon-
ent and the Fourier spectra in Fig. 1(g,h). The MAS
algorithm, however, is free of these limitations which
is evident from both time-domain estimates with
j"0 shown in Fig. 1(c,d) and their Fourier spectra
in Fig. 1(g,h). The corresponding RMS separation
errors for the MAS algorithm are negligible.

4.2. Experiments with AM–FM signals

Consider the example with the sinusoidally
modulated two-component AM—FM signal shown
in Fig. 2(a) with parameters: X

ci
"p/2, p/2.20,

X
fi
"p/200, p/220, 2, 4% FM, 1, 3% AM, A

ci
"2,

4, a
i
"0, p/2, and b

i
"p, 0. The actual periods of

86 B. Santhanam, P. Maragos / Signal Processing 69 (1998) 81–91



Fig. 1. Sinusoidal example. (a) Composite signal, (b) DDF over a half-quadrant search region, where dark areas indicate high DDF
value and light areas indicate small DDF values, (c,d) MAS algorithm time-domain estimates using j"0, (e,f ) comb filtering
time-domain estimates using f"0.587, and (g,h) Fourier spectral magnitude of the estimates of the MAS algorithm and the comb filters.
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Fig. 2. Sinusoidal AM—FM signals. (a) Composite two-component AM—FM signal with sinusoidal FM and AM, (b) DDF over
a half-quadrant search region, where dark areas indicate high DDF value and light areas indicate small DDF values, (c,d) actual
time-domain signals, (e,f ) MAS algorithm time-domain estimates via the SVD-inverse of the basic separation system, and (g,h) MAS
algorithm time-domain estimates with j"0.
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Fig. 2 (i, j) MAS algorithm time-domain estimates (j"0) after nearest-neighbor interpolation of the second component, (k,l) MAS
algorithm time-domain estimates using the heuristic rule in Eq. (9) with j"R, and (m,n) comb filter time-domain estimates with
f"3.77.

the components are N
1
"200 and N

2
"220 sam-

ples, respectively. The component periods esti-
mated using the DDF algorithm, as shown in
Fig. 2(b), are NK

1
"200 and NK

2
"220 samples with

R"20 common harmonics.
First, we separate the components by inverting

the rank deficient basic separation system via
its SVD-inverse. Due to this lack or loss of infor-
mation regarding the distribution of composite

signal spectral information at the R common har-
monics, the Fourier spectra of the estimates
exhibit wide deviations from the actual spectra
at these frequencies as evident from Fig. 2(q,r)
resulting in large RMS separation errors of
36.38% and 18.19% that are evident from
the time-domain estimates shown in Fig. 2(e,f).
The actual time-domain signals are shown in
Fig. 2(c,d).
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Fig. 2 (q,r) Fourier spectra of the estimates from the SVD-inverse of the rank deficient basic separation system, (s,t) Fourier spectra of
the MAS algorithm estimates (j"0) before and after nearest-neighbor interpolation of the second component, (u,v) Fourier spectrum of
the MAS algorithm using the heuristic rule with j"R and linear comb filtering.

Second, assuming no prior knowledge of the
carrier frequencies we apply constraints on the first
component, i.e., j"0. These constraints will force
spectral nulls at the common harmonics on the first

component. The common harmonic at X"p/2
falls exactly at the first carrier frequency as shown
in Fig. 2(s,t) producing very large RMS separation
errors of 76.4% and 38.19% as evident from the
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time-domain estimates in Fig. 2(g,h). These forced
spectral nulls produce attenuation of the first com-
ponent time-domain estimate and amplification of
the second component estimate.

Under the assumption of spectral correlation in
the local neighborhood of the common harmonics,
some of the lost spectral information can be re-
stored via nearest-neighbor interpolation in con-
junction with Eq. (9). From the estimated
component periods, we determine the common
harmonic locations and apply nearest-neighbor in-
terpolation on the second component. Eq. (5)
is then used to determine the spectral impulse
amplitudes of the first component at the common
harmonics as shown by the Fourier spectral
magnitudes in Fig. 2(s,t) resulting in a reduction
of the RMS separation error to 0.04% and 0.02%
as described by the time-domain estimates in
Fig. 2(i, j).

Using the heuristic rule in Eq. (9), however, the
common harmonic at X"p/2 is closer to first
component so the constraints are applied on the
second component, i.e., j"R. This produces
spectral nulls in the second component as shown in
Fig. 2(u,v), while the MAS algorithm time-domain
estimates are shown in Fig. 2(k,l) with very small
RMS separation errors of 0.009% and 0.005%. The
comb filters with f"3.77, however, are unable to
effect satisfactory component separation. This is

evident from both the Fourier spectral magnitude
of the estimates in Fig. 2(u,v) resulting in large
RMS separation errors of 17.2% and 7.98% and
from the time-domain estimates shown in
Fig. 2(m,n).
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