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Multicomponent AM—FM Demodulation via
Periodicity-Based Algebraic Separation and
Energy-Based Demodulation

Balasubramaniam Santhanaktember, IEEEand Petros Marago&ellow, IEEE

Abstract—Previously investigated multicomponent AM—FM by digital computers, in this paper we focus discrete-timé
demodulation techniques either assume that the individual AM—FM signals modeled (over finite time intervals) as
component signals are spectrally isolated from each other or that
the components can be isolated by linear time-invariant filtering "
techniques and, consequently, break down in the case where the s[n] = A[n] cos(¢[n]) = A[n] cos </ Q[k]dE + 9)
components overlap spectrally or when one of the components 0
is stronger than the other. In this paper, we present a nonlinear Qfn] = d¢ [n]
algorithm for the separation and demodulation of discrete-time
multicomponent AM—FM signals. Our approach divides the . .
demodulgtion problem into gtwo indepenggnt tasks: algebraic whereA[n]| and2[n] are the instantaneous amplitude (IA) and
separation of the components based on periodicity assumptions angular frequency (IF) information signals.

and then morlocompanent ‘?jemOdU'at_iO” of each component by pmylticomponent AM—FM signals are superpositions of
instantaneously tracking and separating its source energy into N :
its amplitude and frequency parts. The proposed new algorithm monocomponent AM-FM signals

avoids the shortcomings of previous approaches and works well M "

for extremely small spectral separations of the components and _ ] ] ] >

for a wide range of relative amplitude/power ratios. We present wln] = Z Ailn] cos o ;[k]dk +6; ), Mz2 (1)
its theoretical analysis and experimental results and outline its o=t ~ ~
application to demodulation of cochannel FM voice signals. ¢iln]

Index Terms—Algebraic separation, cochannel and adja- where{A;[n], Q;[n]} are the IF and IA information signals cor-
cent-channel signal separation problem, demodulation, energy responding to theéth component. Each component IF signal
operators, multicomponent AM—FM signals, periodicity. is of the general fornt%[n] = Qu; + Qiqiln], whereQ.;

is the carrier frequency of the&h component§?,,,; is its max-
|. INTRODUCTION imum frequency deviation, ang[n] is its normalized informa-

ONOCOMPONENT AM-FM signals are sine wavedion signalwithjg;[n]| < 1. Foreach AM—FM component[n],

s(t) = a(t) cos[p(t)] whose amplitudea(t) and Weassume thatits instantaneous amplitdgle] and frequency
instantaneous frequenay(t) = dg(t)/dt are time-varying % [n] do not vary too fast or too greatly compared with its car-
quantities. Amplitude modulation (AM) and/or frequency modd€r frequency.;. Further, as explained in [1] and [2], for the
ulation (FM) find extensive use in human-made communicatiélgcomposition of the composite signgh| into its AM—FM
systems [40] and are often present in signals created and @nponents to be well defined, it is assumed that the instan-
cessed by biological systems. For purposes of data procesdffous bandwidth, i.e., the instantaneous frequency spread of

each component is narrow with respect to the instantaneous
bandwidth of the composite signal. However, this assumption

does not apply when the components overlap spectrally as in the

cochannel and adjacent channel problems encountered in com-
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Multicomponent AM—FM signals form the basis for the 5) Maximum-likelihood estimation [33] that uses the dis-
general modeling of nonstationary signals as superpositions of  crete-time polynomial phase transform to initialize an it-
modulated sinusoids, where each component occupies a narrow erative approach based on Newton’s algorithm.
spectral band around its carrier frequency. In particular they findIn contrast to the monocomponent case, all the above multi-
applications: a) for modeling cochannel and adjacent-chaneemponent AM—FM demodulation algorithms are still far from
interferences over communication channels, where one of gageneral solution, work only in restricted ranges of spectral
components models the desired signal and the other modsdparation between components or relative amplitude/power ra-
the dominant interference [36]; b) in speech processing wheigs, and cannot deal with cross-over of the frequency tracks.
speech signals are modeled as a superposition of time-varyinghis paper, we present a solution to the general multicom-
acoustic resonances and each AM—FM component of the sigpahent AM—FM demodulation problem that greatly improves
models a single resonance [7], [13]; c¢) for modeling cluttehe above situation. Our approach divides the problem into two
in high frequency radar [28] and in multiple target trackinghdependent tasks of separation of components and then mono-
applications [35]; and d) in the extraction of image textures visomponent demodulation of each component. For solving the
multicomponent two-dimensional spatial AM—FM signals [4]separation task we extended an algebraic technique proposed in
[9], [18]. [12] and [15] for the separation of spectrally overlapping peri-

The basic problem in processing AM—FM signalsl@mod- odic signals. Specifically, we extended this algebraic separation
ulation, i.e., estimation of the information stored in the IA andechnique to multicomponent AM—FM signals with periodic IF
IF signals given the composite signal. For monocomponemitd IA information signals. For the monocomponent demod-
AM-FM signals many successful demodulation approachetion part, we use the energy-based method of ESA [7] due
exist, ranging from standard methods such as Hilbert transfotits efficiency, low complexity and excellent time resolution.
demodulation [38] or phase-locked loops (PLL's) [25]-[27] td his combined new approach called fheriodic algebraic sep-
the recenknergy separation algorithr(ESA) that tracks and aration energy demodulatigi"ASED) algorithm does not have
demodulates the energy of the source producing the AM—Fikie shortcomings of the other techniques and can deal with ex-
signal using instantaneous nonlinear differential operators [Gjgemely small spectral separations and a wide range of ampli-
[7]. While each of these monocomponent algorithms mdyde/power ratios.
have its advantages and disadvantages, they more or less offdihe contributions of this paper include: development of the
a solution to the monocomponent AM—FM demodulatiofwo-component PASED algorithm for separating and demod-
problem. For multicomponent AM—FM signals, however, therglating two-component AM—FM signals; development of the
is the additional task of separating the components. Of coursgylticomponent PASED algorithm, i.e., the generalization of
when the components have approximately disjoint specthe two-component algorithm td/ > 2 components; compar-
this problem can be solved successfully via bandpass filteriiggn of the PASED algorithm with other existing demodulation
and monocomponent demodulation. The challenging cagégorithms; and preliminary application of PASED algorithm
however, is when the components overlap spectrally and aretaghe cochannel and adjacent-channel FM voice demodulation
longer disjoint, as in the case of the cochannel problem [36].problem. Finally, we provide in the Appendix theoretical proofs

Existing multicomponent AM—FM demodulation approache@f some results on the rank of tié-component separation ma-
include the following classes of algorithms. trix.

1) State space estimation:

a) cross-coupled digital phase-locked loop (CC-DPLL) Il. PASED ALGORITHM
algorithms [19], [24], [37]; The PASED algorithm, whose block diagram is shown in
b) extended Kalman filtering (EKF) [16], [17], [20].  Fig. 1, can be divided into two tasks: separation of the two-

2) Techniques based on Hankel and Toeplitz matrices: cOmponent AM—FM signal into components using periodicity
, ) —based signal modeling and algebraic separation techniques
a) the Hankel rank reduction (HRR) algorithm [32];  jascrined in [12] and [15], and demodulation of the separated
b) the instantaneous Toeplitz determinant (ITD) alggsomponents into IF and 1A information signals for each compo-
fithm [34]. nent using thenergy separation algorithifESA) [6], [7].
3) Linear prediction:

a) adaptive linear prediction using the exponerf- Periodicity-Based Modeling and Algebraic Separation of

tially-weighted RLS algorithm [29]; the Components
b) the normalized LMS algorithm [30]. The matrix algebraic separatiofMAS) algorithm for the
4) Energy demodulation: separation of periodic signals that overlap both in the time- and

. . frequency-domain has been investigated in [12] and [15]. The
a) mrlt[bar}d;lESAd(l\élESA) [5] that cons;sts of bandpasl@IAS algorithm distinguishes the components based on a slight
llering foflowed by monocomponent energy Separdyitarence in their periodicity. Consider a two-component peri-

tion; ferel
b) the energy demodulation of mixtures (EDM) a|gof)d'° signal

rithm [11] that uses instantaneous nonlinear operators
measuring cross-energies between components. z[n] = z1[n] + z2[n] = z1[n + M| + z2[n + N2 (2)



SANTHANAM AND MARAGOS: MULTICOMPONENT AM—FM DEMODULATION 475

COMPONENT N1=40,N2=41,AM=0%,FM=0%
SEPARATION 0 i~ ' ' ‘
m | T e ]
— 3
T _gof
N x @ 2
! ESA o
DDF ALGORITHM PERIODIC N w
N 1 Z _100} —— SNR = INF
x & 2 - ALGEBRAIC ] - - SNR-304B
PERIOD X X, - @ ;
SEPARATION _150
ESTIMATION ESA - A % 5
2 w
L w
COMPONENT < 2007
DEMODULATION g
Z-250f
Fig. 1. Block diagram of the PASED algorithm. d
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where the fundamental periods of the components] and NUMBER OF COMPOSITE SIGNAL SAMPLES

x2[n] are Ny and Vs, respectively. Relatingv samples of the _ o .
. . . _Fig. 2. Effect of AWGN on component separation in the PASED algorithm.
composite signat[n] to the samples of one fundamental period

of the components yields the following system of linear equa-

tions, hereafter referred to as thasic separation system if Ny = RNjandN; = RNy, then N and N; are mutu-
ally prime. The data is taken in subgroups by downsampling the

x1[0] components by a factor dt. Since the smaller periods are co-
z[0] : prime, the separation problem is then solved for each subgroup.
1] In, Iy, [N. _1) The union of the solutions from each group gives the total so-
' Iy, Iy, i (3) lution to the separation problem [12], [15]. T additional
: : : a2[0] constraints/equations needed to complete the basic separation
[N —1] —_— : system are obtained as zero dc constraints on the subsampled
oy S z2[N2 — 1] components
z (N1/R)—1
whereI y, denotes the identity matrix of orde¥;. The rank >, wlRe+pl=0,  p=01, R-1 (5

n=0

of the two-component separation matsxkis »(S) = N; +
Ny — ged(N1, N2) [12], [15]. Consequently, the basic sepa- The solution to the component separation problem is then
ration system requires at lea®f + N, — 1 composite signal reformulated as the least-squares solution to the augmented
samples to separate the components. linear system, hereafter referred to asahgmented separation

In the absence of noise, least-squares filtering is not requirggktem
and increasing the number of composite signal samples used in

the basic separation system over this minimum does not help as < S ) 2= <‘”) (6)
shown in Fig. 2. In the presence of noise however, least-squares ¢ o

smoothing is necessary and increasing the number of composite & M

signal samples used in the basic separation system decreases the )

separation error as shown in Fig. 2. where the homogeneous dc value constraints at the scadte of

The rank of the basic separation system for coprime coﬁ?—mf' the constr_ailnt_njatri)C. The solgtion to this problem is
ponent periods implies that one extra condition or equation§§uivalent to minimizing the quadratic form
required to complete the systenthis is typically a dc value

: a2 2
condition of the form min [|Sz — x||" + [|Cz|]".

Ni—1 The solution to this problem is of the form

Z x1[n] = 0. 4) i L )

n=0 2=5Ts=(578)  (§72)=(s"s+C"C) " (57a).
The dc value constraint corresponds to the assumption that the (7

signal components are narrowband. This is a valid assumption

to make, since the multicomponent AM—FM signal is modeletihe effective separation system for each of the components can
as a superposition of narrow-band bandpass components. agewritten as

solution to the separation problem when the component pe- T o=l ot

riods are not coprime involves solving the separation system *1 = {[INM/\H ONy x| (S S+C C) S }(‘”)

in partial subgroups. Suppose thatl(N,, N2) = R, so that —ST(z)
=41
2The solution to the systeifiz = = when the components periods are co- N T T, "L ol
prime is not unique in the sense that{if,[n], zz[n]} is a solution to the Ey = (on,x N AN, x| (S S+C C) S } (x)

system, theq @ [n] + ¢, x2[n] — ¢} is also a solution as noted in [12] and t
[15]. =855 (x) (8)



476 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 3, MARCH 2000

where the notatio§”' stands for the matrix transpose of the mausing thedouble difference functiofDDF) algorithm proposed
trix S, St stands for the least-squares left-inverse of the matiiix [3]. The two-dimensional lag parameter space of two cas-

$ and Siﬁ S;r are the effective MAS algorithm inverse system§aded comb filters is exhaustively searched for a minimum of
for each component. Note that in the case where the compori&§ DDF objective function [3] defined by

periods are identical, thiem(N;, N2) = N; = Ns. In this L—1
case, we would requir®/; extra constraints, and hence knowH)DF[m L, Ly = Z |z[n+m] — z[n+m+ L]
edge of one of the signal components. =0

. —z[n+m+ Lo+ z[n+m+Li+Ls]| (12)
B. Energy Demodulation of the Components

The separated components are then demodulated into"{RereL is the duration of the analysis window,is the anal-
and IA information signals using the discretmergy sep- ysis point, and.; and L, are the respective lag parameters of the
aration algorithm (ESA) of [7]. Although in essence anycascaded comb filters. The coordinates of the minimum of the

other monocomponent demodulation algorithms could ha@é)': objective function furnish estimates qf th_e two periodici-
been used for demodulation, the ESA is employed here Bﬂssought. The symmetry of the DDF function in the lag param-
account of its simplicity, efficiency, low complexity, and itseters can be used to reduce the search space to half a quadrant

excellent instantaneous-adapting nature [7]. A comparison [} If the components of the composite signal are truly periodic,
the ESA versus the classic AM—EM demodulation methotaen this algorithm is guaranteed to find both the component
based on the analytic signal and Hilbert transform can anods unless the periods happen to be equal or multiples of a

found in [38]. We assume that the separated signal compone(fﬂgnr_non subharmonic [3]. The modular structure of the DDF
can be modeled as discrete-time monocomponent AM— orithm allows easy extension to the case whidre- 2 at the

signals of the forma;[n] = Ai[n] cos(fO" Qu[kldk + 6;), expense of increased complexity in the period search.
1 = 1,---, M. Then the discrete-time Teager—Kaiser energy
operator¥(z[n]) = 22[n] — z[n + 1lz[n — 1] is applied [ll. Two-CoMPONENTAM—FM SIGNALS

to the components;[n] and their discrete-time derivativeA. Performance of PASED Algorithm

approximationgy;[n] = @i[n] — w;[n — 1]. Finally, the IF and =, giger real-valued two-component sinusoidally modulated
IA information of each separated component are estimated WRI_EM signals of the form

the DESA-2 algorithm [7]

2 n
§27[7‘L] — o=t <1 _ \I/(y7[71]i\1—ji-(iEgi)[7’L + 1])) (9) gj[n] = ; Az[n] coS </0 Qz[m]dm + 91) (13)
where the IF and IA information signals are sinusoidal
|A;[n]]| = —\11[32:7[71 J } (10)  [n] = Qi + Qi cos(Qpin + B;)
sin” () Aifn] = Au[l + 5 cos(Qain + )], withi =1, 2. (14)

The demodulation errors of the ESA algorithm are practically Before discussing the performance of the PASED algorithm

negligible for AM—FM signals with realistic values of mOdUIa'on the above signals, some performance related parameters need

tion parameters, but they can be reduced further by using simplg, o jefined. A measure of the spectral separation between the

smoothing [38] of the energy signals before applying the ES@, 1\nents is theormalized carrier separatioNCS) param-

The carrier frequency and mean amplitude of each compongnt + the mixture defined by
are estimated from the mean of IF and A signal estimates over

the finite time interval [0,V — 1] of signal duration NCS = — |22 — Qe (15)
N-1
. 1 . 4 4 4
R 2 (it i+ i)
N — =1
X ] N Note that the denominator is the Carsobandwidth of the
Ay = N |A;[n]]. (11) signal, which is a conservative estimate of the actual bandwidth
n=0 [40]. The mean power ratidMPR) parameter of the mixture
is defined as
C. Estimation of Component Periodicities Ol
) o MPR (dB) = 20 log <—> (16)
The underlying assumption in the development of the PASED 02

algorithm is the exact prior knowledge of the component peno\(,jv— erec,; is the RMS value of component[n], and measures

icities. The problem of estimating the periodicities can be SOlv?he strength of the first component relative to the second. The

3If, due to noise or modeling errors, the argument ofdhe"(.) in (9) ever ~ Strength of amplitude and frequency modulations with respect
exceeds the range-[1, 1] at some isolated instants, then it is clipped to restrict
itin[—1, 1] and to force the ESA estimate of IF to be in{Q, The number of 4The Carson bandwidth of this signal is the separation between the frequen-
such isolated instants is significantly reduced by smoothing the energy signaikss at which the spectral amplitudes are 1% of the carrier spectral amplitude
[38]. when there is no modulation [40].
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Fig. 3. Sinusoidal AM—FM example with coprime component periods. Sinusoidal AM—FM: (a) composite AM—FM signal, (b) IF and carrier estimates of the
PASED algorithm (as fractions af), and (c) A estimates of the PASED algorithm, where solid lines show estimated signals, dashed lines show original signals,
and dashed-dotted lines show estimated carrier frequencies. The IF signals are sinusoidal with 2% FM, 4% NCS and coprime component periodgl$he IA sig
are also sinusoidal with 6% AM and an MPR of 0 dB.

to the carrier are measured by the AM amoupntind the FM carrier frequency and mean amplitude subtracted off from the
amount(©2,,.; /Q.;), both expressed as percentages.ddeer IF and IA estimates.
to information bandwidth ratiqCR/IB) of each component is When applying the PASED algorithm to two-component
defined as AM-FM signals, the components are modeled as quasiperiodic
signals. Specifically, when the two IF and IA signals are
Qi (17) sinusoidal, the quantities; = lem(27r/Qy;, 27 /Qq,), where
max(Qyi, Qai) r is the smallest integer that makes the quar(t@®/IB);r an

) , ) integer, play the roles of the component peribdsor the ex-
and is a measure of how fast the signal modulations vary w%pbs in this paper, whefe; = Q;, » = 1, this expression

respect to the carrier. This rgtio is typicaIIyQin the ord?s(rlq) reduces tal; = 2r/Q,. The case where the IF signals are
for speecgh resonances and in the ordep@f0°) for AMradio ot sinusoidal is addressed later in this section. As an example,
andO(10° — 10%) for FM radio. Finally, the capability of var- ¢onsider a two-component sinusoidally modulated AM—FM
ious algorithms to track the signal modulations can be measugq@lnm described by the composite signal in Fig. 3(a). The
by the norms of the demodulation error. For example, the cgfsmodulation lengths of the two components Are= 200 and
rier-biasechormalized RMS errqNRMSE) andnean absolute ; _ 991 gng they are mutually prime. Since we are dealing

error (NMAE) associated with the demodulation are defined byt narrow-band bandpass components, the dc value of the

first component can be approximated as zero. The IF estimates
of the PASED algorithm are shown in Fig. 3(b), while the 1A
-6 -6 estimates of the proposed algorithm are shown in Fig. 3(c).
! - yap = I 18 prop 9 9-3(c)
1©]]2 1©]]x 5This expression is based on the observation that if the sigiials= A[n]
andy[n]| = cos(¢[n]) are periodic with fundamental period. andN, then

where® represents the original IA or IF signé},is its estimate, ¥ = lem(N... N,) is a period of their product but not necessarily the funda-
dth . ds for the I Th mental period and also on the observation that the component phasessigral
andthe nOtaUO'N-HI, 2 Stands for thé, or [, vector norms. The i pe periodic with periodV,,, = 27/ ; only when the carrier frequency

unbiased demodulation errors are defined similarly but with thgmp signak;[«] = Q.. = is periodically extended with the same period.

(CR/IB); =

NRMSE =
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Fig. 4. Sinusoidal AM—FM example with noncoprime component periods. Noncoprime component periods: (a) composite AM—FM signal, (b) angutgr frequen
estimates of PASED algorithm (as fractionsiyf and (c) A estimates of the PASED algorithm, where solid lines show estimated signals, dashed lines show original
signals, and dashed-dotted lines show estimated carrier frequencies. The IF signals are sinusoidal with 2, 1% FM, respectively, with 4% NCpriamel nonco
component periods. The IA signals are also sinusoidal with 4, 8% AM and an MPR of 0 dB.

When the component periods are not coprime then more aed 3.85%. The strength of the signal modulations can be in-
value constraints are needed to complete the basic separati@ased to combat the presence of noise, but increase beyond
system. The angular frequency estimates and the IA estimatesertain strength will produce more demodulation error due to
of the PASED algorithm for the signal environment shown iloss of stationary behavior.

Fig. 4(a) are shown in Fig. 4(b) and (c). The demodulation The ideas described above also apply when the component
lengths of the components in this case @de = 400 and AM-FM signals have nonsinusoidal or even aperiodic IF sig-
L, = 402 samples, respectively. As evident from Figs. 3 andals. In such cases, following the analysis in [7], we assume
4, the frequency and amplitude demodulation errors of PASEdDowledge of each AM—FM component signal over a finite time
algorithm are negligible since the estimated signals are almagerval [0, N; — 1]. Then, assuming periodic extension of the
indistinguishable from the originals even when the carrijomponent outside this finite interval, each component IF signal
frequencies are very close or the when the component IF tracks be expressed via the DFT as a finite discrete Fourier series

Cross-over. of the form

For AM—FM signals in AWGN, the denoising capability of K
the least-squares system in (6) enables simultaneous smoothing Qn] = Q. + Z Qur cos(Qprn + 6y,) (19)
and demodulation. Consider the noisy FM signal described in =1

Fig. 5(a). Period estimation for the noisy example, where th : . .
SNR is 30 dB, is shown in Fig. 5(b). The actual component pg?r?ézK < IV/2 and the carrier frequency is the dc term in the
riods areNV; = 200 and N, = 202 samples while the estimated
periods from the DDF image intensity plot ah§ = 200 and 1
N, = 202 samples. The energy signals in the ESA section of Q.= N Z Qn].

the algorithm are further smoothed using a 4-time application =0

of binomial smoothing. The angular frequency estimates of thesuch cases, we set the required demodulation ledgtagual
PASED algorithm are shown in Fig. 5(c). The carrier-unbiased the periodsV; of the extended signal components. As an ex-

frequency demodulation errors for the two components are 4¥nple, consider a two-component AM—FM signal whose FM

N—-1
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Fig. 5. Noisy AM—FM signal example with a SNR of 30 dB. Noisy example: (a) composite signal, (b) DDF over a half-quadrant search region, where dark areas
indicate high DDF value and light areas indicate small DDF values, and (c) angular frequency estimates (as fractidriseedBNR of the signal mixture is 30
dB. 4-time binomial smoothing was used for smoothing the energy signals in the ESA. The IF signals are sinusoidal with 8% FM, with 4% NCS.

parts are chirped, i.e., FM with aperiodic linear IF signals. Ovepchannel range, i.e., whédCS < 0.2, these assumptions

finite intervals the two IF signals are do not hold causing a break down in these algorithms. For the
purpose of comparing the algorithms, the effect of the NCS

Q[n] = f + T <2_” _ 1) , 0<n <399 and MPR parameters on demodulation on these algorithms is
2 400 \ 399 studied using two-component sinusoidally modulated AM—FM

7r 7 { 2n signals.
Q[n] = ———=-1 0 < n < 400. : : . .
2[n] 2.005 400 <4OO ) ’ == Demodulation algorithms like the LMS algorithm, the RLS

. . . . . . algorithm, and the CC-DPLL algorithm are highly parameter
0
The 1A signals of this example are sinusoidal W|th6/oamplltuo|a ndent. Tt rfor ~the stability, and the noise sup-

modulation, with a CR/IB of 50, NCS of 0.04, and an MP . L .
of 0 dB. The demodulation lengths used in this example Wegerzessmn capabilities of the LMS and the RLS algorithms are

L; =400 and L, = 401. The composite signal of the example ephendent on tfhe ChOICﬁ.IOf Lhe ad]?ptlve step S(;Zi parag_llt_eter
is shown in Fig. 6(a), the angular frequency estimates of tﬁrt € memory actop,_vv |e_t € performance and t _esta Hity
. e ' 2 . of the CC-DPLL algorithm is dependent on the choice of loop
PASED algorithm are shown in Fig. 6(b) and the IA estimates ter parameters

the PASED algorithm are shown in Fig. 6(c). Again, the PASE Fig. 7 describes a two-component sinusoidally modulated

algorithm performs very well both in the challenging COChann%Il\/h—FM example where the PASED, the LMS (normalized
ch. )

;?Egre and in the case where the component IF tracks cross &G 01 of the LMS [30]), the exponentially-weighted RLS,

the HRR, the EKF, the MESA, and the CC-DPLL algorithms
are compared for a fixed parameter set WwRklS = 1 and

IV. COMPARISON OF THEDEMODULATION ALGORITHMS MPR. = 0dB. Fourth-order predictors{ = 4) are used in

Previously investigated techniques for multicomponetihe case of the adaptive algorithms with a step size parameter

AM-FM signal separation and demodulation either assumép = 1.25 for the normalized LMS [30] and a exponential
that the components of the signal are distinct ridges [1] in threeight parameter o = 0.945 for the RLS algorithm [29].
time-frequency plane or that the components are separable Aiddankel order ofc = 20 is used in the HRR algorithm
linear time invariant filtering techniques. For signals in th{82]. First-order loop filters are used in the design of the
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Fig. 6. Linear-FM and sinusoidal-AM example. Chirp example: (a) composite signal, (b) angular frequency estimates of the PASED algorithimn@sffracti
w), and (c) IA estimates of the PASED algorithm. Solid lines here indicate estimates, dashed lines indicate actual quantities and dashed-aletteal tiaes
frequency estimates. The component IF signals are linear with 0.5% FM and mutually coprime component periods with 486 Sndfile the 1A signals are
sinusoidal with an MPR parameter of 0 dB and 6% AM.

CC-DPLL so that the closed-loop system is second-order withse of two-component continuous-time sinusoidal signals of

a damping ratio of 0.707. Linear-phase FIR multiband filterthe form

designed using the Kaiser window method [14] for an order of

L = 350 with # = 6.65, which is a parameter related to the 2(t) = ay cos(wit + 0;) + az cos(wat + ;)

passband tolerance of the filters, are used in the MESA [5]. The

components of the signal in this case have significant speci@bmbodied in the instantaneous envelope and the frequency of

overlap as shown in Fig. 7(b). For this spectral separatigfe composite signal [2]

the LMS algorithm exhibits severe beating in the estimates

as shown in Fig. 7(d), the RLS estimates in Fig. 7(e) also are 5

severely distorted, and post-smoothing of the IF estimates doe$ t)| = [af + a3 + 2a1a2 cos ((wy — w1)t + 61 — 63)]

not reduce the frequency demodulation error significantly. Thew(t) _ <w1 + wQ) <w1 — wQ) <a§ - a%)

carrier unbiased frequency estimates of the PASED and the 2 2 la(t)|?

other algorithms are shown in Fig. 7(a)-(h). The percentage

NRMSE'’s of the proposed PASED algorithm are two ordefgecrease in the NCS parameter produces singularity problems

less than the others as described in Fig. 7(j). in these algorithms:

» The energy equations of the EDM algorithm become ill-
conditioned [11].

» The covariance matrices used in the LMS algorithm, the
In the definition of multicomponent AM—FM signal model RLS algorithm, and the MUSIC algorithm become ill-con-

it has been assumed that the components are distinct in the ditioned [8].

time-frequency planesanth7a.tif. The challenging case, how- ¢ The Fisher information matrix used in the maximum like-

ever, is the cochannel case where the components of the signal lihood methods [33] becomes ill-conditioned.

overlap spectrally. In this case the components are no longere The Toeplitz and the Hankel matrix systems of the ITD

distinct and interact with each other. This interaction for the  and HRR algorithms become ill-conditioned.

1/2

(20)

A. Effect of Spectral Separation (NCS Parameter)
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Fig. 7. Comparison of the PASED algorithm with other multicomponent AM—FM demodulation algorithms. (a) Composite FM signal. (b) Spectrogram of the
composite signal using a Hamming window of 384 samples and an FFT of 1024 samples with a time-increment of eight samples. (c) Carrier-unbiased angular
IF estimates of the PASED algorithm. (d), (e) Estimates of the SLMS and the SRLS algorithm. (f) Estimates of the CC-DPLL algorithm using a fwsporder |

filter. Solid lines are the estimates and the dashed lines are the actual quantities. Post-smoothing of the IF estimates using moving averagdiandieping

removes some of the interference and spikes but at the cost of distorting the IF estimates.

» The observability Gramian of the two-component staf€he interaction between the components manifests itself as
model in the CC-DPLL and the EKF algorithms becombeating in the estimates. Post-smoothing of the estimates can
ill-conditioned [21], [23]. alleviate this problem to a certain extent. The demodulation
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Fig. 7. (Continued) Comparison of the PASED algorithm with other multicomponent AM—FM demodulation algorithms. (g), (h) Corresponding estimates of the

SEDM and the HRR algorithms, respectively. Solid lines are the estimates and the dashed lines are the actual quantities. Post-smoothingadtbe uSiegti
moving average and 9-pt median filtering removes some of the interference and spikes but at the cost of distorting the IF estimates.

algorithm X with post-smoothing is referred to &&X, i.e., i.e.,whenthe IF tracks cross-over; 2) components completely in
the EDM algorithm with post-smoothing is referred to aphase or out of phase; or 3) identical component state transition
the SEDM algorithm. Post-smoothing of the estimates usimgatrices [23]. The PASED algorithm, on the other hand, does
9-point median filtering and moving average filtering ohot exhibit this phenomenon and is capable of handling the case
the GDE coefficients (slow time-varying quantities) and thevhere the component IF tracks cross.
estimates in the EDM removes a significant amount of the
interference but in the case of sinusoidal modulation .faig_ Effect of the Mean Power Ratio (MPR) Parameter
for NCS parameters less than one. The EDM algorithm,
particularly for voice modulated FM applications, can provide The MPR parameter of the signal mixture is a measure of
intelligible estimates for separations down to 25% of the Rie strength of the desired signal relative to the interference
bandwidth but fails for further decrease in the NCS parameteand is also a measure of the strength of the interaction between
The proposed PASED algorithm, on the other hand, does tioe components. For large MPR parameters, the stronger com-
make any assumption about the spectral location of the component dominates the signal mixture and the interaction be-
nents. This enables the algorithm to handle the case when tiveen the components is less. The covariance matrix for the
components of the signal overlap spectrally and the case wheralticomponent demodulation problem when one of the com-
the IF tracks cross-over where all the existing techniques fgllonents is stronger than the other becomes singular, and, conse-
Fig. 8(a) illustrates the effect of the NCS parameter on the diuently, demodulation algorithms like the LMS develop singu-
ferent algorithms. Note that the performance of the PASED adwities as the MPR parameter increases [30]. The performance
gorithm is independent of the NCS parameter. of the CC-DPLL and the EKF algorithms can be characterized
State flipping occurs inthe CC-DPLL algorithm, i.e., the conby the observability Gramian of the state-space model for the
dition where the DPLL's lock onto the wrong signal, as a conseemposite signal [23]. As one of the components becomes more
guence of unobservability of the states of the state-model. Tipiswerful than the other, the lower-power component becomes
situation is conditioned on the following: 1) frequency equalityess observable resulting in increased error covariance due to an
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Fig. 8. Effect of NCS and MPR parameters on demodulation in the PASED, the SEDM, and the SHRR algorithms. (a), (b) Effect of NCS on frequency and
amplitude demodulation in the PASED, the SEDM, and the SHRR algorithms (the other algorithms developed singularities and brokeNdosvidfdi.5)

and (c)—(f) effect of the MPR parameter on frequency and amplitude demodulation in the PASED, the SEDM, and the SHRR algorithms. Amplitude estimation
in the SHRR is accomplished by integrating the IF estimates and solving a least-squares system for the amplitudes. All curves were obtained)lmvereragi

ki € [1 — 10]% AM. The notationS X refers to the algorithnX with post-smoothing.

increase in the coupling between the DPLL's and an increaseEDM is independent of the MPR parameter. The amplitude de-
the demodulation error corresponding to the weaker componemtdulation section of the EDM is, however, adversely affected
[22], [23]. by an increase in the MPR parameter. As the MPR increases,
The frequency estimation section of the EDM algorithm ithe relative strength of the first component with respect to the
obtained from the GDE of the composite signal invariant to treecond component increases with a corresponding decrease in
amplitudes [39]. Consequently, frequency demodulation in tiiee amplitude demodulation error of the first component and an
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Fig. 9. Five-component example with both pairwise coprime and pairwise noncoprime component periods. (a), (d) Composite AM—FM signal. (dar(e) Angu
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2}% FM. The IA signals are also sinusoidal with € {1, 3, 5, 7, 9}% AM.

increase in the demodulation error of the second, weaker coofithe MPR parameter. An increase in the power of one of the
ponent [11]. components with respect to the other results in a decrease in the
The proposed PASED algorithm, however, does not makenplitude demodulation error of the stronger component but has
any assumptions regarding the component interaction, and fne-effect on the demodulation error of the weaker one. The ef-
guency demodulation in the PASED algorithm is independefact of the MPR parameter on frequency and amplitude demod-
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ulation in the PASED, the SEDM, and the SHRR algorithms &nd the 1A estimates of the multicomponent-PASED algorithm

shown in Fig. 8(c)—(f). are shown in Fig. 9(c). The IF’s of the components overlap in-
dicating that the components overlap spectrally. As in the two-
V. MULTICOMPONENT PASED ALGORITHM component case, witRy;, = g, 7 = 1, the demodulation

The M-component PASED algorithm is based on the san]%n;ths o;}h(?rEASED algorithmbbec?rﬂe — 27;/Qf“ il_
philosophy as that of the two-component problem. The sepa € minimum number of composite sighal sam-

tion matrixS»; hasa/ circulant blocks instead of just two p?es neededi5; L;. .
I oM red ! Justtw Fig. 9(d)—(f) shows another five-component example where

z[0] I I I z the gompo_nent periods are coprime overall but not pairwise
[1] INI INz INM Zo coprime. F|g._9(a)—(f) descnbes_the exc_ellent performance of
) N ENe Tt SNM . . PASED algorithm on demodulating multicomponent AM—FM
: : : : : signals even when the components have complete spectral
z[N — 1] ~ ~ M overlap and the IF signals frequently cross over. Alternatively,
> S z the M component separation problem can be treated as a

] . (2_1) sequence of two-component separation problems [12], [15]
The rank of theM-component separation matriXSys) is

(proof given in Appendix A) M M
o ] = 3" wifn] = aa[n] + Y wiln]
7‘(51\4):ZNi—(M—l)ng(Nl,NQ, ---,N]w), =t L:_Q\,_/
i=1 #2[n]
ged(N;, Njy=1orM =2
Jl_[?éj ’ le[ﬂ]+$2[ﬂ]+z zi[n]
-
r(Sn) > Z Ni— Y ged(N;, Ny), #a[n]
0§y i<
otherwise (22) This  method, however, requires the wuse of
Ny +lem(Na, N3, ---, Njy) samples of the composite signal

The rank of the separation system in the multicomponefdr separation (assuming no spectral cancellation) while the
case now depends on the pairwise component interactions whitbposed PASED algorithm requir@s; N; composite signal
are embodied in the form of the product of the pairwise gcd’'samples.

For the first case, the extra constraints, as in the two-compo-
nent case, are obtained as dc value constraints offithe 1) VI. DISCUSSION
narrow-band bandpass components at their original scale as A. Application to Cohannel and Adjacent Channel Separation
Ni—l The denominator of the NCS parameter defined in (15) is the
> win]=0 i=1,2--,(M—-1). (23) carsonbandwidth of the AM—FM signal which is a conservative
estimate of the actual bandwidth of the signal. It is therefore
For the second case, extra constraints are needed and Mpée appropriate in voice-modulated FM applications to use the
obtained by considering the two-component interactions R Pandwidth of the signal to compute the NCS parameter. With
the composite signal. For al/ component signal, there arethe RF bandwidth as the normalization factor: NCS parameters
(™) possible two-component interactions. The constraints i1 indicate that the components are well separated and distinct,
this case are obtained from the dc value constraints applidéS = 1indicates thatcomponents are touching each otherand
to the interactions using the information on the pairwis@hen NCS parametec 1 the components start to overlap and
gcd R;; = ged(N;, N;), i < j. For the interaction between theinteract. For spectral separations in the cochannel range, i.e.,

n=0

(4, 4) pair of components, the constraints take the form NCS parametex 0.1, the components overlap completely.
Among the existing multicomponent algorithms, the EDM
(N:/Ri;)—1 (N;/Ri;)—1 algorithm has the advantages of computational simplicity and
Z z;[Rijn + p] + Z zj[Rin +p] =0, excellent time-resolution while experiencing similar limitations
n=0 n=0 in the spectral separations it can handle as mostother existing
1<i<j<M, 0<p<R;—-1 (24) algorithms [11]. In particular, when applied to the problem of

demodulating voice-modulated two-component FM signals, the
The number of constraints and extra information needed gde®M algorithm has the capability of providing intelligible mes-
up with an increase in the number of signal components asage estimates for spectral separations up to 25% of the RF
the gcd. As an example consider the case of a five-componbandwidth, but breaks down for further decrease in spectral sep-
sinusoidally modulated AM—FM signal where the componeuatration. In the cochannel region all of the existing techniques
periods are pairwise coprime. The composite signal of the edevelop singularity problems. The proposed PASED algorithm,
ample is shown in Fig. 9(a). The angular frequency estimatestmiwever, does not assume that the components need to be dis-
the multicomponent-PASED algorithm are shown in Fig. 9(linct and is not affected by a decrease in spectral separation.
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Fig. 10. PASED-based separation and demodulation of voice-modulated cochannel FM signals. (a) Instantaneous frequency estimates of the(BASED. (b)
Demodulated message signals of the PASED. (d), (e) Associated demodulation errors of the PASED.

Some of the adaptive techniques like the LMS algorithm argated FM signals is shown in Fig. 10, where the components
also sensitive to theelative power ratio(MPR) of the compo- overlap spectrally, i.e., the cochannel range. The sampling pe-
nents and develop singularity problems when the ratio is highod of the message signalsfis = 400 kHz, and the carrier fre-
The performance of the proposed PASED algorithm is indepeajuencies of the components gig = 100, 99.75 kHz. The RF
dent of the MPR parameter. bandwidth of each component is 12 kHz and the components are
An example of applying the PASED algorithm to the problermodulated with 6% FM. With these parameters, the IF’s of the
of separation and demodulation of two-component voice-modsmponents overlap indicating significant spectral overlap. Ac-
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tually, the carrier separation is 2% of the RF bandwidth (NES and, hence
0.02). The IF estimates of the example are shown in Fig. 10(a).

The demodulated message signals of the PASED are shown in M
Fig. 10(b) and (c) and the corresponding demodulation errors Ay =My [[ Vi = r1(mod Ny)
are shown in Fig. 10(d) and (e). i]T;
APPENDIX Ay =My H N; = r2(mod Ny). (31)
=2

A. Pairwise Coprime Periods Subtracting the indices and using the property of the modulo

Theorem 1: The M -component separation mat, in the operator we have

case where the component peridd$;, i =1, 2, ---, M } are
pairwise coprime or if there are only two-components, is of rank M
Al—AQ = (Ml—MQ) H Nz = (7‘1—7’2)(m0d Nl) (32)
=2

M
r(Sym) = Ni — (M —1)ged(Ny, Na---, Nyp), . . . .
($r) ; ( Jecd(N, Mo ) Since the component periods are pairwise coprime @nd-

M, < Ny, this implies that the transformation from;, —
r;(mod Ny) is unique and that the indices are within the range
of 0 andV;. This implies that when the component periods are
pairwise coprime and given that one has knowledge\df- 1)
initial values of the components other than ikie component,
; distinct samples of thé&h component can be obtained from
the basic separation system. This in turn implies that the rank
M of the M -component separation matri&,,;, which is also the
T'max = Z N;. (25)  number of linearly independent columns in the mafisy, is
i=1

II scdVi, Nj)=10rM =2.
1, J, 1]
Proof: The A7/-component separation matrif,, has

(3>, N;) columns and, hence, a maximum possible colu
rank of

r(Su) =Y Ni— (M- 1), II ecdvi, Ny =1.

i=1 i\ i

Exploiting the periodicity of the components we have

zi[n] = zi[n + N, 1=1,2,---M. (26)
For the two-component case, it has been shown [12], [15] that
If (M — 1) initial valuesz;[0], i = 2, --- M, are known, using the rank of the two-component separation matrix
periodicity we can obtainV; samples of the first component
USing 7’(52) =N1 + NQ — ng(Nl, NQ)
7(N(SQ)) Ing(Nl, NQ). (33)
z1[n] = x[n] — (w2[0] + w3[0] - - - + 2pr[0])  (27)
Combining these results we have that

for the indices
M
n = Ry, (klem(Ns, - -, Ny)), 0<k<(N - 1) 7’(SM):ZNi_(M_l)ng(vaN2"'7NM)7
(28) =t
H ged(N;, N;j) =1lorM =2.
where the notatior?;(j) denotes the remainder of the integer i
j moduloi defined byR;(j) = »(mod+). The next step is to
show that these indices are distinct and within the range of 0
Ni. Let A; and A, be any two of these indices such that

In other words, “the solution to the algebraic separation system

he PASED algorithm in the case where the composite signal
containsM components whose periods are coprime is equiva-
lent to the solution to the two-component case where there are
Ar =Milem(Na, N3 -+ -, Nyp) = ri(mod Ny) (M — 1) two-point interactions as opposed to just one.” The
Ay = Molem(No, N3---, Np) =ro(mod Ny)  (29) interaction pattern for the case where the component periods
are not pairwise coprime contai(léf) k-point interactions em-

where0 < M; # M» < N, — 1. If the component periods arePodied in the form of the appropriate gcd.

airwise coprime then
P P B. General Case

ged(Ny, Np, - Ny) =1 Theorem 2:The rank of the A/-component sepa-
M ration matrix Sy;, where the component periods are
lem(Ny, Na, -+ Nyj) = H N, @30) Ni;e = 1,2,---, M, M > 2} in the general case, is

given by (33a), shown at the botttom of the following page.

=1
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Proof: Asinthe coprime case, the maximum possible rarkension of the intersection of the spans of the column of each

for the matrixS,, is the column rank of the matrix,,.., = block, consequently, is given by
Zf‘il N;. Then component separation mati§y, can be written
in block form 3
dim <ﬂ Sp&ﬂ(B,—))

Sn = [B1|B2|Bn] =1
where the blocl3; corresponds to blocks of identity matrices of = dim ([Span(Bi) ﬂ span(B; )} ﬂ Span(B’“))
orderN; that correspond to thih component. The rank of the = ged[ged(Ng, N;), Ni]
component separation matrix.S,, ), is the number of linearly = ged(N;, Nj, Ny), i£j#k. (38)
independent column vectors &, and can be evaluated using
subspace addition This intersection of the spans of the blocks can be generalized

as

r(S,) = dim an(B;) | . 34 n
() (2_) pand )> R (ﬂ span(Ba) — ged(Ny, N N,). (39)
=1

Within each blockB;, all the column vectors are linearly inde-

pendent and orthogonal, hence If {V,,i=1,2,---, n}is asequence of subspaces in a finite
dimensional vector spadé then it can be shown for the case of
dim(span(B;)) = N,. (35) "= 2 that [31]

From the rank of the separation matrix in the two-componefm(V1 + V2) = dim(V1) + dim(V3) — dim (Vl N V2) :
case as given by (33), the number of linearly dependent vectors, (40)
i.e., the dimension of the null space among the columns of any

two blocks that are different put together is This can further be extended through mathematical induction to

the case oh components as
Tmax — 7’(SP311(BZ‘) + Span(Bj))

= dim { span(B;) [ | span(B;) ) & "L .
( P ﬂ P ) 36) dim <; V7;> = ;::1 dim(V;) — Z dim (Vi ﬂ Vj)

= ged(N;, N;), (R

,4,1<j
. di (Vi v,Nv )
For the case of any two blocks put together, each column in the +¢ ) kzz;d i ﬂ J ﬂ k
block B; has ones alternating every; slots. Similarly each s N
column vector in the .bloclBj has ones aIternatmg eveN]'» +o ()" Ldim ﬂ Vi, n>2.
slots. The block matrix that corresponds to the intersection of i1
the spans of the two blocks therefore contains column vectors (41)

that have ones alternating evely ; = ged(N;, IV;) slots and

can be written as Equating the spaced;, i =1, 2, ---, n} to {span(B;), ¢ =

In 1, 2, ---, n} and using the above outlined steps we obtain the
IRZ.’]. required rank result fon = M. From the rank relation, we
[Span(Bi) ﬂ Span(BJ)} = n) (37)  see that the sum of pairwise gcd’s is the number of linearly

dependent vectors in the union of the spans of blocks of the
separation matrixs,; taken a pair at a time. We can also see
The structure of the block matrix corresponding to the intersettyat the quantity) in the underbraces is the number of linearly
tion of the spans of the block8, andB; is therefore identical dependent column vectors in the separation ma&txixthat have
to that of any of the other block®3;, ¢ = 1, 2, ---, n] (only been counted multiple times in the sum containing the pairwise
the dimensionR; ;, of the identity matrices is different). Forgcd’s. This quantity) therefore has to be a positive quantity
the case of three arbitrary matrix blocks put together, the dind, hence, the lower bound in (21) follows.

M
r(Sy) = Ni— > ecd(N, N+ > eed(Ni, Ny, Ni) + - (=1)M " ged(Ny, -+ Nyy) (33a)
i=1 i, 4,8<] i, J, K, 1 <g<k

Q



SANTHANAM AND MARAGOS: MULTICOMPONENT AM—FM DEMODULATION

In the case where the component periods are pairwise c@ei]
prime, all the gcd’s are 1 and using the binomial expansion for
(1 —1)M, we obtain the result from the previous theorem

[22]

M M M M [23]
r(Sa) =D N —Z(_l)z< i ) =2 Ni—(M-1)
=1 =2 =1
(42) [24]
[25]
[26]
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