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Abstract—Previously investigated multicomponent AM–FM
demodulation techniques either assume that the individual
component signals are spectrally isolated from each other or that
the components can be isolated by linear time-invariant filtering
techniques and, consequently, break down in the case where the
components overlap spectrally or when one of the components
is stronger than the other. In this paper, we present a nonlinear
algorithm for the separation and demodulation of discrete-time
multicomponent AM–FM signals. Our approach divides the
demodulation problem into two independent tasks: algebraic
separation of the components based on periodicity assumptions
and then monocomponent demodulation of each component by
instantaneously tracking and separating its source energy into
its amplitude and frequency parts. The proposed new algorithm
avoids the shortcomings of previous approaches and works well
for extremely small spectral separations of the components and
for a wide range of relative amplitude/power ratios. We present
its theoretical analysis and experimental results and outline its
application to demodulation of cochannel FM voice signals.

Index Terms—Algebraic separation, cochannel and adja-
cent-channel signal separation problem, demodulation, energy
operators, multicomponent AM–FM signals, periodicity.

I. INTRODUCTION

M ONOCOMPONENT AM–FM signals are sine waves
whose amplitude and

instantaneous frequency are time-varying
quantities. Amplitude modulation (AM) and/or frequency mod-
ulation (FM) find extensive use in human-made communication
systems [40] and are often present in signals created and pro-
cessed by biological systems. For purposes of data processing
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by digital computers, in this paper we focus ondiscrete-time1

AM–FM signals modeled (over finite time intervals) as

where and are the instantaneous amplitude (IA) and
angular frequency (IF) information signals.

Multicomponent AM–FM signals are superpositions of
monocomponent AM–FM signals

(1)

where are the IF and IA information signals cor-
responding to theth component. Each component IF signal
is of the general form , where
is the carrier frequency of theth component, is its max-
imum frequency deviation, and is its normalized informa-
tion signal with . For each AM–FM component ,
we assume that its instantaneous amplitude and frequency

do not vary too fast or too greatly compared with its car-
rier frequency . Further, as explained in [1] and [2], for the
decomposition of the composite signal into its AM–FM
components to be well defined, it is assumed that the instan-
taneous bandwidth, i.e., the instantaneous frequency spread of
each component is narrow with respect to the instantaneous
bandwidth of the composite signal. However, this assumption
does not apply when the components overlap spectrally as in the
cochannel and adjacent channel problems encountered in com-
munication systems [36]. Thus, when there is a significant spec-
tral overlap of the components, we shall assume that we know
the number of components and hence their separation will incur
some error due only to the overlap but not due to lack of infor-
mation as to how many components exist.

1In the definition of discrete-time IF, for the differentiation
[n] =
d�[n]=dn and the integration�[n] = 
[k]dk + � we view the phase
signal�[n] and IF signal
[n] as functions of a continuous variablen, even
if n is a discrete time index. This assumes that both
[n] and�[n] can be
represented in terms of known mathematical functions that can be integrated or
differentiated yielding known computable functions. This is not a restrictive
assumption, since any real-valued discrete-time signal
[n] defined over a
finite time interval can be represented via the DFT as a finite linear combination
of cosines [7]. The discrete-time framework will also be needed by the matrix
algebraic method for separating periodic components, as explained later.
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Multicomponent AM–FM signals form the basis for the
general modeling of nonstationary signals as superpositions of
modulated sinusoids, where each component occupies a narrow
spectral band around its carrier frequency. In particular they find
applications: a) for modeling cochannel and adjacent-channel
interferences over communication channels, where one of the
components models the desired signal and the other models
the dominant interference [36]; b) in speech processing where
speech signals are modeled as a superposition of time-varying
acoustic resonances and each AM–FM component of the signal
models a single resonance [7], [13]; c) for modeling clutter
in high frequency radar [28] and in multiple target tracking
applications [35]; and d) in the extraction of image textures via
multicomponent two-dimensional spatial AM–FM signals [4],
[9], [18].

The basic problem in processing AM–FM signals isdemod-
ulation, i.e., estimation of the information stored in the IA and
IF signals given the composite signal. For monocomponent
AM–FM signals many successful demodulation approaches
exist, ranging from standard methods such as Hilbert transform
demodulation [38] or phase-locked loops (PLL’s) [25]–[27] to
the recentenergy separation algorithm(ESA) that tracks and
demodulates the energy of the source producing the AM–FM
signal using instantaneous nonlinear differential operators [6],
[7]. While each of these monocomponent algorithms may
have its advantages and disadvantages, they more or less offer
a solution to the monocomponent AM–FM demodulation
problem. For multicomponent AM–FM signals, however, there
is the additional task of separating the components. Of course,
when the components have approximately disjoint spectra
this problem can be solved successfully via bandpass filtering
and monocomponent demodulation. The challenging case,
however, is when the components overlap spectrally and are no
longer disjoint, as in the case of the cochannel problem [36].

Existing multicomponent AM–FM demodulation approaches
include the following classes of algorithms.

1) State space estimation:

a) cross-coupled digital phase-locked loop (CC-DPLL)
algorithms [19], [24], [37];

b) extended Kalman filtering (EKF) [16], [17], [20].

2) Techniques based on Hankel and Toeplitz matrices:

a) the Hankel rank reduction (HRR) algorithm [32];
b) the instantaneous Toeplitz determinant (ITD) algo-

rithm [34].

3) Linear prediction:

a) adaptive linear prediction using the exponen-
tially-weighted RLS algorithm [29];

b) the normalized LMS algorithm [30].

4) Energy demodulation:

a) multiband-ESA (MESA) [5] that consists of bandpass
filtering followed by monocomponent energy separa-
tion;

b) the energy demodulation of mixtures (EDM) algo-
rithm [11] that uses instantaneous nonlinear operators
measuring cross-energies between components.

5) Maximum-likelihood estimation [33] that uses the dis-
crete-time polynomial phase transform to initialize an it-
erative approach based on Newton’s algorithm.

In contrast to the monocomponent case, all the above multi-
component AM–FM demodulation algorithms are still far from
a general solution, work only in restricted ranges of spectral
separation between components or relative amplitude/power ra-
tios, and cannot deal with cross-over of the frequency tracks.
In this paper, we present a solution to the general multicom-
ponent AM–FM demodulation problem that greatly improves
the above situation. Our approach divides the problem into two
independent tasks of separation of components and then mono-
component demodulation of each component. For solving the
separation task we extended an algebraic technique proposed in
[12] and [15] for the separation of spectrally overlapping peri-
odic signals. Specifically, we extended this algebraic separation
technique to multicomponent AM–FM signals with periodic IF
and IA information signals. For the monocomponent demod-
ulation part, we use the energy-based method of ESA [7] due
to its efficiency, low complexity and excellent time resolution.
This combined new approach called theperiodic algebraic sep-
aration energy demodulation(PASED) algorithm does not have
the shortcomings of the other techniques and can deal with ex-
tremely small spectral separations and a wide range of ampli-
tude/power ratios.

The contributions of this paper include: development of the
two-component PASED algorithm for separating and demod-
ulating two-component AM–FM signals; development of the
multicomponent PASED algorithm, i.e., the generalization of
the two-component algorithm to components; compar-
ison of the PASED algorithm with other existing demodulation
algorithms; and preliminary application of PASED algorithm
to the cochannel and adjacent-channel FM voice demodulation
problem. Finally, we provide in the Appendix theoretical proofs
of some results on the rank of the-component separation ma-
trix.

II. PASED ALGORITHM

The PASED algorithm, whose block diagram is shown in
Fig. 1, can be divided into two tasks: separation of the two-
component AM–FM signal into components using periodicity
—based signal modeling and algebraic separation techniques
described in [12] and [15], and demodulation of the separated
components into IF and IA information signals for each compo-
nent using theenergy separation algorithm(ESA) [6], [7].

A. Periodicity-Based Modeling and Algebraic Separation of
the Components

The matrix algebraic separation(MAS) algorithm for the
separation of periodic signals that overlap both in the time- and
frequency-domain has been investigated in [12] and [15]. The
MAS algorithm distinguishes the components based on a slight
difference in their periodicity. Consider a two-component peri-
odic signal

(2)
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Fig. 1. Block diagram of the PASED algorithm.

where the fundamental periods of the components and
are and , respectively. Relating samples of the

composite signal to the samples of one fundamental period
of the components yields the following system of linear equa-
tions, hereafter referred to as thebasic separation system:

... ...
...

...

...

(3)

where denotes the identity matrix of order . The rank
of the two-component separation matrixis

[12], [15]. Consequently, the basic sepa-
ration system requires at least composite signal
samples to separate the components.

In the absence of noise, least-squares filtering is not required
and increasing the number of composite signal samples used in
the basic separation system over this minimum does not help as
shown in Fig. 2. In the presence of noise however, least-squares
smoothing is necessary and increasing the number of composite
signal samples used in the basic separation system decreases the
separation error as shown in Fig. 2.

The rank of the basic separation system for coprime com-
ponent periods implies that one extra condition or equation is
required to complete the system.2 This is typically a dc value
condition of the form

(4)

The dc value constraint corresponds to the assumption that the
signal components are narrowband. This is a valid assumption
to make, since the multicomponent AM–FM signal is modeled
as a superposition of narrow-band bandpass components. The
solution to the separation problem when the component pe-
riods are not coprime involves solving the separation system
in partial subgroups. Suppose that , so that

2The solution to the systemSSSz = xxx when the components periods are co-
prime is not unique in the sense that iffx [n]; x [n]g is a solution to the
system, thenfx [n] + c; x [n] � cg is also a solution as noted in [12] and
[15].

Fig. 2. Effect of AWGN on component separation in the PASED algorithm.

if and , then and are mutu-
ally prime. The data is taken in subgroups by downsampling the
components by a factor of. Since the smaller periods are co-
prime, the separation problem is then solved for each subgroup.
The union of the solutions from each group gives the total so-
lution to the separation problem [12], [15]. The additional
constraints/equations needed to complete the basic separation
system are obtained as zero dc constraints on the subsampled
components

(5)

The solution to the component separation problem is then
reformulated as the least-squares solution to the augmented
linear system, hereafter referred to as theaugmented separation
system

(6)

where the homogeneous dc value constraints at the scale of
form the constraint matrix . The solution to this problem is
equivalent to minimizing the quadratic form

The solution to this problem is of the form

(7)

The effective separation system for each of the components can
be rewritten as

(8)
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where the notation stands for the matrix transpose of the ma-
trix , stands for the least-squares left-inverse of the matrix

and , are the effective MAS algorithm inverse systems
for each component. Note that in the case where the component
periods are identical, the . In this
case, we would require extra constraints, and hence knowl-
edge of one of the signal components.

B. Energy Demodulation of the Components

The separated components are then demodulated into IF
and IA information signals using the discreteenergy sep-
aration algorithm (ESA) of [7]. Although in essence any
other monocomponent demodulation algorithms could have
been used for demodulation, the ESA is employed here on
account of its simplicity, efficiency, low complexity, and its
excellent instantaneous-adapting nature [7]. A comparison of
the ESA versus the classic AM–FM demodulation method
based on the analytic signal and Hilbert transform can be
found in [38]. We assume that the separated signal components
can be modeled as discrete-time monocomponent AM–FM
signals of the form ,

. Then the discrete-time Teager–Kaiser energy
operator is applied
to the components and their discrete-time derivative
approximations . Finally, the IF and
IA information of each separated component are estimated via
the DESA-13 algorithm [7]

(9)

(10)

The demodulation errors of the ESA algorithm are practically
negligible for AM–FM signals with realistic values of modula-
tion parameters, but they can be reduced further by using simple
smoothing [38] of the energy signals before applying the ESA.
The carrier frequency and mean amplitude of each component
are estimated from the mean of IF and IA signal estimates over
the finite time interval [0, ] of signal duration

(11)

C. Estimation of Component Periodicities

The underlying assumption in the development of the PASED
algorithm is the exact prior knowledge of the component period-
icities. The problem of estimating the periodicities can be solved

3If, due to noise or modeling errors, the argument of thecos (:) in (9) ever
exceeds the range [�1, 1] at some isolated instants, then it is clipped to restrict
it in [�1, 1] and to force the ESA estimate of IF to be in [0,�]. The number of
such isolated instants is significantly reduced by smoothing the energy signals
[38].

using thedouble difference function(DDF) algorithm proposed
in [3]. The two-dimensional lag parameter space of two cas-
caded comb filters is exhaustively searched for a minimum of
the DDF objective function [3] defined by

(12)

where is the duration of the analysis window,is the anal-
ysis point, and are the respective lag parameters of the
cascaded comb filters. The coordinates of the minimum of the
DDF objective function furnish estimates of the two periodici-
ties sought. The symmetry of the DDF function in the lag param-
eters can be used to reduce the search space to half a quadrant
[3]. If the components of the composite signal are truly periodic,
then this algorithm is guaranteed to find both the component
periods unless the periods happen to be equal or multiples of a
common subharmonic [3]. The modular structure of the DDF
algorithm allows easy extension to the case where at the
expense of increased complexity in the period search.

III. T WO-COMPONENTAM–FM SIGNALS

A. Performance of PASED Algorithm

Consider real-valued two-component sinusoidally modulated
AM–FM signals of the form

(13)

where the IF and IA information signals are sinusoidal

with (14)

Before discussing the performance of the PASED algorithm
on the above signals, some performance related parameters need
to be defined. A measure of the spectral separation between the
components is thenormalized carrier separation(NCS) param-
eter of the mixture defined by

(15)

Note that the denominator is the Carson4 bandwidth of the
signal, which is a conservative estimate of the actual bandwidth
[40]. The mean power ratio(MPR) parameter of the mixture
is defined as

dB (16)

where is the RMS value of component , and measures
the strength of the first component relative to the second. The
strength of amplitude and frequency modulations with respect

4The Carson bandwidth of this signal is the separation between the frequen-
cies at which the spectral amplitudes are 1% of the carrier spectral amplitude
when there is no modulation [40].
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(a) (b)

(c)

Fig. 3. Sinusoidal AM–FM example with coprime component periods. Sinusoidal AM–FM: (a) composite AM–FM signal, (b) IF and carrier estimates of the
PASED algorithm (as fractions of�), and (c) IA estimates of the PASED algorithm, where solid lines show estimated signals, dashed lines show original signals,
and dashed-dotted lines show estimated carrier frequencies. The IF signals are sinusoidal with 2% FM, 4% NCS and coprime component periods. The IA signals
are also sinusoidal with 6% AM and an MPR of 0 dB.

to the carrier are measured by the AM amountand the FM
amount , both expressed as percentages. Thecarrier
to information bandwidth ratio(CR/IB) of each component is
defined as

(17)

and is a measure of how fast the signal modulations vary with
respect to the carrier. This ratio is typically in the order
for speech resonances and in the order of for AM radio
and for FM radio. Finally, the capability of var-
ious algorithms to track the signal modulations can be measured
by the norms of the demodulation error. For example, the car-
rier-biasednormalized RMS error(NRMSE) andmean absolute
error (NMAE) associated with the demodulation are defined by

(18)

where represents the original IA or IF signal,is its estimate,
and the notation stands for the or vector norms. The
unbiased demodulation errors are defined similarly but with the

carrier frequency and mean amplitude subtracted off from the
IF and IA estimates.

When applying the PASED algorithm to two-component
AM–FM signals, the components are modeled as quasiperiodic
signals. Specifically, when the two IF and IA signals are
sinusoidal, the quantities , , where

is the smallest integer that makes the quantity an
integer, play the roles of the component periods.5 For the ex-
amples in this paper, where , , this expression
reduces to . The case where the IF signals are
not sinusoidal is addressed later in this section. As an example,
consider a two-component sinusoidally modulated AM–FM
signal described by the composite signal in Fig. 3(a). The
demodulation lengths of the two components are and

and they are mutually prime. Since we are dealing
with narrow-band bandpass components, the dc value of the
first component can be approximated as zero. The IF estimates
of the PASED algorithm are shown in Fig. 3(b), while the IA
estimates of the proposed algorithm are shown in Fig. 3(c).

5This expression is based on the observation that if the signalsx[n] = A[n]
andy[n] = cos(�[n]) are periodic with fundamental periodsN andN then
N = lcm(N ; N ) is a period of their product but not necessarily the funda-
mental period and also on the observation that the component phase signal� [n]
will be periodic with periodN = 2�r=
 only when the carrier frequency
ramp signalz [n] = 
 n is periodically extended with the same period.
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(a) (b)

(c)

Fig. 4. Sinusoidal AM–FM example with noncoprime component periods. Noncoprime component periods: (a) composite AM–FM signal, (b) angular frequency
estimates of PASED algorithm (as fractions of�), and (c) IA estimates of the PASED algorithm, where solid lines show estimated signals, dashed lines show original
signals, and dashed-dotted lines show estimated carrier frequencies. The IF signals are sinusoidal with 2, 1% FM, respectively, with 4% NCS and noncoprime
component periods. The IA signals are also sinusoidal with 4, 8% AM and an MPR of 0 dB.

When the component periods are not coprime then more dc
value constraints are needed to complete the basic separation
system. The angular frequency estimates and the IA estimates
of the PASED algorithm for the signal environment shown in
Fig. 4(a) are shown in Fig. 4(b) and (c). The demodulation
lengths of the components in this case are and

samples, respectively. As evident from Figs. 3 and
4, the frequency and amplitude demodulation errors of PASED
algorithm are negligible since the estimated signals are almost
indistinguishable from the originals even when the carrier
frequencies are very close or the when the component IF tracks
cross-over.

For AM–FM signals in AWGN, the denoising capability of
the least-squares system in (6) enables simultaneous smoothing
and demodulation. Consider the noisy FM signal described in
Fig. 5(a). Period estimation for the noisy example, where the
SNR is 30 dB, is shown in Fig. 5(b). The actual component pe-
riods are and samples while the estimated
periods from the DDF image intensity plot are and

samples. The energy signals in the ESA section of
the algorithm are further smoothed using a 4-time application
of binomial smoothing. The angular frequency estimates of the
PASED algorithm are shown in Fig. 5(c). The carrier-unbiased
frequency demodulation errors for the two components are 4%

and 3.85%. The strength of the signal modulations can be in-
creased to combat the presence of noise, but increase beyond
a certain strength will produce more demodulation error due to
loss of stationary behavior.

The ideas described above also apply when the component
AM–FM signals have nonsinusoidal or even aperiodic IF sig-
nals. In such cases, following the analysis in [7], we assume
knowledge of each AM–FM component signal over a finite time
interval . Then, assuming periodic extension of the
component outside this finite interval, each component IF signal
can be expressed via the DFT as a finite discrete Fourier series
of the form

(19)

where and the carrier frequency is the dc term in the
series

In such cases, we set the required demodulation lengthsequal
to the periods of the extended signal components. As an ex-
ample, consider a two-component AM–FM signal whose FM
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(a) (b)

(c)

Fig. 5. Noisy AM–FM signal example with a SNR of 30 dB. Noisy example: (a) composite signal, (b) DDF over a half-quadrant search region, where dark areas
indicate high DDF value and light areas indicate small DDF values, and (c) angular frequency estimates (as fractions of�). The SNR of the signal mixture is 30
dB. 4-time binomial smoothing was used for smoothing the energy signals in the ESA. The IF signals are sinusoidal with 8% FM, with 4% NCS.

parts are chirped, i.e., FM with aperiodic linear IF signals. Over
finite intervals the two IF signals are

The IA signals of this example are sinusoidal with 6% amplitude
modulation, with a CR/IB of 50, NCS of 0.04, and an MPR
of 0 dB. The demodulation lengths used in this example were

and . The composite signal of the example
is shown in Fig. 6(a), the angular frequency estimates of the
PASED algorithm are shown in Fig. 6(b) and the IA estimates of
the PASED algorithm are shown in Fig. 6(c). Again, the PASED
algorithm performs very well both in the challenging cochannel
range and in the case where the component IF tracks cross each
other.

IV. COMPARISON OF THEDEMODULATION ALGORITHMS

Previously investigated techniques for multicomponent
AM–FM signal separation and demodulation either assume
that the components of the signal are distinct ridges [1] in the
time-frequency plane or that the components are separable via
linear time invariant filtering techniques. For signals in the

cochannel range, i.e., when , these assumptions
do not hold causing a break down in these algorithms. For the
purpose of comparing the algorithms, the effect of the NCS
and MPR parameters on demodulation on these algorithms is
studied using two-component sinusoidally modulated AM–FM
signals.

Demodulation algorithms like the LMS algorithm, the RLS
algorithm, and the CC-DPLL algorithm are highly parameter
dependent. The performance, the stability, and the noise sup-
pression capabilities of the LMS and the RLS algorithms are
dependent on the choice of the adaptive step size parameter
or the memory factor, while the performance and the stability
of the CC-DPLL algorithm is dependent on the choice of loop
filter parameters.

Fig. 7 describes a two-component sinusoidally modulated
AM–FM example where the PASED, the LMS (normalized
version of the LMS [30]), the exponentially-weighted RLS,
the HRR, the EKF, the MESA, and the CC-DPLL algorithms
are compared for a fixed parameter set with and

dB. Fourth-order predictors ( ) are used in
the case of the adaptive algorithms with a step size parameter
of for the normalized LMS [30] and a exponential
weight parameter of for the RLS algorithm [29].
A Hankel order of is used in the HRR algorithm
[32]. First-order loop filters are used in the design of the
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(a) (b)

(c)

Fig. 6. Linear-FM and sinusoidal-AM example. Chirp example: (a) composite signal, (b) angular frequency estimates of the PASED algorithm (as fractions of
�), and (c) IA estimates of the PASED algorithm. Solid lines here indicate estimates, dashed lines indicate actual quantities and dashed-dotted linesare carrier
frequency estimates. The component IF signals are linear with 0.5% FM and mutually coprime component periods with a NCS of�4%, while the IA signals are
sinusoidal with an MPR parameter of 0 dB and 6% AM.

CC-DPLL so that the closed-loop system is second-order with
a damping ratio of 0.707. Linear-phase FIR multiband filters
designed using the Kaiser window method [14] for an order of

with , which is a parameter related to the
passband tolerance of the filters, are used in the MESA [5]. The
components of the signal in this case have significant spectral
overlap as shown in Fig. 7(b). For this spectral separation,
the LMS algorithm exhibits severe beating in the estimates
as shown in Fig. 7(d), the RLS estimates in Fig. 7(e) also are
severely distorted, and post-smoothing of the IF estimates does
not reduce the frequency demodulation error significantly. The
carrier unbiased frequency estimates of the PASED and the
other algorithms are shown in Fig. 7(a)–(h). The percentage
NRMSE’s of the proposed PASED algorithm are two orders
less than the others as described in Fig. 7(j).

A. Effect of Spectral Separation (NCS Parameter)

In the definition of multicomponent AM–FM signal model
it has been assumed that the components are distinct in the
time-frequency planesanth7a.tif. The challenging case, how-
ever, is the cochannel case where the components of the signal
overlap spectrally. In this case the components are no longer
distinct and interact with each other. This interaction for the

case of two-component continuous-time sinusoidal signals of
the form

is embodied in the instantaneous envelope and the frequency of
the composite signal [2]

(20)

Decrease in the NCS parameter produces singularity problems
in these algorithms:

• The energy equations of the EDM algorithm become ill-
conditioned [11].

• The covariance matrices used in the LMS algorithm, the
RLS algorithm, and the MUSIC algorithm become ill-con-
ditioned [8].

• The Fisher information matrix used in the maximum like-
lihood methods [33] becomes ill-conditioned.

• The Toeplitz and the Hankel matrix systems of the ITD
and HRR algorithms become ill-conditioned.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Comparison of the PASED algorithm with other multicomponent AM–FM demodulation algorithms. (a) Composite FM signal. (b) Spectrogram of the
composite signal using a Hamming window of 384 samples and an FFT of 1024 samples with a time-increment of eight samples. (c) Carrier-unbiased angular
IF estimates of the PASED algorithm. (d), (e) Estimates of the SLMS and the SRLS algorithm. (f) Estimates of the CC-DPLL algorithm using a first-order loop
filter. Solid lines are the estimates and the dashed lines are the actual quantities. Post-smoothing of the IF estimates using moving average and 9-ptmedian filtering
removes some of the interference and spikes but at the cost of distorting the IF estimates.

• The observability Gramian of the two-component state
model in the CC-DPLL and the EKF algorithms become
ill-conditioned [21], [23].

The interaction between the components manifests itself as
beating in the estimates. Post-smoothing of the estimates can
alleviate this problem to a certain extent. The demodulation



482 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 3, MARCH 2000

(g) (h)

(i) (j)

Fig. 7. (Continued.) Comparison of the PASED algorithm with other multicomponent AM–FM demodulation algorithms. (g), (h) Corresponding estimates of the
SEDM and the HRR algorithms, respectively. Solid lines are the estimates and the dashed lines are the actual quantities. Post-smoothing of the IF estimates using
moving average and 9-pt median filtering removes some of the interference and spikes but at the cost of distorting the IF estimates.

algorithm with post-smoothing is referred to as , i.e.,
the EDM algorithm with post-smoothing is referred to as
the SEDM algorithm. Post-smoothing of the estimates using
9-point median filtering and moving average filtering of
the GDE coefficients (slow time-varying quantities) and the
estimates in the EDM removes a significant amount of the
interference but in the case of sinusoidal modulation fails
for NCS parameters less than one. The EDM algorithm,
particularly for voice modulated FM applications, can provide
intelligible estimates for separations down to 25% of the RF
bandwidth but fails for further decrease in the NCS parameter.

The proposed PASED algorithm, on the other hand, does not
make any assumption about the spectral location of the compo-
nents. This enables the algorithm to handle the case when the
components of the signal overlap spectrally and the case where
the IF tracks cross-over where all the existing techniques fail.
Fig. 8(a) illustrates the effect of the NCS parameter on the dif-
ferent algorithms. Note that the performance of the PASED al-
gorithm is independent of the NCS parameter.

State flipping occurs in the CC-DPLL algorithm, i.e., the con-
dition where the DPLL’s lock onto the wrong signal, as a conse-
quence of unobservability of the states of the state-model. This
situation is conditioned on the following: 1) frequency equality,

i.e., when the IF tracks cross-over; 2) components completely in
phase or out of phase; or 3) identical component state transition
matrices [23]. The PASED algorithm, on the other hand, does
not exhibit this phenomenon and is capable of handling the case
where the component IF tracks cross.

B. Effect of the Mean Power Ratio (MPR) Parameter

The MPR parameter of the signal mixture is a measure of
the strength of the desired signal relative to the interference
and is also a measure of the strength of the interaction between
the components. For large MPR parameters, the stronger com-
ponent dominates the signal mixture and the interaction be-
tween the components is less. The covariance matrix for the
multicomponent demodulation problem when one of the com-
ponents is stronger than the other becomes singular, and, conse-
quently, demodulation algorithms like the LMS develop singu-
larities as the MPR parameter increases [30]. The performance
of the CC-DPLL and the EKF algorithms can be characterized
by the observability Gramian of the state-space model for the
composite signal [23]. As one of the components becomes more
powerful than the other, the lower-power component becomes
less observable resulting in increased error covariance due to an



SANTHANAM AND MARAGOS: MULTICOMPONENT AM–FM DEMODULATION 483

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Effect of NCS and MPR parameters on demodulation in the PASED, the SEDM, and the SHRR algorithms. (a), (b) Effect of NCS on frequency and
amplitude demodulation in the PASED, the SEDM, and the SHRR algorithms (the other algorithms developed singularities and broke down forNCS < 0:5)
and (c)–(f) effect of the MPR parameter on frequency and amplitude demodulation in the PASED, the SEDM, and the SHRR algorithms. Amplitude estimation
in the SHRR is accomplished by integrating the IF estimates and solving a least-squares system for the amplitudes. All curves were obtained by averaging over
� 2 [1 � 10]% AM. The notationSX refers to the algorithmX with post-smoothing.

increase in the coupling between the DPLL’s and an increase in
the demodulation error corresponding to the weaker component
[22], [23].

The frequency estimation section of the EDM algorithm is
obtained from the GDE of the composite signal invariant to the
amplitudes [39]. Consequently, frequency demodulation in the

EDM is independent of the MPR parameter. The amplitude de-
modulation section of the EDM is, however, adversely affected
by an increase in the MPR parameter. As the MPR increases,
the relative strength of the first component with respect to the
second component increases with a corresponding decrease in
the amplitude demodulation error of the first component and an
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(a) (d)

(b) (e)

(c) (f)

Fig. 9. Five-component example with both pairwise coprime and pairwise noncoprime component periods. (a), (d) Composite AM–FM signal. (b), (e) Angular
frequency estimates of the multicomponent-PASED algorithm (as fractions of�). (c), (f) IA estimates of the components via the multicomponent-PASED algorithm.
Solid lines are estimates, dashed lines are actual quantities and dashed-dotted lines are carrier frequency estimates. The IF signals are sinusoidal with {2, 4, 2, 4,
2}% FM. The IA signals are also sinusoidal with� 2 {1, 3, 5, 7, 9}% AM.

increase in the demodulation error of the second, weaker com-
ponent [11].

The proposed PASED algorithm, however, does not make
any assumptions regarding the component interaction, and fre-
quency demodulation in the PASED algorithm is independent

of the MPR parameter. An increase in the power of one of the
components with respect to the other results in a decrease in the
amplitude demodulation error of the stronger component but has
no effect on the demodulation error of the weaker one. The ef-
fect of the MPR parameter on frequency and amplitude demod-
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ulation in the PASED, the SEDM, and the SHRR algorithms is
shown in Fig. 8(c)–(f).

V. MULTICOMPONENT PASED ALGORITHM

The -component PASED algorithm is based on the same
philosophy as that of the two-component problem. The separa-
tion matrix has circulant blocks instead of just two

... ...
...

...

...

(21)
The rank of the -component separation matrix is
(proof given in Appendix A)

or

otherwise (22)

The rank of the separation system in the multicomponent
case now depends on the pairwise component interactions which
are embodied in the form of the product of the pairwise gcd’s.
For the first case, the extra constraints, as in the two-compo-
nent case, are obtained as dc value constraints on the
narrow-band bandpass components at their original scale as

(23)

For the second case, extra constraints are needed and are
obtained by considering the two-component interactions in
the composite signal. For an component signal, there are

possible two-component interactions. The constraints in
this case are obtained from the dc value constraints applied
to the interactions using the information on the pairwise

, . For the interaction between the
pair of components, the constraints take the form

(24)

The number of constraints and extra information needed goes
up with an increase in the number of signal components and
the gcd. As an example consider the case of a five-component
sinusoidally modulated AM–FM signal where the component
periods are pairwise coprime. The composite signal of the ex-
ample is shown in Fig. 9(a). The angular frequency estimates of
the multicomponent-PASED algorithm are shown in Fig. 9(b)

and the IA estimates of the multicomponent-PASED algorithm
are shown in Fig. 9(c). The IF’s of the components overlap in-
dicating that the components overlap spectrally. As in the two-
component case, with , the demodulation
lengths of the PASED algorithm become ,

. The minimum number of composite signal sam-
ples needed is .

Fig. 9(d)–(f) shows another five-component example where
the component periods are coprime overall but not pairwise
coprime. Fig. 9(a)–(f) describes the excellent performance of
PASED algorithm on demodulating multicomponent AM–FM
signals even when the components have complete spectral
overlap and the IF signals frequently cross over. Alternatively,
the component separation problem can be treated as a
sequence of two-component separation problems [12], [15]

This method, however, requires the use of
samples of the composite signal

for separation (assuming no spectral cancellation) while the
proposed PASED algorithm requires composite signal
samples.

VI. DISCUSSION

A. Application to Cohannel and Adjacent Channel Separation

The denominator of the NCS parameter defined in (15) is the
Carson bandwidth of the AM–FM signal which is a conservative
estimate of the actual bandwidth of the signal. It is therefore
more appropriate in voice-modulated FM applications to use the
RF bandwidth of the signal to compute the NCS parameter. With
the RF bandwidth as the normalization factor: NCS parameters

1 indicate that the components are well separated and distinct,
indicates that components are touching each other and

when NCS parameter 1 the components start to overlap and
interact. For spectral separations in the cochannel range, i.e.,
NCS parameter 0.1, the components overlap completely.

Among the existing multicomponent algorithms, the EDM
algorithm has the advantages of computational simplicity and
excellent time-resolution while experiencing similar limitations
in the spectral separations it can handle as mostother existing
algorithms [11]. In particular, when applied to the problem of
demodulating voice-modulated two-component FM signals, the
EDM algorithm has the capability of providing intelligible mes-
sage estimates for spectral separations up to 25% of the RF
bandwidth, but breaks down for further decrease in spectral sep-
aration. In the cochannel region all of the existing techniques
develop singularity problems. The proposed PASED algorithm,
however, does not assume that the components need to be dis-
tinct and is not affected by a decrease in spectral separation.
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(a)

(b) (c)

(d) (e)

Fig. 10. PASED-based separation and demodulation of voice-modulated cochannel FM signals. (a) Instantaneous frequency estimates of the PASED. (b), (c)
Demodulated message signals of the PASED. (d), (e) Associated demodulation errors of the PASED.

Some of the adaptive techniques like the LMS algorithm are
also sensitive to therelative power ratio(MPR) of the compo-
nents and develop singularity problems when the ratio is high.
The performance of the proposed PASED algorithm is indepen-
dent of the MPR parameter.

An example of applying the PASED algorithm to the problem
of separation and demodulation of two-component voice-mod-

ulated FM signals is shown in Fig. 10, where the components
overlap spectrally, i.e., the cochannel range. The sampling pe-
riod of the message signals is kHz, and the carrier fre-
quencies of the components are kHz. The RF
bandwidth of each component is 12 kHz and the components are
modulated with 6% FM. With these parameters, the IF’s of the
components overlap indicating significant spectral overlap. Ac-
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tually, the carrier separation is 2% of the RF bandwidth (NCS
0.02). The IF estimates of the example are shown in Fig. 10(a).
The demodulated message signals of the PASED are shown in
Fig. 10(b) and (c) and the corresponding demodulation errors
are shown in Fig. 10(d) and (e).

APPENDIX

A. Pairwise Coprime Periods

Theorem 1: The -component separation matrix in the
case where the component periods are
pairwise coprime or if there are only two-components, is of rank

or

Proof: The -component separation matrix has
columns and, hence, a maximum possible column

rank of

(25)

Exploiting the periodicity of the components we have

(26)

If initial values , are known, using
periodicity we can obtain samples of the first component
using

(27)

for the indices

(28)

where the notation denotes the remainder of the integer
modulo defined by . The next step is to

show that these indices are distinct and within the range of 0 and
. Let and be any two of these indices such that

(29)

where . If the component periods are
pairwise coprime then

(30)

and, hence

(31)

Subtracting the indices and using the property of the modulo
operator we have

(32)

Since the component periods are pairwise coprime and
, this implies that the transformation from
is unique and that the indices are within the range

of 0 and . This implies that when the component periods are
pairwise coprime and given that one has knowledge of
initial values of the components other than theth component,

distinct samples of theth component can be obtained from
the basic separation system. This in turn implies that the rank
of the -component separation matrix, , which is also the
number of linearly independent columns in the matrix , is

For the two-component case, it has been shown [12], [15] that
the rank of the two-component separation matrix

(33)

Combining these results we have that

or

In other words, “the solution to the algebraic separation system
of the PASED algorithm in the case where the composite signal
contains components whose periods are coprime is equiva-
lent to the solution to the two-component case where there are

two-point interactions as opposed to just one.” The
interaction pattern for the case where the component periods
are not pairwise coprime contains -point interactions em-
bodied in the form of the appropriate gcd.

B. General Case

Theorem 2: The rank of the -component sepa-
ration matrix , where the component periods are

in the general case, is
given by (33a), shown at the botttom of the following page.
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Proof: As in the coprime case, the maximum possible rank
for the matrix is the column rank of the matrix

. The component separation matrix can be written
in block form

where the block corresponds to blocks of identity matrices of
order that correspond to theth component. The rank of the
component separation matrix, , is the number of linearly
independent column vectors in and can be evaluated using
subspace addition

(34)

Within each block , all the column vectors are linearly inde-
pendent and orthogonal, hence

(35)

From the rank of the separation matrix in the two-component
case as given by (33), the number of linearly dependent vectors,
i.e., the dimension of the null space among the columns of any
two blocks that are different put together is

(36)

For the case of any two blocks put together, each column in the
block has ones alternating every slots. Similarly each
column vector in the block has ones alternating every
slots. The block matrix that corresponds to the intersection of
the spans of the two blocks therefore contains column vectors
that have ones alternating every slots and
can be written as

...

(37)

The structure of the block matrix corresponding to the intersec-
tion of the spans of the blocks and is therefore identical
to that of any of the other blocks (only
the dimension, , of the identity matrices is different). For
the case of three arbitrary matrix blocks put together, the di-

mension of the intersection of the spans of the column of each
block, consequently, is given by

(38)

This intersection of the spans of the blocks can be generalized
as

(39)

If is a sequence of subspaces in a finite
dimensional vector space then it can be shown for the case of

that [31]

(40)

This can further be extended through mathematical induction to
the case of components as

(41)

Equating the spaces , to ,
and using the above outlined steps we obtain the

required rank result for . From the rank relation, we
see that the sum of pairwise gcd’s is the number of linearly
dependent vectors in the union of the spans of blocks of the
separation matrix taken a pair at a time. We can also see
that the quantity in the underbraces is the number of linearly
dependent column vectors in the separation matrixthat have
been counted multiple times in the sum containing the pairwise
gcd’s. This quantity therefore has to be a positive quantity
and, hence, the lower bound in (21) follows.

(33a)
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In the case where the component periods are pairwise co-
prime, all the gcd’s are 1 and using the binomial expansion for

, we obtain the result from the previous theorem

(42)
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