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ABSTRACT

Segmentation of soilsection images is an important task for au-
tomating the measurement of the grains’ properties as well as for
detecting and recognizing objects in the soil, important for its bioe-
cological quality. In this paper, we apply several types of morpho-
logical systems to watershed-based segmentation of soilsection im-
ages. We use efficient connected operators such as reconstruction
open-closing and area open-closing as well as some relatively new
operators, the levelings, for image denoising, simplification, and
feature/marker extraction. Further, we introduce an improvement
of the reconstruction operators used in segmentation, based on a
generalized multiscale connectivity analysis.

1. INTRODUCTION

In automated soilsection image analysis, an important task is to
detect elementary objects, e.g. grains or aggregates, and differen-
tiate these soil formations from void space. Image segmentation
is thus one of the most useful tools for partitioning the image into
separated elementary regions and subsequently evaluating perti-
nent properties, such as shape, size or texture. This is however a
complex problem that consists of: (a) denoising and image simpli-
fication, including filtering and edge enhancement depending on
the application, (b) feature/marker extraction for detecting signifi-
cant regions in an image, and (c) obtaining the exact area covered
by each one of the marked regions, by applying a method such as
the watershed transform.

In this paper, we apply several standard as well as some rel-
atively new morphological systems to perform a watershed-based
segmentation of soilsection sample images. We focus on the use of
connected operators, such as reconstruction and area open/closings
as well as levelings, for denoising, image simplification and marker
extraction. Experimental results obtained from the application of
these morphological segmentation methods for various soilsection
image samples are presented in section 3. Although these images
have a very complex structure, exhibiting a variety of geometric
features, the obtained results are very satisfactory, which indicates
the efficiency of the proposed methods, especially demonstrating
the exact contour preservation property of connected operators.
Section 4 proposes some improvements of the reconstruction op-
erators based on the development of a theoretical framework for
generalized multiscale connectivity analysis.

This research work was supported by the Greek General Secretariat for
Research and Technology and by the European Union under the program
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2. BACKGROUND ON WATERSHED SEGMENTATION

Image segmentation is one of the most important and most difficult
problems in the field of computer vision. Generally speaking, it is
the process of isolating objects in the image from the background,
i.e partitioning the image into disjoint regions, each one being ho-
mogeneous and connected with respect to some property, such as
grey-value or texture. Since the termhomogeneousis rather vague
and allows many different interpretations of its meaning, the task of
image segmentation appears to be problem-dependent. In the case
of soilsection images, the segmentation proves to be a very difficult
task due to the fact that the specific category of images has very low
contrast, complex structure and often overlapping components.

A well-known segmentation methodology is the watershed ap-
proach [1], which is the preferred solution in the field of mathemati-
cal morphology. This task can be divided into three different stages:
(a) preprocessing and image simplification, (b) region-feature ex-
traction and (c) watershed transform. The objective of (a) is to
reduce the presence of noise and make the image easier to segment
by removing useless information, thus producing an image that con-
sists mostly of flat and large regions. One family of filters, often
used for image simplification, is thealternating sequential filters
(ASF), obtained by applying openings and closings alternately. At
stage (b), the goal is to extract some special features from the sim-
plified image such as small homogeneous regions, called markers,
which will be used as the starting points for the flooding process.
Their exact size and shape have no importance since they simply
modify the local homogeneity by being imposed to the topographic
relief as regional minima [1]. The selection of the markers is prob-
ably the most difficult task and the method used for their extraction
depends on the desired results for each specific application. At
stage (c), the watershed transform is applied on the morphological
gradient of the simplified image. It can be viewed as the process of
flooding a topographic surface using the markers as sources. The
watershed construction grows the markers until the exact contours
of the objects are found. An efficient way to implement it is via
hierarchical queues, using an ordering relation in flooding [1].

3. SEGMENTATION OF SOIL IMAGES

Soil structure is concerned with the size, shape, and arrangement
of primary particles and voids. Soilsection images exhibit a great
variety of geometric features which can be either 1D, such as edges
or curves, or 2D such as light or dark blobs (small homogeneous
regions of uncertain shape, which sometimes seem to be randomly
distorted circles or ellipses) providing useful information for the
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evaluation of soil structure quality. In order to detect and extract the
objects of interest (i.e soil particles and grains) soilsection images
need to be segmented into homogeneous regions. The homogeneity
criterion may vary depending on the difference between the objects
and their surroundings. Since shape, size and contrast are features
of primary importance, the images need to be processed so that their
structure is simplified but at the same time the relevant contour in-
formation is accurately preserved. Preservation of boundaries is a
typical characteristic of connected operators, which differentiates
them from other operators that perform their function locally thus
affecting region boundaries. Some special cases of connected op-
erators that were studied are thereconstruction opening (closing),
thearea opening (closing)[8, 5], and thelevelings[4]. These three
operator types exploit the information concerning the contrast and
size of soil grains and particles.

The greylevel reconstruction opening of an imagef given a
marker signalm ≤ f is:

ρ−(m|f) = lim
n→∞

δnB(m|f), δB(m|f) = (m⊕B) ∧ f (1)

whereδnB denotes then-fold composition of the conditional dila-
tion δB with itself, andB is a unit disk. Reconstruction closing is
defined dually by iterating conditional erosions:

ρ+(m|f) = lim
n→∞

εnB(m|f), εB(m|f) = (m	B) ∨ f (2)

The area opening (closing) of sizen keeps only the connected
components of the image foreground (background) whose area is
≥ n.

The levelings are self-dual and hence treat symmetrically the
image foreground and background; further, they include the recon-
struction opening and closing as special cases. Compositions of
reconstruction closings and openings are simple cases of levelings.

Thepreprocessing stageis of critical importance since its out-
put detrmines the segmentation results. The soilsection image has
to undergo a filtering in order to suppress the precense of noise
and smooth the inside texture while preserving the boundaries of
the grains. For this purpose, an ASF was used consisting of al-
ternating openings and closings. The openings and closings were
based onreconstruction. Given a feature/markerm = f 	 rB,
wherer = 1, 2, 3.... within a reference imagef , the reconstruc-
tion opening operator works by continuously growing the marker
until all components of the referencef that are hit by the marker
are completely reconstructed. As it was mentioned above, these
filters by reconstruction belong to the class of connected operators
that have the fundamental property of interacting with the image
by means of flat zones [5]. They do not remove some frequency
components ( like linear filters do) or some shapes (like median
filters or simple opening and closings do).What they actually do
is removing and merging flat zones. Openings by reconstruction
remove bright components that are smaller than the structuring el-
ements which results to fill up the voids in soil grains or clusters
and make them more flat and uniform. Similarly, since closings by
reconstruction remove dark components that are smaller than the
sructuring element, they eliminate very small soil grains and dark
regions, and make the backround more uniform. Additionally, the
combination of these reconstruction filters accomplishes image de-
noising without affecting the boundaries of the regions of interest.
The result of the application of the ASF filter by reconstruction on
the soilsection image that is shown in Fig.1 (a) is presented in Fig.1
(b). The soilsection image can be further simplified by using the
area opening and closing operators. These operators are connected

in the sense that they suppress arbitrarily shaped image components
whose areas (number of pixels) are smaller than a given threshold.
By applying these operators (an area opening followed by an area
closing) to the soilsection image the obtained image consists of
many flat regions. The threshold level determines the connected
components that will be eliminated after filtering. Consequently,
the value of the threshold can be chosen depending on the size of
soil grains that need to be detected. An area closing with a rela-
tively low threshold can suppress small dark regions, whereas an
area opening with a ralatively high threshold can merge flat regions
inside the boundaries of the soil grains, making the soil grains look
darker and more uniform. The result is shown in Fig.1 (c).

The region-feature extraction stagedeals with the extraction
of markers, which requires a more severe processing of the already
filtered image [1]. In our work we extract constrast-related mark-
ers via the following procedure. First we perform a closing by
reconstruction to the simplified imagef that was obtained in the
previous stage. The markerm used for the reconstruction pro-
cedure described by Eq.2 is the simplified image incremented by
a constanth, m = f + h. The simplified imagef is subtrac-
tred from the reconstructed imageρ+(f + h|f), and the resulting
image residue is thresholded at levelt. The obtained binary im-
age is the set of markers that are included in the clusters of soil
grains. These markers specify the location of the soil grains of
a certain contrast that produce valleys of depthh. The threshold
level t is analogous to the constanth. The size and shape of mark-
ers is not critical for the segmentation, but only their location and
existence. This set of markers is calledInside Markersand cor-
responds to the soil grains. Another set of markers is needed to
successfuly segment the image. This set is calledOutside Markers
and corresponds to background of the image. The marker for the
background is extracted by flooding the filtered soilsection image
using as sources the inside markers. The resulted watershed line
is the outside connected marker (background marker). The final
set of markers is the union of the two sets detected previously,
Markers = InsideMarkers ∪ OutsideMarkers, presented
in Fig.1 (d).

Thewatershed transformis the final stage of the segmentation
process. The morphological gradient (Fig.1 (e)) of the simplified
image (Fig.1 (c)) is flooded. The sources are the inside and ouside
marker detected previously. The watershed construction grows the
set of markers until the exact contours of the objects are found. The
contour of each soil grain (or cluster of grains) is necessarily be-
tween its inside and its outside marker. The watershed transforma-
tion is implemented via hierarchical queues [1]. The segmentation
result of the soilsection image (after filtering) is presented in Fig.1
(f), superimposed on the original image. As it can be seen, most of
the soil grains are detected. The ones that are missed, are of small
size and low contrast compared to their local background. This was
expected due to the filering that was performed on the image.

4. IMPROVEMENTS ON CONNECTED OPERATORS

4.1. The Concept of Connectivity Measure

In the previous sections, we referred to the application of connected
operators, which are based on the underlying concept of connection
(or connectivity) [7], such as the usual path-connectivity classC
in an Euclideal topology. This concept, which is equivalent to
the definition of a family of openings{γx} called connectivity
openings, can be extended using a variety of lattice operators. Let
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(a) Original Image (b) ASF based on Reconstruction (c) Area Closing, Area Opening

(d) Set of Markers (e) Morphological Gradient (f) Segmented Image

Fig. 1. Segmentation of Soilsection Image

ψ be an increasing and extensive operator on the latticeP(E). Then
it can be shown that a new connectivity class is obtained based on
the following definition of connectivity openings:

γψx (A) = γx (ψ(A)) ∩A, if x ∈ A (3)

(or else,γψx (A) = ∅, whenx /∈A). This is often called second-
order (or clustering) connection. Based on this concept, the defini-
tion of a multiresolution connectivity measure was proposed in [2],
quantifying the idea of a varying degree of connectivity. A special
case of connectivity measure can be defined using morphological
dilation operators, quantifying in fact the notion of "how close" are
the disconnected components of a set as interpreted by the number
of dilations needed forA to become connected.

However, what is needed in many image analysis problems is
the inverse of the above, that is, to extract "strongly connected" (as
opposed to "loosely connected") regions from an initially topolog-
ically connected set. The application of typical connected opera-
tors, such as the reconstruction openings/closings, leads to finding
all connected regions of an image irrespective of the geometry of
the path "tying together" these regions (that is, even if this path is
"thin" and/or "long"). This form of connected morphological op-
erator often presents the drawback of reconstructing "too much",
which is called "leakage" problem resulting in the creation of un-
desirable connections between large objects in an image due to
the existence of thin connected paths between them [6]. To cover
such situations, the concept of connectivity is extended by intro-

ducing some new quantitative measures as described below. These
generalized connectivity measures can be then used to develop a
multiscale connectivity analysis framework based on the concept
of "connectivity tree" for hierarchical image represntation.

4.2. Multiscale Morphological Connectivity Analysis

We propose the definition of generalized connectivity measures, as
a means to differentiate between strong or loose connections within
an image and establish a multiscale connectivity analysis frame-
work. We illustrate this concept by an example. Let’s consider the
three different setsA1, A2, A3 ⊆ R

2, shown in Figure 2. Each one
of these sets is initially topologically connected (A1,A2,A3 ∈ C).
Intuitively, what we need to define is a connectivity measureµ(.),
such thatµ(A1)>µ(A2)>µ(A3). In fact,µ(.) could be a non-
negative function taking valuesµ(A) → 0+ whenA is considered
"nearly disconnected", andµ(A) → 1 whenA is "completely con-
nected". We could thus define ageneralized connectivity measure
on the complete latticeL = P(Rn) as a non-negative function
µ :L→ [0, 1] satisfying the following condition:

µ(
⋃
Ai) ≥ inf {µ(Ai), µ(

⋂
Ai), µ(Ai\⋂

Ai)}, ∀Ai ∈ L.

To differentiate between setsA1 andA2 of Figure 2 we could
introduce a connectivity measure based on some anti-extensive
morphological operator, such as erosionεB(.) (or openingγB(.)),
indicating "how fast" a setA ∈ C becomes disconnected after the
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Fig. 2. Generalized connectivity measure for three different sets

recursive application of such an operator. In the rest of this para-
graph, we use some form of exponential function to define connec-
tivity measures. We can thus define anerosion-based connectivity
measureµε :L→ [0, 1]

µε(X) = 1 − e−λ rε(X) (4)

with rε(X) = inf {r≥0: εrB(X) /∈ C\∅} whereλ > 0 is a pa-
rameter determining the rate of the exponential function. Applying
this definition for the two setsA1 andA2 of Figure 2, we get:
µε(Ai)=1−e−λri and r1<r2 ⇒ µε(A1)>µε(A2).

This erosion-based connectivity cannot distinguish though be-
tween the two setsA2 andA3. A different kind of measure must
be defined to cover such situations, taking into account not only the
"width" but also the "length" of the connecting paths. To extract
such information, a dilation-based connectivity measure could be
employed, such as the one introduced in [2]. However, this measure
should be here extended based on the use of conditional (geodesic)
operators, in order to take into account connectivity information
(path geometry etc.) contained in the original set. Considering an
adjunctionα = (εB , δB) on the complete latticeL = P(Rn), we
can then define a multiscale connectivity function:

µα(X, s) = e−λ rα(X,s) (5)

with rα(X, s) = inf {r≥ 0: δrB (εsB(X) |X) ∈ C\∅} . This
function incorporates, within a single"connectivity profile", useful
geometrical cues related to the "compactness" of a set in a con-
tinuous interval of scales, thus interpreting how "easily" this set
becomes disconnected as well as the "distance" between its princi-
pal connected components (geometry of the paths connecting them
together). Applying this definition for the example sets of Figure 2,
we obtain for all scaless> 0: µ(A1, s) ≥ µ(A2, s) ≥ µ(A3, s).
We can then impose a connectivity profileµ̄(s) as a thresholding
function, partitioning an image into connected componentsXi that
satisfy: µα(Xi, s) ≥ µ̄(s), ∀s > 0.

This concept can be used to establish the theoretical framework
for a hierarchical connectivity image analysis. The basic idea lies
in partitionning an image into progressively "stronger" connected
components, leading to a hierarchical image representation that we
call connectivity tree(or C-Tree). This representation incorporates
geometrical information which can be particularly useful for the
segmentation of soilsection images, where strongly connected soil
formations need to be identified and differentiated from loosely
connected regions (which in fact should be partitioned into a set of
finer disjoint connected components). This concept is illustrated
in Figure 3, which shows a typical "loosely connected" component
(extracted from a sample soilsection image using classical con-
nected operators) and its hierarchical recursive decomposition into
four different connectivity levels, with increasing multiscale con-
nectivity measure. This multiscale connectivity analysis can prove

a. Connectivity Level = 1 b. Connectivity Level = 2

c. Connectivity Level = 3 d. Connectivity Level = 4

Fig. 3. Multiscale connectivity partition of soilsection image

very useful for many image analysis tasks, including segmentation
as well as granulometric image analysis and evaluation of soilsec-
tion images.

5. CONCLUSION

This paper focused on the application of connected morphological
operators to perform watershed segmentation of soilsection images.
Reconstruction and area open/closings and levelings have been used
and give satisfactory results despite the complex structure of the
images. Furthermore, we introduced a threoretical framework for
generalized multiscale connectivity analysis, which is used to de-
velop improved connected operators.
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