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An important characteristic of fractal signals is their fractal dimension. For arbitrary fractals, an
efficient approach to evaluate their fractal dimension is the covering method. In this paper we unify
many of the current implementations of covering methods by using morphological operations with varying
structuring elements. Further, in the case of parametric fractals depending on a parameter that is in
one -to -one correspondence with their fractal dimension, we develop an optimization method, which
starts from an initial estimate and by iteratively minimizing a distance between the original function
and the class of all such functions, spanning the quantized parameter space, converges to the true fractal
dimension.

1 Introduction
Fractals are mathematical sets with a high degree of geometrical complexity that can model many natural
phenomena [7]. Examples include physical objects such as clouds, mountains, trees and coastlines, as well
as image intensity signals that emanate from them (assuming certain restrictions on the object's reflectance
and illumination [12]). Although, the fractal images are the most popularized class of fractals due to their
fantastic resemblance with natural scenes, there are also numerous natural processes described by time -
series measurements (e.g., 1/ f -noises, econometric and demographic data, pitch variations in music signals)
that are fractals [7,17]. The one -dimensional signals f (t) representing these measurements are fractals in
the sense that their graph G(f) = {(t, y) : y = f (t)) is a fractal set. Thus, modeling fractal signals is of
great interest in signal and image analysis.

An important characteristic of fractals useful for their description and classification is their fractal
dimension D, which exceeds their topological dimensión. Intuitively, D measures the degree of their
boundary fragmentation or roughness. It makes meaningful the measurement of metric aspects of fractal
sets such as their length or area. Specifically, given a measure unit (a "yardstick ") of length e, the length
L(e) of a curve at scale e is equal to the number of yardsticks that can fit sequentially along the curve
times e. For a fractal curve, L(e) increases without limit when e decreases and follows the proportionality
law L(e) cx el -D. Taking logarithms yields

log[L(e)] = (1 - D) log(e) -I- constant (1)

Hence, D can be measured from the slope of the (log L(e), loge) data.
In this paper we deal with the problem of estimating the fractal dimension of "topologically one-

dimensional" (1 -dim) signals with discrete argument. (Extending most of the ideas in this paper to 2 -dim
signals is very straightforward and hence omitted.) We start in Section 2.1 and Section 2.2 with a brief
survey of some existing methods, some of which are general whereas others apply only to special classes of
fractals. Section 2.3 focuses on the covering method, a general and efficient approach to compute the fractal
dimension of arbitrary fractals. We unify and extend many of the current digital implementations of the
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covering method by using morphological erosions and dilations with varying structuring elements. (The
erosions and dilations are the basic operators of signal and image analysis by mathematical morphology
[13].) We shall refer to these unified algorithms as morphological estimates. In addition, to its conceptual
usefulness as a unifying theme, the morphological approach has two practical advantages: 1) it reduces the
dimensionality of the processed data from two to one, and 2) it is simple to implement. In Section 2.4 we
discuss two implementations of the variation method for estimating fractal dimension, introduced in [4].
The variation method can be interpreted as stemming from a special case of the morphological approach
to implement the covering method.

Both the covering and variation methods apply to arbitrary fractals. However, their actual performance
can be tested on parametric fractals, e.g., fractals depending on a single parameter that is in one -to -one
correspondence with their fractal dimension D. Fortunately, there are numerous classes of such parametric
fractal signals and related algorithms for their synthesis. Two examples used in this paper are the random
functions of fractional Brownian motion (FBM) [8] and the deterministic Weierstrass -Mandelbrot cosine
(WMC) functions [2]. Although the performance of the covering and variation method is satisfactory for
some cases (i.e., yields reasonable estimation errors), if one is free to vary arbitrarily important parameters
of the problem such as D or the signal's duration, then, as our experiments on FBM and WMC functions
indicate, their performance falls drastically in many instances. Thus in Section 3 we present the main
contribution of this paper, which is both a very effective method (i.e., it yields practically zero estimation
errors) to estimate fractal dimension and a new way of looking at this problem. It is somewhat restricted
since it applies only to parametric fractals, but the large number of such parametric classes and their
practical applicability motivates well our new method. Our basic idea is as follows: So far researchers start
from an original fractal signal of true fractal dimension D, use various approaches to derive an estimate,
D *, of D, and are content if the estimation error JD -D *I is small. This criterion, however, does not say
anything about how "close" is the original fractal signal to some other fractal signal of true dimension D *.
Further, any degree of "closeness" should be somehow compatible with laws of visual perception since the
fractal dimension is a geometrical attribute. In our approach, from an initial morphological estimate D*
we synthesize the corresponding fractal function f* . Then by searching in the parameter space D we solve
a nonlinear optimization problem, where a distance is iteratively minimized between the original f and
each new iteratively synthesized f*. The process terminates when we reach a local or global minimum.
We call this the Iterative Optimization method. As distance metrics we have used standard 4, p = 1, 2, oo,
metrics. We also introduced a Hausdorff -type distance for this iterative optimization. Our motivation for
using this distance is that it is more suitable than 4 distances to compare two signals in terms of their
overall geometrical structure, which is a signal attribute that fractal methods attempt to capture.

Finally we conclude with an application of the above ideas to determine the optimum fractal function
for signal interpolation among a parametric class of deterministic fractal functions stemming from the
theory of Iterated Function Systems [1].

2 Covering and Variation Methods
2.1 General Methods

Descriptions of various approaches to measure fractal dimension can be found in [7,17,4]. Mandelbrot
[7] defines formally the fractal dimension of a set as its Hausdorff -Besicovitsch dimension DHB. Thus, a
subset of RE is fractal if DHB strictly exceeds its topological dimension DT. Some very closely related
dimensions are the Minkowski -Bouligand dimension DMB [10,3] and the box dimension DB [3], which are
obtained in a different way but are identical; i.e., DMB = DB. In addition, in most cases of practical
interest DHB = DMB. In this paper we focus on the Minkowski -Bouligand dimension, which we shall
henceforth call fractal dimension D, because: 1) it is closely related to DHB and hence able to quantify the
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fractal aspects of a signal, 2) it coincides with DHB in many cases; 3) efficient algorithms exist to compute
it; 4) it will be applied to discrete signals where most approaches can yield only approximate results.

Let G be a planar curve whose dimension 1 < D < 2 is to estimate. Although, DB = DMB in the
continuous case, they correspond to the following two different algorithms (with different performances) in
the discrete case.

Box counting method: Partition the plane with squares of side e and count the number N(c) of squares
that intersect the curve. Then D = limE ,o log[N(E)]/ log(1 /E). If an equivalent length L(e) = EN(e) is
defined by dividing the total area of these squares by e, then L(e) behaves as in (1).

Minkowski Cover method: This is based conceptually on Minkowski's idea of finding the length of
irregular curves: dilate them with disks of radius e (and thus create a "Minkowski sausage "), find the area
A(E) of the dilated set, and set its length equal to lim6_.0 L(e), where L(E) = A(E) /2E. If G is a fractal,
then L(e) behaves as in (1).

Generalized Cover method /4): This method unifies the box counting and the Minkowski cover method
by viewing them as special cases of a generalized "cover ". This cover C(e) is the union of sets B from a
family B such that: GC C(e), and each B E B intersects G, is homeomorphic to the disk and has diameter
on the order of e. If A(e) is the area of the cover, then it was shown in [16,4] that

log
A(e)

= D log(1) + constant
E2 E

(2)

Thus, in all the above methods, D can be estimated by fitting a straight line to and measuring the
slope of the plot of the data (log L(E), log e) or, equivalently, of the data (log[A(E) /E2], log 1 /c).

2.2 Parametric Fractals and Special Methods
The FBM and WMC fractal functions are the two primary classes of parametric test signals on which we
shall evaluate the various methods.

The FBM BH(t) with parameter 0 < H < 1 is a time -varying random function with stationary,
Gaussian -distributed, and statistically self-affine increments; the latter means that [BH(t + T) - B(t)] is
statistically indistinguishable from r- H[B(t+ TT) - B(t)] for any t and any r > O. Their power spectrum
is S(w) oc 1 /w2H +1 Hence, an efficient algorithm [17] to synthesize an FBM is to create a random sampled
spectrum whose average magnitude is 1 /wH +o.5 and its random phase is uniformly distributed over [0, 24
In our experiments we synthesized and then transformed this spectrum via a 2048 -point inverse FFT to
obtain the FBM sequence from which we retained the first (N + 1) samples.

Another example of parametric fractals is the class of WMC functions
00

yyH(t) = E ry-nH[1 - cos(rynt)] , 0 < H < 1 ,

n= -co
(3)

where ry > 1. In our experiments we created WMC sequences by sampling t E [0, 1] at (N + 1) equidistant
points, using a fixed ry = 5, and by truncating the infinite series so that the remaining finite number of
terms incurs an approximation error < 10 -6. The fractal dimension D of both FBM and WMC functions
is in one -to-one correspondence with H because D = 2 - H.

Some special methods (not covered in this paper due to their very narrow applicability) to measure D
for FBM's include: i) Fitting a straight line to the data (log S(w), log w) and measuring the slope yields
H and hence D [12]. ii) The statistical self -affinity of FBM's yields a power scaling law for many of its
moments; linear regression on these data can measure H and hence D [12]. iii) A maximum likelihood
method for estimating the H of fractional Gaussian noise (derivatives of FBMs) was developed in [6].
(Note, that the spectral method (i) could also be applied to WMC's because their spectrum behaves like
1/w2H +1 too.)
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2.3 Covering Method
In this paper we deal not with arbitrary curves but only with finite -length signals f (t), 0 < t < T, in
which case the curve G of the previous discussion becomes the graph G(f) of f . In this section we shall
focus on a generalized version of the Minkowski cover method. That is, one generalized cover consistent
with the definition of the "General Cover" method can be obtained as follows: given any compact convex
planar set B, form positive homothetics eB = {El) : b E B }, and define the cover C(E) as the union of
sets in B , which contains all vector translates eB + z = {et + z; b E B} of eB centered at points z of the
graph G(f). In the formalism of mathematical morphology this is equivalent to simply dilating G(f) with
a structuring element eB:

C(e) = U eB + z = G(f) ® eB (4)
zEG(f)

Then (2) applies. The Minkowski cover method corresponds to using a disk for B. The "horizontal
structuring element method" in [4] corresponds to using a line segment for B parallel to the domain of f.

In [4] the implementations of the Minkowski covering, box counting, and horizontal structuring methods
were done by viewing G(f) as a binary image signal and dilating this binary image. This, however, two -
dimensional processing of a 1 -dim signal, on the one hand is unneseccary and on the other hand squares
the requirements in storage space and time complexity of implementing the covering method. Namely, let

Ypo( f ) = { (t, y) E R2 : y < f (t) } (5)

be the ypograph off (also known as "umbra" in morphology). Let also (f ED g)(t) = supz{ f (x) +g(t -x)} and
(f e g)(t) = infz{ f (x) - g(x - t)} be respectively the function dilation and erosion of f by a structuring
function g with compact support. Then, (see [13,15,5,9] for properties of the ypographs), if we ignore
the end effects around t = 0 and t = T, the dilated graph C(e) can alternatively be obtained as the set
difference between the ypographs of the dilated and eroded function; i.e., C(e) ... Ypo(f ®eg) \ Ypo(f e eg),
where g is such that

Ypo(g) = {(t, y) : y < b, (t, b) E B} . (6)

Further, Ypo(eg) = EYpo(g). Then, the cover area will be A(e) fo (f ® eg -f e eg) (t)dt. Thus, instead of
creating the cover of a one -dimensional signal by expanding its graph in the plane (which means processing
a two -dimensional signal), the original one -dimensional signal can be filtered with an erosion and a dilation
system.

Putting all the above ideas together leads to what we shall henceforth call the covering method for
estimating the fractal dimension of a discrete -argument finite -length signal fin], n = 0, 1, ... , N. This
consists of the following steps:
1) Select a structuring function g[n] with a 3- sample support (unit size) such that (6) is true, i.e., the
graph of g is the upper boundary of B. B should be a unit -size discrete disk. For example, if B is a 5 -pixel
rhombus, then the structuring function is shaped like a triangle, defined by

gt[ -1] = gt[1] = 0 , gt[0] = h > 0, and gt[n] = -oo `dn # -1, 0,1. (7)

If B is the 3 x 3 -pixel square, the corresponding structuring function is shaped like a rectangle:

gr [n] = h > 0 n = -1,0,1, and gr [n] = -oo bn 0 -1, 0,1. (8)

If h = 0, the structuring functions gt and g,. become the same flat (binary) structuring element.
2) Perform the dilations and erosions of f by eg at discrete scales e = 1, 2, ... , emax. For integer e we define
E as the E -fold dilation of g with itself. Then f ED eg and f e Eg can be implemented recursively:

f ®(e +l)g= (fe eg) eg , fe(E +1)g= (feeg)eg (9)
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f®(€ + l)g=(f®eg)®g , / 0 (e + l)g = (f 0 eg) 0 g (9)
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The dashed lines in Fig. la show these erosions /dilations by g,. at scales e = 10, 20.
3) Compute the areas A[E] = >ñ o((f ® Eg) - (f e Eg))[n].
4) Fit a straight line using least- squares linear regression to the plot of (log A[E] /2, log 1 /e). The slope
of this line gives us the fractal dimension of f . For "real world" signals with some fractal structure, the
assumption of exact self -similarity at all scales is not true. Hence, as in [11], instead of a global dimension,
we estimate the local fractal dimension LFD(E), which for each e is equal to the slope of a line segment
fitted to the log -log plot of (2) over a moving window [e, c + 91 of 10 scales, where e = 1, 2, ..., Emaz - 9.

Among previous approaches, the work in [11] and [14] (transposed to 1 -dim signals) corresponds to
using gt with h = 1. The "horizontal structuring element method" in [4] corresponds to using h = 0.

Figure 1 shows results from experiments on evaluating the fractal dimension of FBM and WMC signals
via the covering method using g,. with three different heights h. The shape of the structuring function g is
not very crucial; gt yields a slightly finer multiscale area distribution than gr. The height h, however, plays
an important role neglected by previous researchers. Although h does not affect the continuous version
of the log -log plot (2), in the discrete case large h will sample this plot very coarsely and produce poor
results. Thus small h are preferred for finer multiscale covering area distributions. However, the smaller h
is, the more computations are needed to span a given signal's range. A good practical rule is to set h less
than or equal to the signal's dynamic range divided by the number of its samples. This rule attempts to
consider the quantization grid in the domain and range of the function as square as possible. Note that if
h = 0, the erosions /dilations by g can be performed faster.

2.4 Variation Method
As Figs. 1b,ld show, even with a good selection of h, the covering method estimates for LFD(1) (i.e.,
the local fractal dimension for the first position of the scale window -first 10 scales) are not accurate.
This is partly due to the quantization of the signal's domain and hence the small number of available
samples to compute (at small scales) the local minima /maxima, as observed in [4]. Thus at E = 1 there
is a neighborhood of only 3 samples for the min /max operations to create a cover. The variation method
of Dubuc et al. [4] attempts to correct this problem by re- arranging the original signal samples f[n],
0 < n < N, to retain a smaller number of samples 0 < m < M _< N and form the dilations uE [m]
and erosions be [m] at all scales e, and by using essentially the covering method with a binary structuring
function (i.e., h = 0) that has 3- sample domain for e > 1 and 2(N /M) + 1- sample domain for e = 1. We
have implemented the concept of the variation method in the following two different ways:

Variation by Signal Decimation: Let d be an integer variable decimation factor where 1 < d < dmax =
LN /2Emaxj and [xi denotes the greatest integer < x. Erosion /dilation values are computed only every
other d -th original sample. Thus, for 0 < m < M = LN /d],

ul[m] = max {f[n]:(m- 1)d<n<(m +1)d }, a =1
u[m] = max(ue_i[m - 1], uE_i[m + 1]) , E = 2, 3, ..., Emaz

At the ends m = 0, M, the local max takes place only over the available samples. The erosions be [m] are
given from the formulae (10) by replacing max with min and u with b. The resulting LFD(E) depends on d
and hence on M. Two optimal values of d can be found by searching over all permissible values and finding
that d which results in a better least- squares line fit to the log -log plot either over the first 10 scales or
over all emax scales. Which of these two optimal values of d to use depends of course on the application.

Variation by Signal Truncation: Let M +1 be the variable number of samples to retain after eliminating
N -M samples from the original signal f , where 2Emaz = Mmin < M < N. Erosion /dilation values are
computed only at M +1 original samples. For each M, let d = [N /MJ be a integer ratio factor. Then
uE[m] and bE[m] are computed for all e exactly as for the variation by decimation method with d interpreted

(10)
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assumption of exact self-similarity at all scales is not true. Hence, as in [11], instead of a global dimension, 
we estimate the local fractal dimension LFD(e), which for each e is equal to the slope of a line segment 
fitted to the log-log plot of (2) over a moving window [e,e + 9] of 10 scales, where e = 1,2, ...,emaz - 9.

Among previous approaches, the work in [11] and [14] (transposed to 1-dim signals) corresponds to 
using gt with h = 1. The "horizontal structuring element method" in [4] corresponds to using h = 0.

Figure 1 shows results from experiments on evaluating the fractal dimension of FBM and WMC signals 
via the covering method using gr with three different heights h. The shape of the structuring function g is 
not very crucial; gt yields a slightly finer multiscale area distribution than gr . The height /i, however, plays 
an important role neglected by previous researchers. Although h does not affect the continuous version 
of the log-log plot (2), in the discrete case large h will sample this plot very coarsely and produce poor 
results. Thus small h are preferred for finer multiscale covering area distributions. However, the smaller h 
is, the more computations are needed to span a given signal's range. A good practical rule is to set h less 
than or equal to the signal's dynamic range divided by the number of its samples. This rule attempts to 
consider the quantization grid in the domain and range of the function as square as possible. Note that if 
h = 0, the erosions/dilations by g can be performed faster.

2.4 Variation Method

As Figs. lb,ld show, even with a good selection of h, the covering method estimates for LFD(l) (i.e., 
the local fractal dimension for the first position of the scale window-first 10 scales) are not accurate. 
This is partly due to the quantization of the signal's domain and hence the small number of available 
samples to compute (at small scales) the local minima/ maxima, as observed in [4]. Thus at e = 1 there 
is a neighborhood of only 3 samples for the min/max operations to create a cover. The variation method 
of Dubuc et al. [4] attempts to correct this problem by re-arranging the original signal samples /[n], 
0 < n < N, to retain a smaller number of samples 0 < m < M < N and form the dilations u€ [m] 
and erosions b€ [m] at all scales e, and by using essentially the covering method with a binary structuring 
function (i.e., h = 0) that has 3-sample domain for e > 1 and 2(N/M) + 1-sample domain for e = 1. We 
have implemented the concept of the variation method in the following two different ways:

Variation by Signal Decimation: Let d be an integer variable decimation factor where 1 < d < dmax = 
[N/2cmax \ and [x\ denotes the greatest integer < x. Erosion/dilation values are computed only every 
other cf-th original sample. Thus, for 0 < m < M = [N/d\,

U![m] = max{/[n]:(m-l)d<n<(m + l)d}, e=l
ue [m] = max(u _i[m- l],u _i[m + l]) , e = 2,3, ...,emaz . l '

At the ends m = 0, M, the local max takes place only over the available samples. The erosions b€ [m] are 
given from the formulae (10) by replacing max with min and u with 6. The resulting LFD(e) depends on d 
and hence on M . Two optimal values of d can be found by searching over all permissible values and finding 
that d which results in a better least-squares line fit to the log-log plot either over the first 10 scales or 
over all emax scales. Which of these two optimal values of d to use depends of course on the application.

Variation by Signal Truncation: Let M+l be the variable number of samples to retain after eliminating 
N - M samples from the original signal /, where 2emaz = Mmt-n < M < N. Erosion/dilation values are 
computed only at M + 1 original samples. For each M, let d = [N/M J be a integer ratio factor. Then 
u [m] and 6 [m] are computed for all e exactly as for the variation by decimation method with d interpreted
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now as a ratio rather than as a decimation factor. (Note that for several different M the integer d may
remain the same.)

Figure 2 shows the results of estimating the LFD(E) for FBM and WMC signals (with D = 1.5,
N = 500, emax = 25) by using both the variation by decimation and by truncation methods, which had
similar performance. Both variation methods perform better than the covering method when an optimum
d or M is selected. However, the variation by truncation is much more computionally intense than the
decimation method. For example, with N = 500 and emax = 25, the decimation method searches over
d = 1, ..,10 and hence over 10 values of M, whereas the truncation method searches over all M with
50 < M < 500. Note that the covering method with h = 0 becomes identical with the variation by
decimation method if d = 1, and with the variation by truncation method if M = N.

3 Iterative Optimization Method
Assume a class of parametric fractal signals fp parameterized by a parameter P that is related to their
fractal dimension through an invertible function D = &(P). For example, for FBM's or WMC's the
parameter P is H and D = tl)(H) = 2 - H. Our new approach to measure the fractal dimension of such
a signal fp consists of the following steps: (1) We use a simple and fast morphological approach (i.e., the
covering method with h = 0) to come up with an initial estimate, D *, of the true D. (2) We compute some
distance between the original fractal function fp and another fractal fp. which was synthesized to have
dimension exactly D* = t,(P *). (3) By using nonlinear optimization, we search in the parameter space of
P (or equivalently of D) values of the chosen class of fractals by synthesizing fractals whose parameters
correspond to a fractal dimension D* and computing their distances from the original fractal until this
cycle converges to a local or global minimum in the parameter space. In this way the resulting fractal
dimension will correspond to a fractal function which is also close (with respect to the specific distance)
to the original function. We call this the Iterative Optimization method. As distance metrics we can use
standard 4, p = 1, 2, oo, metrics.

DD ¡¡

`'P(f1, f2) = I Ifl - 12I Ip - ( L lfll¡¡

n] - f2ln.])P
P

n- o0

Further, we also introduce a definition of a Hausdorff metric for this iterative optimization. Our motivation
for using this Hausdorff distance is that it is better suitable than 4 distances to compare the geometrical
structural differences (peak /valley distributions) between two signals in a way that agrees with human
visual perception. The Hausdorff metric was so far defined only for sets. Here we extend its definition to
functions and provide a morphological algorithm for its computation. Thus, given two compact sets A1i A2
their Hausdorff metric can be computed as

H(A1, A2) = inf{ : A1C A2 ® ED and A2C Al e ED }, (12)

where ED is a disk of radius e. If Al and A2 become the ypographs of two functions fi and f2 with compact
supports, then we define their ypograph -based Hausdorff distance as

HY(f1, f2) = H[Ypo(fl), Ypo(f2)] = inf {e : fl S f2 ®Eg and 12 < fi ® eg} (13)

Hy compares fi and 12 in terms of their protrusions (peaks). If we want a distance sensitive both to
the peaks and the valleys, then we can form the sum Hs(fl, f2) = HY(fi, 12) - He(fi, f2), which adds to
Hy(f1 ,f2) the Hausdorff distance He(fi, f2) = Hy(c - fl, c - f2) of their epigraphs, i.e., of the negation -
complements of fl and 12 where c is some constant function.
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Figure 2 shows the results of estimating the LFD(e) for FBM and WMC signals (with D — 1.5, 
N = 500, emax — 25) by using both the variation by decimation and by truncation methods, which had 
similar performance. Both variation methods perform better than the covering method when an optimum 
d or M is selected. However, the variation by truncation is much more computionally intense than the 
decimation method. For example, with N = 500 and emax = 25, the decimation method searches over 
d — 1,..,10 and hence over 10 values of M, whereas the truncation method searches over all M with 
50 < M < 500. Note that the covering method with h = 0 becomes identical with the variation by 
decimation method if d = 1, and with the variation by truncation method if M = N.

3 Iterative Optimization Method

Assume a class of parametric fractal signals fp parameterized by a parameter P that is related to their 
fractal dimension through an invertible function D = ij>(P). For example, for FBM's or WMC's the 
parameter P is H and D = ifi(H) = 2   H. Our new approach to measure the fractal dimension of such 
a signal fp consists of the following steps: (1) We use a simple and fast morphological approach (i.e., the 
covering method with h = 0) to come up with an initial estimate, /?*, of the true D. (2) We compute some 
distance between the original fractal function fp and another fractal /p* which was synthesized to have 
dimension exactly D* = ij>(P*). (3) By using nonlinear optimization, we search in the parameter space of 
P (or equivalently of D) values of the chosen class of fractals by synthesizing fractals whose parameters 
correspond to a fractal dimension D* and computing their distances from the original fractal until this 
cycle converges to a local or global minimum in the parameter space. In this way the resulting fractal 
dimension will correspond to a fractal function which is also close (with respect to the specific distance) 
to the original function. We call this the Iterative Optimization method. As distance metrics we can use 
standard £p, p = 1, 2, oo, metrics.

= ll/i - Mlp = (AW - /2 H)P (11)

Further, we also introduce a definition of a Hausdorff metric for this iterative optimization. Our motivation 
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Hy compares /i and /2 in terms of their protrusions (peaks). If we want a distance sensitive both to 
the peaks and the valleys, then we can form the sum Hs(/i,/2 ) = Hy(/i,/2 ) + He(/i,/2 ), which adds to 
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Figure 3 reports a series of experiments whose goal was to inestigate how well can the Hausdorff or Ep
distances find a local /global minimum in comparing a given parametric fractal with an ensemble of similar
fractals whose parameter varies over all possible values. Figs. 3a,3b,3e,3f show that both the Hy and the
ti distance yield a very clear global minimum when comparing an original FBM or WMC signal of a fixed
D with similar signals whose D spans all the interval [1, 2]. Resolutions of anywhere between 0.01 and
0.1 suffice to sample the parameter space of D and still observe a clear minimum. The Hy distance has
a higher computational complexity than 4, and both yield similar results. For the Hy distance we used
the structuring function g,. with h = 0.01. Using a smaller h or gt instead of g,. refines Hy but requires
more iterations of erosions /dilations. In Figs. 3a,3ó the FBM's are viewed as deterministic functions (the
random number generator was re- initialized for each D with the same seed). From a statistical viewpoint,
however, they are random functions, and hence their Hausdorff and 4 distances are actually random
variables. Unfortunately, as Figs. 3c,3d show, the average Hy and 4 distances (the average was taken over
50 independent FBM realizations for each D) do not have a global minimum, except when D > 0.5 and
the Hy distance is used (the Hs distance performs slightly better). Therefore, in our iterative optimization
method, the FBM signals are viewed henceforth only deterministically. In all the above experiments we
used both types of Hausdorff distances (Hy and Hs) and three types of 4 distances (p = 1, 2, oo). They
all had similar performance for (deterministic) FBM and WMC signals. Hence we focus henceforth only
on the Hy and the 4 distances.

Figure 4 compares the estimated local fractal dimension LFD(1) for FBM and WMC signals of varying
dimension D and fixed duration N = 500 by using the covering, the variation by decimation, and our
iterative optimization method. The iterative optimization was done by using the initial estimate from
the covering method, and then improving it by first proceeding in the D space at steps of 0.01 and then
(when in the neighborhood of the global minimum) by refining it with optimization steps of OS= 0.001.
As the Fig. 4 shows the iterative optimization method gives superior results than any other method since
it achieves estimation errors that are practically zero for all D. (The errors are guaranteed to be in the
order of OS; in our experiments, they were almost always in the order of 10 -4 or 10 -5.) The 4 distance
was used, but the Hy distance performed very similarly.

The same conclusions can be reached from Fig. 5 which shows the estimated dimension LFD(1) for FBM
and WMC signals with varying duration N and fixed dimension D, by using all the previous approaches.
Again, for all N the iterative optimization method outperforms all others and yields practically zero errors.

Comparing the covering and variation methods, we see from Figs. 4 and 5 that: 1) the covering method
performs worse than the variation, except for very small D < 1.2 and small N. 2) In the variation method,
optimizing the decimation factor d over the first 10 scales performs better than optimizing it over all scales
for D < 1.5, whereas for D > 1.5 the opposite it true. 3) Changing the signal length N affects the above
conclusions for small N < 300.

4 An Application to Fractal Interpolation Functions
Given data points (xi, y;), i = 0, 1, .., I, we are concerned with continuous functions f : S --> R on a
compact interval S, which interpolate the data as f (xi) = yt and whose graphs are attractors of Iterated
Function Systems (IFS) [1]. These systems consist of a finite number of affine contractive maps which can
model well self -similar sets as the union (collage) of small patches (each patch is the transformation of the
original set by an affine map). A general affine map for an IFS is

Wn
y cn dn y + fn

n 1, 2,
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(14)

Figure 3 reports a series of experiments whose goal was to inestigate how well can the Hausdorff or lp 
distances find a local/global minimum in comparing a given parametric fractal with an ensemble of similar 
fractals whose parameter varies over all possible values. Figs. 3a,3b,3e,3f show that both the Hy and the 
t\ distance yield a very clear global minimum when comparing an original FBM or WMC signal of a fixed 
D with similar signals whose D spans all the interval [1,2]. Resolutions of anywhere between 0.01 and 
0.1 suffice to sample the parameter space of D and still observe a clear minimum. The Hy distance has 
a higher computational complexity than £1, and both yield similar results. For the Hy distance we used 
the structuring function gr with h = 0.01. Using a smaller h or gt instead of gr refines Hy but requires 
more iterations of erosions/dilations. In Figs. 3a,3b the FBM's are viewed as deterministic functions (the 
random number generator was re-initialized for each D with the same seed). From a statistical viewpoint, 
however, they are random functions, and hence their Hausdorff and £p distances are actually random 
variables. Unfortunately, as Figs. 3c,3d show, the average Hy and t\ distances (the average was taken over 
50 independent FBM realizations for each D) do not have a global minimum, except when D > 0.5 and 
the Hy distance is used (the Hs distance performs slightly better). Therefore, in our iterative optimization 
method, the FBM signals are viewed henceforth only deterministically. In all the above experiments we 
used both types of Hausdorff distances (Hy and Hs) and three types of ip distances (p = l,2,oo). They 
all had similar performance for (deterministic) FBM and WMC signals. Hence we focus henceforth only 
on the Hy and the t\ distances.

Figure 4 compares the estimated local fractal dimension LFD(l) for FBM and WMC signals of varying 
dimension D and fixed duration N = 500 by using the covering, the variation by decimation, and our 
iterative optimization method. The iterative optimization was done by using the initial estimate from 
the covering method, and then improving it by first proceeding in the D space at steps of 0.01 and then 
(when in the neighborhood of the global minimum) by refining it with optimization steps of OS=0.001. 
As the Fig. 4 shows the iterative optimization method gives superior results than any other method since 
it achieves estimation errors that are practically zero for all D. (The errors are guaranteed to be in the 
order of OS; in our experiments, they were almost always in the order of 10~ 4 or 10~ 5 .) The t\ distance 
was used, but the Hy distance performed very similarly.

The same conclusions can be reached from Fig. 5 which shows the estimated dimension LFD(l) for FBM 
and WMC signals with varying duration N and fixed dimension D y by using all the previous approaches. 
Again, for all N the iterative optimization method outperforms all others and yields practically zero errors.

Comparing the covering and variation methods, we see from Figs. 4 and 5 that: 1) the covering method 
performs worse than the variation, except for very small D < 1.2 and small N. 2) In the variation method, 
optimizing the decimation factor d over the first 10 scales performs better than optimizing it over all scales 
for D < 1.5, whereas for D > 1.5 the opposite ir true. 3) Changing the signal length N affects the above 
conclusions for small N < 300.

4 An Application to Fractal Interpolation Functions

Given data points (xt-,yt-), i = 0,1,..,/, we are concerned with continuous functions / : S —> R on a 
compact interval 5, which interpolate the data as /(zt-) = yt* and whose graphs are attractors of Iterated 
Function Systems (IFS) [1]. These systems consist of a finite number of affine contractive maps which can 
model well self-similar sets as the union (collage) of small patches (each patch is the transformation of the 
original set by an affine map). A general affine map for an IFS is

, n = l,2,...,/. (14)

422 / SPIE Vol. 1199 Visual Communications and Image Processing IV (1989)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



We have a finite number I of such maps, each associated with some probability pn. If the maps are
contractive, then there exists a random algorithm [1] in which a point (x, y) is iteratively mapped to other
points by these affine maps (randomly chosen with probability pn) and thus fills the points of a unique
attractor. For such an IFS to have as attractor the graph of a function its parameters must have some
restrictions. Namely, for the n -th affine map,

an = (xn - xn- 1)/(x7 - x0) , bn = 0 , en = xn -1 - anxo.
do e ( -1, 1) , Cn = [yn - yn -1 - dn(y7 - yo)1/(x7 - x0) , fn = yn -1 - dny0 - Cnxo.

Here we assume that do = V is constant for all n, and we call it the "vertical scale parameter" (contraction
factor) V. Thus given the initial data points (xi, yi), the fractal interpolated function (FIF) fv is a unique
fractal signal parameterized by V. Figure 6a shows an original function f (an FBM of 256 points with
H = 0.3). As data (xi, yi) we select 17 points from this function f, whose xi are equally spaced; hence
all an = 1/16. Figs. 6b,6c show two signals that resulted from the IFS interpolation algorithm with
V = -0.6, +0.6; the dotted line shows the piecewise linear interpolation between the original 17 points.
The larger the V, the rougher looks the interpolated function fy. All these interpolated functions were
computed at lint = 256 sample points equally spaced in their domain. Fig. 6d shows the fractal dimension
LFD(1) (computed using the covering method with g,. and h = 0.01) of fv for V spanning the interval
[- 0.9,0.7] at steps of 0.032. We see that the relation between V and the fractal dimension D is one -to-one
over each half of the V parameter space ( -1,1). (We are currently working to provide an approximate
analytic formula for this relation.) Figs 6e and 6f show, respectively, the Hausdorff and ep distances (mean
absolute error, rms error, and max absolute error) between the original f and the interpolated fv, as a
function of the parameter V. Selecting one local minimum for the symmetric Hausdorff distance gives
us V = -0.8, whereas the minimum for the 40 distance gives us V = -0.1. Plotting the corresponding
interpolated functions in Figs. 6g and 6h shows that the optimal parameter V extracted via the Hausdorff-
distance minimizatign approximates f with an interpolated function that is closer to f in a way that agrees
more with the human perception of the roughness of the function's graph.

Finally instead of searching through the whole parameter space V, we can instead find first the fractal
dimension which will give us an initial estimate of V, due to the one -to -one relation between D and V,
and then improve this initial estimate by searching locally around it.

(15)
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We have a finite number / of such maps, each associated with some probability pn . If the maps are 
contractive, then there exists a random algorithm [1] in which a point (z,y) is iteratively mapped to other 
points by these affine maps (randomly chosen with probability pn) and thus fills the points of a unique 
attractor. For such an IFS to have as attractor the graph of a function its parameters must have some 
restrictions. Namely, for the n-th affine map,

bn = 0 , €n = Xn_i - dnXQ. - .

dn e (-1, 1) , cn = [yn - yn-i - dn (yi - - - -
Here we assume that dn = V is constant for all n, and we call it the "vertical scale parameter" (contraction 
factor) V. Thus given the initial data points (xt-, yt-), the fractal interpolated function (FIF) fv is a unique 
fractal signal parameterized by V. Figure 6a shows an original function f (an FBM of 256 points with 
H = 0.3). As data (zt-,yt-) we select 17 points from this function f, whose xt- are equally spaced; hence 
all an = 1/16. Figs. 6b,6c show two signals that resulted from the IFS interpolation algorithm with 
V =  0.6, +0.6; the dotted line shows the piecewise linear interpolation between the original 17 points. 
The larger the V, the rougher looks the interpolated function /y. All these interpolated functions were 
computed at Iint = 256 sample points equally spaced in their domain. Fig. 6d shows the fractal dimension 
LFD(l) (computed using the covering method with gr and h = 0.01) of fv for V spanning the interval 
[-0.9,0.7] at steps of 0.032. We see that the relation between V and the fractal dimension D is one-to-one 
over each half of the V parameter space (-1,1). (We are currently working to provide an approximate 
analytic formula for this relation.) Figs 6e and 6f show, respectively, the HausdorfFand tp distances (mean 
absolute error, rms error, and max absolute error) between the original / and the interpolated /V, as a 
function of the parameter V. Selecting one local minimum for the symmetric Hausdorff distance gives 
us V = -0.8, whereas the minimum for the £<» distance gives us V =  0.1. Plotting the corresponding 
interpolated functions in Figs. 6g and 6h shows that the optimal parameter V extracted via the Hausdorff- 
distance minimizatiqn approximates / with an interpolated function that is closer to / in a way that agrees 
more with the human perception of the roughness of the function's graph.

Finally instead of searching through the whole parameter space V, we can instead find first the fractal 
dimension which will give us an initial estimate of V, due to the one-to-one relation between D and V, 
and then improve this initial estimate by searching locally around it.
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FIGURE 1. (a) An FBM function (solid line) with H = 0.5, N = 500 and its erosions /dilations (dashed
lines) by egr (e = 10, 20, h = 0.01). (b) Estimation of LFD of FBM via the covering method using gr with
3 different heights h = 0,0.01,0.1 (emaz = 25). (The thin solid straight line shows the true D = 1.5.) (c)
and (d) same as (a) and (b) but for a WMC function and with h = 0, 0.001, 0.01.
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