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Abstract

This paper introduces the class of ihresholded mm-max functions and studies their learning under
the probably approximately correct (PAC) model introduced by Valiant. These functions can be used
as pattern classifiers of both real-valued and binary-valued feature vectors. They are a lattice-theoretic
generalization of Boolean functions and are also related to three-layer perceptrons and morphological
signal operators. Several subclasses of the thresholded mm-max functions are shown to be learnable
under the PAC model.

1 Introduction
In the field of machine learning there have been many theoretical advancements on distribution-free learning
of Boolean functions. This learning framework is also known as the probably approximately correct (PA C)
model, pioneered by Valiant (1984) and further developed by him and other researchers. There is already
a wealth of literature about the PAC learning model; examples include Valiant (1984,1985), Blumer et
al. (1987,1989), Haussler (1990), Kearns, Li, Pitt & Valiant (1987), Kearns (1990), Rivest (1990), and
Schapire (1991). Most of the results in PAC learning deal with Boolean functions. If such functions are
used as (Boolean) pattern classifiers, then the input features must be binary-valued. Although this may
be sufficient for classifying high-level predicate-like features, most of the pattern recognition applications,
for example in computer speech and object recognition, involve real-valued feature vectors. For example,
Figure 1 shows morphological size histograms of binary character images, which we have experimentally
found to be promising real-valued features for character recognition; the values of the normalized size
histograms are real numbers in [0, 1].

In this paper, we present a class of classifiers, called thresholded rain-max functions, which can accept as
inputs both real-valued and binary-valued feature vectors. Each input variable to these functions is in the
range [0, 1], in contrast to {O, 1} for the Boolean classifiers. Moreover, these thresholded mm-max functions
are natural generalizations of the Boolean functions, because they are based on MIN/MAX operations
which are the lattice-theoretic counterparts of Boolean AND/OR operations on real numbers. Although
there exist many types of classifiers for real-valued data, the class of thresholded mm-max functions has
the appealing property that many of its large subclasses are PAC learnable (as will be shown later).

Another motivation for working with the thresholded mm-max functions is their close relation to a large
class of nonlinear signal/image operators known as morphological filters, which are defined via mm-max
operations on their inputs. As discussed in Serra (1982) and Maragos & Schafer (1990), these mm-max
morphological operators can be applied to a broad variety offeature extraction and shape analysis/detection
tasks in images or arbitrary geometrical objects. Hence, learning of the thresholded mm-max functions
provides an ability for automated training of the above feature extraction and shape analysis/detection
signal operators.

This paper is organized as follows: In Section 2, we define the mm-max functions and their thresh-
olded counterparts. A discussion of their relations with Boolean classifiers and three-layer perceptrons is
included. We also investigate aspects of their representation power using techniques from mathematical
morphology. Section 3 provides a brief summary of prior results from PAC learning used in later sections
for proving learnability of subclasses of thresliolded mm-max functions. This is followed by three sections
that contain the major learnability results of this paper. Section 4 discusses the learnability of a subclass
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Figure 1: Morphological size histograms of hand-written characters using multiscale closings by a triangle
(ts) structuring element. (The horizontal axis shows the sizes of the structuring element. The vertical axis
shows the normalized areas of differences among consecutive closings.)
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called thresholded monotone minimum functions. Section 5 presents the results for the thresholded mono-
tone maximum functions. Finally, Section 6 contains learnability results about the class of thresholded
k-mm-max functions, which are generalizations of the Boolean k-DNF functions.

2 Mm-Max Functions
Here we start from general definitions about mm-max functions and then use tools from mathematical
morphology to explore some of their properties and relations to Boolean functions and perceptrons.

2.1 Definitions
A Boolean function B(b), = (b1, ..., bd) e {O, i}d, in disjunctive normal form (DNF) is a finite disjunction
(i.e, Boolean OR) of terms. A term is a conjunction (i.e., Boolean AND) of literals. A literal is either a
Boolean variable b2 {O, 1} or its complement b2. To generate a mm-max function from a DNF Boolean
function, we replace the uncomplemented Boolean inputs b2 with real-valued variables x2 [0, 1], corn-

plernented variables b2 with real complements x 1 — x, and the Boolean AND/OR with MIN/MAX
(denoted by A/V).1

Formally, let 1? = (x1, x2, ...,Sd) be a real-valued vector in the d-dimensional unit cube [0, 11d• We define
a mm-max function f : [0, 11d [0, 1] with input as the function

f(xl,x2,...,xd) = V A Li , Li E {x,1 — x} (1)
n iEI

where an argument L is called a literal, equal either to a variable x or its complement x . Each minimum
function A€i4 is a called a mm term. Each I denotes the set of coordinates of the input vector x that
appear in the argument of the n-th mm term. The size of a rain term is the number of literals in the
minimum function. The maximum V has a finite number of terms. Thus, a mm—max function is a finite
maximum of mm terms. Note that the restriction of a mm-max function on the finite discrete space {O, i}d
is a Boolean function.

A Boolean function B is called monotone (or positive) if B(ã) B(b) whenever b, where i b
means a2 b1 for all i. Gilbert (1954) showed that B is monotone if and only if all its variables appear
uncomplemented. Similarly we call a function f : [0, 11d {o, 1] monotone if

(2)

It can be shown that a mm-max function is monotone if and only if it admits an expression that does not
contain any complemented variables.

To use a mm-max function f as a classifier performing binary decisions we need to threshold f at some
arbitrary value 0 E [0, 1]. This creates a thresholded mirz-rnax function fo : [0, 11d {o, 1} defined by

f9() = P{f(i) � 8] (3)

where P(.) is the predicate function, equal to 1 if the inequality inside is true and equal to 0 otherwise. An
example of a thresholded mm-max function is P{((xi A x4) V (x2 A (1 — x3) A x5)) � O.6}. It is generalized
from the Boolean function (b1 .b4+ b2 .b. b5). The mm term (x1 A x4) is size two while (x2 A (1 —x3)A x5) is
size three. In the second mill term, the variable x3 is complemented. Note that there are an infinite number

11n this paper, Boolean AND is denoted by the product symbol '.', which may be left out occasionally. The Boolean OR
is denoted by '+'. The symbols V and A are defined as VflEI 5n = maxn{x} and AflEI 5n = min{x} if the index set I is
finite; if I is infinite, then the max and mm should be replaced by supremum and infimum, respectively.
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of thresholded mm-max functions corresponding to a Boolean function. This is due to the freedom in the
choice of the threshold value 9, which in our work will be a free parameter to be learned. A thresholded
mm-max function is monotone if its corresponding mm-max function is monotone.

Exchanging the roles of AND and OR in a DNF Boolean function transforms the latter into a conjunc-
tive normal form (CNF). Similarly, exchanging the roles of MIN and MAX in a (thresholded) mill-max
function will yield a (thresholded) max-mm function, i.e., a (thresholded) minimum of maxima. Due to
the straightforward duality relationships between these two latter function classes, in this paper we focus
on functions in the mm-max form.

An input vector is classified as a positive or negative instance of a thresholded mm-max function c(s)
accordingly to whether the output of c(s) is 1 or 0 respectively. We shall also refer to this classification
process as the labeling of the input vector by c('), and call general 0- 1-valued functions classifier functions
to emphasize the possibility of their use as pattern classifiers. In the setting of our learning model, classifier
functions are also referred to as concept functions, or simply concepts. We shall use the later name more
often in the rest of the paper. A collection of concepts is called a concept class, which is usually denoted
by C. The set of all thresholded mm-max functions with d variables is denoted by

In this paper, we shall demonstrate the learning (in the PAC model) of the following three subclasses
f(7dmm—max

Thresholded Monotone Minimum Functions: A thresholded monotone minimum function has the
general form: P (AEI i � 9), where I is the set of coordinate indices of the input vector. This class
of functions is denoted by the symbol C.

Thresholded Monotone Maximum Functions: These functions are dual forms of the thresholded
minimum functions. The general form is P (V1EI x 9), where I is again the set of coordinate
indices of the input vector. The collection of all thresholded monotone maximum functions is de-
noted by the symbol Cax.

Thresholded k-Mm-Max Functions: They are thresholded mm-max functions with the restriction on
the size of each mm term to be < k. The class is denoted by the symbol C_min_max•

These three classes of functions are generalizations of the Boolean positive term, positive clause, and
k-DNF functions respectively.

2.2 Morphological Representations and Relations to Boolean Functions
here we establish some relationships between (thresholded) mm-max functions and Boolean functions using
concepts from morphological filtering as discussed in Maragos & Schafer (1987). First note the following
three useful properties of the predicate function PQ, which can be easily proven. The minimum and
maximum functions obey a threshold homomorphism property:

P(x A y � 0) = P(x 9) A P(y 9) = P(x 9) . P(y 9), (4)
P(xVy�O) = (5)

In addition, we have the threshold reconstruction property:

x= P(x�O) , VxE[O,1] (6)
GE [0,1]

From (1), (3) and the above properties it follows that

fe(xl,x2,...,xd) = V A P(i � 9) , £ {x3,i—x3} (7)
n iEI
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Thus, a thresholded miri-max function is equal to the disjunction of terms containing Boolean variables
formed by thresholding the input coordinates x1 or their complements. Turning to the thresholding of a
complemented variable,

P(x' � 0) = P(1 — x 9) = P(x � 1 — 0). (8)

The thresholding of x' = 1 — x is not equal to the Boolean complement P(x � 0) = P(x < 9) in general.
However, this particular definition of x' remains a reasonable choice because it is identical to the Boolean
complement if x takes on only 0,1 values. It also preserves the range of the variable; i.e. ,x [0, 1] ==
XI E [0, 1].

Next we present a result that indicates the representation power of monotone mm-max functions.
Some definitions are needed first: Consider arbitrary functions f : [0, 11d + [0, 1] that are "consistent"
generalizations of Boolean functions, i.e., their value is binary whenever the input vector is binary; formally

f(e) E {O,1} , ye E [0,1] (9)

where ff9 e {O, 1}d a thresholded (and hence binary) input vector:

-.
X9 (x1,, Xd,9) = (P(xi � 0), ...,P(xd 0)) (10)

We also say that f commutes with thresholdirzg if

fe()f(e) , Vi,O (11)

Commuting with thresholding is an important property since it implies that the Boolean function f()
obtained from f by thresholding the input vector at any 9 (and hence restricting f on the finite discrete
space {0, i}d) gives identical values with thresholding the output of I at 0. It will be shown in the following
theorem that, if f commutes with thresholding, then it is monotone. Further, this theorem establishes
that functions that commute with thresholding can be represented by monotone mm-max functions.

Theorem 1 Let f : [0, 11d , [0, 1] be a function that obeys property (9). Then f commutes with threshold-
ing if arid only if it is monotone mm-max function, or equivalently if and only if it is a mm-max function
without any complemented variables.

Proof
Let f commute with thresholding. Consider binary vectors ii b E {0, 1}'. We can always find some real
vector such that and b = xe2 with Oi � °2. Then, if B is the Boolean function corresponding to
1 since f(xo) B(x0) for each 6, we have

B(à) = f(e1) fe1(i) � fe2() = f(82) B(s) (12)

Hence, B is monotone. Since the monotone B admits a DNF expression as a unique irreducible OR of
AND terms, it follows from (6) that:

f(s) = Vfe@')Vf@'e)
e 9

= VVAP(x3�o)
9 r jEI

=
n e \ei I n jI
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Hence, I is equal to a mm-max function. Further f is monotone because its mm-max representation
contains no complements. Conversely, let f be a monotone mm-max function. Then

f(s) =V A xi = fo() = V A P(x � 9) = f(e) (13)
n jEI n jEI

Hence I commutes with thresholding, which completes the proof. 0
The essence of the above theorem is that any monotone real-input real-output function that yields a

binary output whenever the input vector is binary and commutes with thresholding can be represented
as a mm-max function (with no complements). Conversely, the class of thresholded monotone mm-max
functions is almost isomorphic to Boolean functions, except for the generally unknown parameter 9 which
is to be learned.

2.3 Relations to Perceptrons
Another class of classifiers that is related to thresholded mm-max functions is the three-layer perceptrons.
The link is provided by the thresholded homomorphism properties (4) and (5). We demonstrate this using
an example. Consider the thresholded mm-max function

P(xiV(xAx4) � 9). (14)

Applying first (5) and then (4), we derive an equivalent function

P(xi � 6) + (P(x 0) . P(x3 9)).

Finally, we use (8) to arrive at the desired form

P(xi �9)+(P(x2 � (15)

Observe that each predicate function in the above expression is the thresholding of a single variable, which
can be implemented using a single layer perceptron. The Boolean conjunctions and disjunctions can also be
implemented using single layer perceptrons. Therefore the original thresholded mm-max function in (14)
can be implemented using a three-layer perceptron. It is easy to see that any thresholded mm-max function
can be implemented using a three layer perceptron because the thresholded mm-max function is formed
by the composition of several minima and a maximum. It is not true that any three layer perceptron can
be expressed as a thresholded mm-max function. To see the reason, one simply has to look at (15). The
first layer of perceptrons have the form P(11 � 9). Their decision regions are parallel to the coordinate
axes. Since the second and third layers are Boolean AND and OR respectively, the positive region of
the cascaded structure should have boundaries parallel to the axes. For a general three-layer perceptron,
this condition is not necessarily true. Therefore, Cjnmax 5 a subclass of the class of general three layer
perceptrons.

3 Background on PAC Learning
Ill this section, we shall present some well known results from PAC learning theory which we employ in the
rest of the paper. For the definition of the PAC learning model, see, for example, Valiant (1984), Kearns
(1990), and Rivest (1990).

In the PAC model, we want to construct a learning algorithm that returns concept functions with small
error rates. One possibility is to estimate the error rate from the sequence of training data. The estimate
is called the empirical error rate. Since the target concept t(F) belongs to the concept class C, the empirical
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error rate of the target concept is equal to zero. Accordingly, one strategy for the learning algorithm is
to return any concept (the hypothesis h(x)) that has a zero empirical error rate. This type of algorithm
is called consistent algorithm. In case the algorithm runs in polynomial time (in the number of training
data), it has a special name: poly-hy-fi (for polynomial hypothesis finder). The following proposition gives
the minimum number of training data a consistent algorithm requires.

Proposition 1 (Blumer et al. (1989)) LetC be a nontrivial, well-behaved2 concept class. Ifthe Vapnik-
Chervonenkis dimension of C is VC(C) < x then for 0 < e, < 1, and training sample size at least

4 2 8VC(C) 13
max(—log2 , log2 —), (16)

then with probability � 1 — 5, any consistent algorithm will return a hypothesis h(x) with trtte error rate
(h) < c

The Vapnik-Chervonenkis (VC) dimension of a concept class C is the size of the largest finite subset
of the domain X which is labeled in all possible ways using concepts in C. A formal definition of this
parameter is discussed in the same paper by Blumer et.al. From (16), the number of training data required
is polynomial in d, , and if the VC dimension is polynomial in the dimension d. Hence, using this
technique, the proof of learnability of C can be divided into two steps:

1. show that the VC dimension of C is polynomial in d;

2. find a poly-hy-fi for C.

We follow this approach in this paper to show the learnability of the classes Cax, and C_mjn_max.

4 Learnability of Thresholded Monotone Minimum Functions
The general form of a thresholded monotone minimum function is:

P(Ax�9) (17)
zEI

where I denotes the set of coordinate indices, I {1, . . . , d}. Using the threshold homomorphism property
(4), this equation can be transformed to a Boolean product

HP(x�9). (18)
iEI

Each of the expression P (x � 8) on the right side of Equation (18) is equal to 1 only in the "positive"
half space defined by the axis parallel hyperplane x1 = 0. Since (18) is a conjunction of the predicates,
it is equal to 1 only if the input vector satisfies all the inequalities that are present. In other words,
the positive region of each predicate P (x � 0) is the part of the d-dimensional hypercube whose i-th
coordinate is 9. Therefore, the positive region of (17) is the intersection of the positive regions of its
constituent predicates P(x2 2 9), i E I.

To illustrate the above observation, we present an example with d = 2. Figure 2 is provided for graphical
illustration. In two dimensions, thresholded monotone minimum functions take only three general forms:

2A concept class is trivial if it has only one concept or it has two disjoint concepts such that Cl U C2 = X. The well-
behavedness condition is some measurablity conditions on the functions, it is detailed in Appendix A of Blumer et al (1989).
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0

Figure 2: Decision regions of various two dimensional thresholded monotone minimum functions. (The
meaning of the labelings are given in Section 4.)

1. P(x � 0)

2. P(y � 0)
3. P(x A y � 0)

The first two forms are functions of only one coordinate. Referring to Figure 2, the positive region of the
first function is the union of regions II and III, which is an axes-parallel rectangle with one vertex at (1,1).
As for the second one, the positive region is the union of regions I and II, another axes-parallel rectangle.
Finally, the positive region of the last one is the intersection of that of the first two, which is region II in
the figure. Its positive region is an axes-parallel square. It is easy to see that in higher dimensions, the
positive regions become axes-parallel hyper-rectangles, with one vertex at (1 , . . . , 1).

4.1 VC-dimension of the Thresholded Monotone Minimum Functions
In this section, we show that VC(C) = d by providing upper and lower bound of VC(C).

We start the first part of the proof with an example. Figure 3 shows three points I, J, and K inside
the unit square. Any attempt to shatter these three points using two dimensional thresholded monotone
minimum functions will fail. For example, we cannot label points I and K positive while J negative (this
is the labeling shown in the figure). This is so because the positive region of two dimensional thresholded
monotone minimum functions are axes-parallel squares or rectangles with one vertex at (1,1). This property
can be generalized to d dimensions and is formalized in Lemma 1 . The proof shows that for any d + 1
points inside the d-dimensional unit hypercube, one of them must be inside the bounding hyper-rectangle
formed by the others and the vertex (1, . . . , 1). Theorem 2 uses this fact to show that any set of m d + 1
is not shattered.

We now proceed with the lemma. Throughout this paper, we use the symbol xk to denote the k-th
coordinate of a general vector i.

Lemma 1 Let S be a set ofpoints in [0, 11d,

V7 E S, c E C7 such that {7} is labeled negative and S \{7} is labeled positive

if and only if
V7 5, a coordinate index k stzch that Yk < A wk.
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Figure 3: The labeling shown cannot be achieved using thresholded monotone minimum functions. Hence
the set {I, J, K} cannot be shattered.

Proof
=: Assuming the second condition holds, we only have to demonstrate S thresholded minimum functions
that perform the 151 partitionings as specified. For each point ff E 5, one possibility is:

P ( A x 8

\iE{k}

where 0 = {AEs\{wk + Yk}.
:4 : Consider the point !7. If i is labeled negative by some monotone thresholded minimum function

P(Ax�0) (19)
iEI

while S \ {g} labeled positive, we must have the following inequalities:

AY<O� A wi
iEI tiiES\{y"},iEI

The last one holds due to the fact that the function defined in (19)labels all the points 'üY E S\{g} positive.
Suppose Yk AIEI Y then,

YkAYi<0� A wi A Wk
iEI ti7ES\{i},iEI

which proves the required condition.
Next, we present the proposition which gives the upper bound on VC(C1).

Theorem 2 No set of in � d + 1 points in [0, 11d can be shattered by i.e. VC(C) d.

Proof
Let S be a set of m � d + 1 points in the d dimensional unit hypercube. Suppose the set can be shattered,
there must be m concept functions, each labeling only one of the in points negative.
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Since m � d + 1, and each of the point in S must satisfy the condition stated in Lemma 1, there must
be two distinct vectors , ff S and a coordinate axis k such that

Xk < A Wk (20)
iiES\{}� Yk (21)

Equation (20) follows from Lemma 1 while (21) is a consequence of S \ {}. By exchanging the
role of : and i in the above derivation, we get both Xk < I/k and Yk < xk, a contradiction. 0

Theorem 2 provides the upper bound for VC(C1). To conclude the proof, the lower bound is provided
by the following theorem.

Theorem 3 There exists a set of d points in [0, 11d that is shattered by i.e. VC(C1) � d.

Proof
This theorem is proved using an explicit construction of a set of d points in [0, 11d which is shattered by
cni72. One possibility is:

S =
i — I , ifik,Xk _ j , ifi=k,

where 4 denotes the k-th coordinate of the i-th vector in S. It is easy to see that this set is shattered by
See Yang & Maragos (1991) for details of the proof.

0
It follows immediately from Theorems 2 and 3 that the VC dimension of C is d.
We conclude this section with a numerical example. Suppose we want to learn a thresholded monotone

minimum function with maximum error rate e = 0.1 and the parameter 5 = 0.01. Take d = 50. Using the
expression for the training data bound (16), we get

p(,,d) � 28,090

This amounts to about 560 training data per input dimension.

4.2 Poly-Hy-Fi for
The notation symbols used in this section are listed below:

t = (ii, ii) = a training sample, with x being the input vector and l the label,
t+ = (+, 1) = a general positive training data,
t— = (_ , 0) = a general negative training data,

= the c-th coordinate of the vector i,
= the c-th coordinate of the vector ,
= the c-th coordinate of the vector ,

n = total number of training data,
= total number of positive training data,

n_ = total number of negative training data.
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Under the PAC learning model, the labels are assumed to be generated by a target function in the concept
class, i.e. l = t(i), to

In the first step of the algorithm, d threshold estimates 0k, 1 k d are produced. The k-th estimate
is calculated by taking the minimum of the k-th coordinate of all the + . The intuition behind this comes
from observing the shape of the positive region of a thresholded monotone minimum function, which is
a hyper-rectangle with one vertex at the point (1, . . . , 1). Under the assumption of the PAC model, the
training data is consistent with a thresholded monotone minimum function. If we form an axes-parallel
hyper-rectangle that bounds the positive training data and (1, . . . , 1), the coordinates of the faces should
give good estimates of the threshold. These are found by the minimum operation.

In the second step, the algorithm uses these d estimates to generate d thresholded monotone minimum
functions hk() = P (AiEIk Xj � 9k) . The coordinate list -Tk i5 initialized to be {1, . . . d} for all values
of k. Denote I = {Ik : 1 � k � d}. Then, the algorithm eliminates from 4 all coordinates c such that
+, xt < 0k. The rationale for this step comes from the threshold homomorphism property (Equation (4))

P(AX1�ek =
\iEIk I 'Elk

If there is an index c 4 such that xt < 0k, the positive data will be labeled negative. Therefore, the
variable c should be removed from Ik. If an Ijç becomes empty after this step, the corresponding concept
hk 5 removed from further consideration.

In the final step, hk() is eliminated if it is inconsistent with any negative training data. Therefore,
the remaining thresholded monotone minimum functions are consistent with all the training data. One of
them is returned as the hypothesis.

Before we present the correctness proof, we shall show that the algorithm is indeed polynomial time.
We assume that comparison requires unit time. The first step takes at most nd comparisons (there are
at most n positive training data, each one requires d comparisons). The next one requires at most n+d2
comparisons (there are at most d indices lists Ik, and each generates at most d comparisons for each
positive training data.) The final one also takes n_d2 comparisons with the same reasoning. Total number
of comparisons is

nd2 + n_d2 + nd = nd2 + nd = O(nd2),
which is polynomial in the number of training data and the dimension d. Since n is polynomial in d, , and

, this consistent hypothesis runs in time polynomial in these variables too. Therefore, the PAC condition
is met.

Theorem 4 asserts the correctness of the algorithm.

Theorem 4 Assume that to E The algorithm presented in this section always returns a thresholded
monotone minimum function that is consistent with all the training data.

Proof
It is obvious that the hypothesis returned by this algorithm is consistent with all the training data. We
only have to show that after the last step, i is not empty.

Suppose the target function has the functional form

t()=P(Axi �e).iEI
In the first step, one of the estimates 9k must be equal to

ö=AAxt=A(Axt =A°+ iEI iEI \+ / iEl
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since 8k iS calculated for all coordinate indices. Using this estimate, the index list generated after the
second step (I) is not empty, and will not be eliminated from I. Moreover, the variables present in I are
not removed, i.e. I 1. This fact is easy to show using the definition of 0. Finally, I is not removed from
:z: in the last step. To show this, observe that

0>8
and hence for any negative training data there is a coordinate c E I such that

x; < 9 � 8

because the must be labeled negative by the target concept. Using the fact that I 1, it is obvious
that the hypothesis corresponding to 9, I must be labeled negative for any negative training data. 0

It is important to note that we have not assumed the independence of the input variables {x1, . . . , xd}.
They can in fact be functions of each other. The only assumption made is that the target function takes
the form of a thresholded monotone minimum function in these variables. This observation is important
especially in Section 6, where the input variables for the poly-hy-fi are functionally related.

5 Learnability of Thresholded Monotone Maximum Functions
All the results in the previous section can be transcribed to apply to Ca by using the duality relation
between thresholded monotone maximum and thresholded monotone minimun functions:

P (A < o) = H P(x1 < 9) = flP(x1 � 9) = (v o)
. (22)

iEI iEI iEI iEI

The function on the left hand side resembles a complemented thresholded monotone minimum function,
with the exception of the definition of the thresholding (< 9 instead of � 9). From (22), this function is
equal to a thresholded monotone maximum function. To convert the results for to apply to we
use the following substitutions:

. Replace minimum by maximum and vice versa;

. Replace x (>)O by x2 < (�)9 and vice versa;

. Replace "positive" by "negative" and vice versa.

These substitutions should be applied carefully because some of the statements concern a set of thresholded
monotone minimum functions. In the following, we provide a summary of the theoretical results for Cax.
The proofs are omitted and refer the reader to Yang & Maragos (1991) for details.

Lemma 2 Let S be a set ofpoints in [0, 11d•

V:V S, c E Cynax such that {} is labeled positive and S \ {iT} is labeled negative

if and only if
v. e S, a coordinate index k such that yj � V Wk.

Theorem 5 No set of n d + 1 points in [0, ijd can be shattered by Cax, i.e. VC(CaX) � d.

Theorem 6 There exists a set of d elements which is shattered by Cax, i.e. VC(CaT) � d.
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Combining the two theorems, we immediately find that VC(CaX) d.
Turning to the poly-hy-fi, we can use the duality result to transform the poly-hy-fi for C to one

for Cax. In the general discussion in Section 4.2, swap the words "positive"/"negative" and "mini-
mum" / "maximum" , and replace "conjunction" by "disjunction" and "x < 9k" with "x 9k" . The
basic operations in this algorithm are the same as its C counterpart, so the computational complexity
remains polynomial (O(nd2)). The correctness proof in Section 4.2 can also be adapted using duality.

6 Learnability of Thresholded k-Mm-Max Functions
A general thresholded k-mm-max function has the form P (VT � 0), with T denoting a mm term
of size at most k (i.e. a minimum function with at most k literals in its argument). This form is very
suggestive of the connection between thresholded k-mm-max function and thresholded monotone maximum
function: the k-mm-max function (VT) is a maximum of the uncomplemented mm terms T. Using
this observation, the evaluation of a thresholded k-mm-max function can be broken up into two parts —
the first step calculates the values of all mm terms with size k. This can be considered a remapping
of the input variables into the set of mm terms R = {r = AIEI,III<k £}. The mm terms T will be
elements of R. These are the dependent variables of the thresholded monotone maximum function that is
evaluated in the second step: P (v{flIfT} r

o)
. Therefore, any thresholded k-mm-max function is

equivalent to a thresholded monotone maximum function in a higher dimensional space. In other words,
we establish a mapping between the class C_min_max and a class of thresholded maximum functions with

a larger number of input variables (CJL).
To illustrate the remapping idea, we shall use the following thresholded mm-max function

P(xi V (x A X3) � 9). (23)

This function belongs to Cmin_max, i.e. the class of thresholded mm-max functions with 3 input variables
and at most 2 literals in each of the in term. Following the remapping scheme, we introduce a set of new
variables r which are mm terms of x1 ,x2, x3 with at most 2 literals. The new variables are listed below:

rl=xl, r2=x2,
r4=x1, r5=x',

r7=x1Ax2, r8=x1Ax3, r9=x2Ax3,
r10=xçAx2, r11=x1Ax, r12=xAx,
r13 = xc A x3, r14 = x1 A x, r15 = x A x,

r16 = x A x3, ?17 X2 A x, r18 = x A x,
r19 = x1 A x, r20 = x2A x, r21 = x3 A x.

Exact numbering of the new variables is irrelevant as long as all the possible mill terms of size 2 are
present. Note that the variables r19 through r21 are formed by taking the minimum of a variable with
its complement. This is because the expression P (x Ax � 0) is not always equal to 0. The second
step in the process entails the introduction of a thresholded monotone maximum function that uses the
rn's as input. For the thresholded function in (23), the new function is P (VIE{116}r o) . Other
functions in Cmin_maz can be expressed as a thresholded monotone maximum function of 1. For example,
P(((x A x2) V (x Ax)) � 0) can be expressed as P(rio V r15 0).

Denote the number of variables in the remapped vector fby d' = RI. (In the example the dimension of
the new vector is d' = 18.) The parameter d' is a function of d and k. By a simple combinatorial argument,
one can easily show that the functional form is:

d' = (2d) + . . . + () � k(2d)k < (2d)1) (24)
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where () =
q!(p—q)!

the combination. The upper bound on d' is polynomial in the parameter d when k
is fixed.

Using the remapping idea, the domain of the k-mm-max functions X can be mapped to a subset of a
d' dimensional space X'. Also, any set of points S C X can be mapped to 5' C X'. From this observation,
we can easily prove the following theorem.

Theorem 7 VC(C_min_max) � VC(C'ax).

Proof
Consider a set S C X that is shattered by Cmin_max. The size of S is VC(C_mjn_max). Using the
remapping procedure, this set can be mapped to 5' C X' which has the same number ofelements. Moreover,
the output value of thresholded k-mm-max function c(i) is the same as that of the thresholded monotone
maximum function c'(r) after the remapping. Therefore, if the set S is shattered by a collection of concepts
{c() E C_min.max}, the set 5' will also be shattered by the remapped functions {c'(i) C'aX}. Since
the set 5' is shattered by Cax, the VC dimension of this concept class is bounded by the inequality

VC(Cax) � 15,1 = VC(Cmin_max)

0
From Section 5, the VC dimension of Cax 5 d. Also, using the upper bound on d' in Equation (24),

we get the following bound on VC(C_mjn_max).

Corollary 1 VC(Cmjn_max) � (2d)1).

Turning to the learning algorithm for C_min_mar ' we found that any thresholded k-mm-max function
becomes a thresholded monotone maximum function in the new variables r1. Moreover, there are only a
polynomial number of remapped variables r2. Therefore, the sequence of training data (3, 13) can first
be mapped into the new coordinates (i', 1'). The result is fed to the poly-hy-fi for Cax. It will return a
hypothesis in the remapped variable, which can be converted back to a thresholded k-mm-max function
easily by replacing the coordinates r by the corresponding minimum function on i. Assuming unit time for
computing a comparison, the amount oftime required by the remapping step is at most ndd' nd(2d)1).
Therefore the total time required by the algorithm is

ndd' + (nd' + nd'2) = (d + 1)nd' + nd'2 n {(d + 1)(2d) + (2d)21)} O(n(2d)21)).

7 Conclusion

In this paper, we have shown the learnability of three subclasses of thresholded mm-max functions under
the PAC model. In addition to finding polynomial bounds on the number of required training samples, we
have also devised learning algorithms that run in polynomial time.

One of our long-term goals in this research work is to apply the results in this paper to practical
applications such as recognition of hand-written characters. For example, Figure 1 shows some features
(i.e., the size histogram vectors), which, as our preliminary experiments indicate, appear to be promising
for character recognition and can be used as inputs to the mm-max classifiers.

Despite its intellectual clarity, a rather restricting assumption of the standard PAC model is the presence
of a target concept that belongs to the concept class. Therefore, it would be interesting to investigate
the learnability of thresholded mill-max functions under less restrictive models of learning, such as the
"probabilistic concept" model proposed by Schapire (1991).
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