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Abstract 

Linear time-invariant systems are well understood in the time domain either as convolutions with their impulse 
response or by describing their dynamics via linear differential equations. Their analysis in the frequency domain using 
their exponential eigenfunctions and related frequency response is also greatly facilitated via Fourier transforms. 
Attempting to extend such ideas to nonlinear systems, we present in this paper a theory for a broad class of nonlinear 
systems and a collection of related analytic tools, which parallel the functionality of and have many conceptual 
similarities with ideas and tools used in linear systems. These nonlinear systems are time-invariant dilations or erosions, 
in continuous and discrete time, and obey a supremum- or infimum-of-sums superposition. In the time domain, their 
equivalence with morphological dilation or erosion by their impulse response is established, and their causality and 
stability are examined. A class of nonlinear difference and differential equations based on max-min operations is also 
introduced to describe their dynamics. After finding that the affine signals ~tt + b are eigenfunctions of morphological 
systems, their slope response is introduced as a function of the slope ct, and related slope transforms for arbitrary signals 
are developed. These ideas provide a transform (slope) domain for morphological systems, where dilation and erosion in 
time corresponds to addition of slope transforms. Recursive morphological systems, described by max-min difference 
equations, are also investigated and shown to be equivalent to dilation or erosion by infinite-support structuring 
elements. Their analysis is significantly aided by using slope transforms. These recursive morphological systems are 
applied to the design of ideal-cutoff slope-selective filters which are useful for signal envelope estimation. 

Zusammenfassung 

Lineare zeitinvariante Systeme werden im Zeitbereich gut verstanden entweder als Faltungen mit deren Impulsant- 
wort oder indem ihre Dynamik mit linearen Differentialgleichungen beschrieben wird. Ihre Analyse im Frequenzbereich 
durch die Verwendung ihrer exponentiellen Eigenfunktionen und der verwandten Frequenzantwort wird auch durch die 
Fouriertransformation sehr vereinfacht. Mit dem Ziel solche Ideen auch auf nichtlineare Systeme auszuweiten, 
prfisentieren wir in diesem Artikel eine Theorie fiir eine umfangreiche Klasse yon nichtlinearen Systemen und eine 
Sammlung von verwandten analytischen Werkzeugen, die die gleiche Funktionalit~it und viele konzeptuelle Ahnlich- 
keiten mit Ideen und Werkzeugen habe~n, die in linearen Systemen benutzt werden. Diese nichtlinearen Systeme sind 
zeitinvariante Dilatationen und Erosionen, zeitkontinuierlich oder zeitdiskret, und folgen einer Superposition von 
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Supremum- oder Infimum der Summen. Im Zeitbereich wird ihre Gleichwertigkeit mit morphologischer Dilatation und 
Erosion durch ihre Impulsantworten hergestellt und deren Kausalit/it und Stabilit/it untersucht. Eine Klasse von 
nichtlinearen Differenzen- und Differentialgleichungen, die auf Max-Min-Operationen basieren, wird ebenfalls ein- 
gefiihrt, um ihre Dynamik zu beschreiben. Nachdem herausgefunden wurde, dab die affinen Signale art + b Eigenfunk- 
tionen yon morphologischen Systemen sind, wird ihre Steigungsantwort als Funktion der Steigung ct eingefiihrt und 
verwandte Steigungstransformationen fiir beliebige Signale entwickelt. Diese Ideen liefern einen Transformationsraum 
(Steigung) fiir morphoiogische Systeme, wobei Dilatation und Erosion im Zeitbereich mit der Addition der Steigungs- 
transformierten korrespondieren. Rekursive morphologische Systeme, beschrieben durch Max-Min Differenzen- 
gleichungen, werden ebenfalls untersucht und es wird gezeigt, dab sie gleichwertig mit Dilatation und Erosion durch 
endliche Strukturelemente sind. Ihre Analyse wird entscheidend durch Steigungstransformationen unterstiitzt. Diese 
rekursiven morphologischen Systeme werden f/Jr den Entwurf von steigungsselektiven Fiitern mit einem idealen Cutoff 
angewendet, was fiir die Sch/itzung der Einh/illenden yon Signalen niitzlich ist. 

R~sum~ 

Les syst~mes lin~aires et invariants dans le temps sont bien compris dans le domaine temporel soit ~ l'aide de 
convolution soit en d6crivant leur dynamique fi l'aide d'6quations diff6rentielles. Leur analyse dans le domaine 
fr6quentiel reposant sur les exponentielles complexes et la r6ponse fr6quentielle est facilit6 par I'existence de la 
transformation de Fourier. Dans le but d'6tendre ces id6es aux syst6mes nonlin6aires, cet article pr6sente une th6orie pour 
une large classe de syst6mes nonlin6aires ainsi qu'une s6rie d'outils qui poss6dent la m~me fonctionnalit6 et une grande 
similitude avec les outils utilis6 pour les syst6mes lin6aires. Ces syst6mes nonlin6aires sont des 6rosions et des dilatations 
invariantes dans le temps et ob6issent fi une loi de superpositions de supremum (ou infimum) de sommes. Dans le 
domaine temporel, leur 6quivalence avec les 6rosions et dilatations morphologiques est 6tablie ~i l'aide de leur r6ponse 
impulsionnelle, de plus leur stabilit6 et causalit6 est examin6e. Une classe d'bquations diff6rentielles et aux diff6rences 
bas6es sur des op6rations min-max est introduites pour d6crire leur dynamique. Apr6s avoir montr6 que les signaux 
affines ctt + b sont des fonctions propres des syst6mes morphologiques, leur r6ponse en 'pente' est introduite comme une 
fonction de la pente aet  la trarisformation de pente pour des signaux arbitraires est d6velopp6e. Ces id6es d6bouchent sur 
un domaine transform6 pour les syst6mes morphologiques off les dilatations et les 6rosions correspondent ~i des additions 
des transform6es en pente. Les syst6mes morphologiques r6cursifs, d6finis par des 6quations diff6rences min-max, sont 
6galement 6tudi6s. On montre qu'il sont 6quivalents ~t des dilatations et des 6rosions avec des 616ments structurants de 
taille infinie. Leur analyse est facilit6e par l'utilisation de la transform6e en pente. Ces systbmes morphologiques r6cursifs 
sont appliqu6s ~ la conception de filtres id6aux s61ectif en pente qui sont utiles pour restimation d'enveloppe. 

Key words." Morphological systems; Slope transforms; Max-min difference equations 

1. Introduction 

Morphological systems is a broad class of non- 
linear signal operators that have found many ap- 
plications in image analysis and nonlinear filtering. 
All morphological systems are based on parallel or 
serial interconnections of morphological dilations 

or morphological erosions O 1-16, 18, 10], 

x( t )  @ g(t) = V x(~) + g(t - ~), (1) 
"c 

x ( t )  0 g( t )  = A x(~)  - g(x - t), (2) 

where V denotes supremum and /~ denotes infi- 
mum. So far their analysis has been done only in 

the time domain by using their algebraic properties 
and lacked a transform domain. Thus it lacked 
tools whose functionality would be similar to that 
of the tools available for linear time-invariant (LTI) 
systems. By contrast, LTI  systems can be analyzed 
in the time domain either via linear differential 
equations or as convolutions via their impulse re- 
sponse, a signal that can also determine their 
causality and stability. Thanks to Fourier trans- 
forms which map signal convolution to transform 
multiplication, LTI  systems can also be analyzed in 
a transform domain using their exponential eigen- 
functions and related frequency response. 

A major question/problem then arises: Can we 
endow morphological systems with similar analytic 
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tools that have found so much use in linear sys- 
tems? The answer is yes: in this paper we introduce 
various concepts and analytic methods that enable 
us to uniquely determine the output and properties 
of these nonlinear systems in the time domain 
based solely on their impulse response. In addition, 
we develop nonlinear difference and differential 
equations that describe the time dynamics of these 
systems. Further, after finding that the line signals 
at + b are eigenfunctions of morphological systems, 
we introduce a slope response, a function of the 
slope variable 0t, which enables us to understand 
the systems behavior in a transform domain - the 
slope domain. This nonlinear analysis leads to de- 
veloping signal transforms called slope transforms 
whose properties and application to morphological 
systems have some striking conceptual similarities 
with Fourier transforms and their application to 
LTI systems. We study three types of slope trans- 
forms and their interrelationships: (i) a single- 
valued transform for signals processed by dilation 
systems and (ii) a dual transform for signals pro- 
cessed by erosion systems, both introduced by 
Maragos [8] to aid the analysis of morphological 
systems; (iii) a multivalued transform that results by 
replacing the suprema and infima of signals with 
values at stationary points, introduced by Dorst 
and Van den Boomgaard [4]. For continuous-time 
signals that are convex or concave and have an 
invertible derivative all three transforms coincide 
and become identical to the Legendre transform, 
which has found applications in various methods of 
mathematical physics [-2, 3]. For discrete-time sig- 
nals only transforms (i) and (ii) can be used, whereas 
the Legendre transform and its generalization (iii) 
cannot directly apply. 

The applications of LTI systems include cases 
where their impulse response has support of either 
infinite or finite length. However, the vast majority 
of theory and applications of morphological signal 
processing assumes that the impulse response (e.g., 
the structuring element) involved has compact sup- 
port. In discrete time, this implies that the moving 
max/min of additions takes place only over a finite 
window of input samples. There is, however, an 
important application that requires max/min 
operations by recursing on output samples. This 
occurs during the computation of the distance 

transform of digital binary images [15, 1]; e.g., 
passing in forward time a discrete binary signal 
x[n] ~ {0, ~ } as input to the recursive equation 

y[n] = min(yl -n-  1] + 1, xEn]) (3) 

and then running the result through the same equa- 
tion but backward in time creates as final output 
the distance transform of x, which is useful for 
image skeletonization, multiscale analysis, and seg- 
mentation [,15, 16, 7]. In addition, recursive rank- 
order filters [12] of the type 

yen] = rthrank{yEn-- N] . . . . .  y [n - -  1],x[n],  

x [ n + l ] , . . . , x [ , n + N ] } ,  l ~ < r ~ < 2 N + l  (4) 

include recursive max and min operations as 
special cases. However, the max-min cases are the 
most important since any rank-order operation is 
a minimum of maxima or maximum of minima 
[,10]. In this paper we introduce a theory for recur- 
sive dilations and erosions by modeling them via 
nonlinear difference equations of the max-min 
type. Whenever such an equation has a recursive 
part, we show that this corresponds to dilating the 
input signal with an infinite-support structuring 
function. Further, we derive many interesting re- 
suits concerning the impulse response, causality, 
stability, and eigenfunctions of such systems by 
drawing analogies with similar properties of linear 
systems described by linear difference equations 
[,14, 13]. Slope transforms are used to aid the ana- 
lysis of recursive morphological systems and to 
design slope-selective filters that are useful for sig- 
nal envelope estimation. Finally, we present a non- 
linear differential equation which is the continuous- 
time version of the max difference equation and 
corresponds to a realizable ideal-cutoff slope filter. 

2. Dilation translation-invariant (DTI) systems 

A signal operator ~ : x ~ - * y = ~ ( x )  is called 
a dilation translation-invariant (DTI) system if it 
distributes over the supremum of any collection 
{xl} of input signals, i.e., ~(k/~xi) = Vi~(x i )  (i.e., 
if it is a 'dilation' in the lattice-based theory of 
mathematical morphology [17, 5]), and if it is 
translation-invariant, i.e., ~[,x(t  - to) + c] = 
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c + [ ~ ( x ) ] ( t  - to) for any time shift to and any 
real constant c. These two conditions together are 
equivalent to saying that a system is DTI if it is 
time-invariant and obeys the morphological su- 
premum superposition principle 

where ci s N. 
For (one-dimensional) DTI systems we assume 

input and output signals x : E  ~ R whose domain 
E is equal to R for continuous-time signals or to 
Z for discrete-time signals, and whose range is any 
subset of R = R t3 { - 00, 00 }. The useful informa- 
tion in a signal x analyzed by a DTI system exists 
only at times t where x( t )  > - 00. Thus its support 
(or effective domain) is defined by Spt(x)__4 
{t: x( t )  > - 00 }. 

Two important aspects of a DTI system are its 
causality and stability. A system is causal (respec- 
tively anti-causal) if its output value at each time 
instant depends only on present and/or past (re- 
spectively future) input values. A system is stable if 
an absolutely bounded (within its support) input 
signal x yields a bounded (within its support) out- 
put signal y; i.e., if B, < 00 implies By < 00, where 

B~- V Ix(t)l. (6) 
teSpt(x) 

The morphological zero impulse 

#(t) ~ {0,_ t = 0 ,  
00, t ~ 0, (7) 

is an elementary signal useful for analyzing mor- 
phological systems. For example, any signal can be 
represented as a supremum of translated impulses: 

x ( t ) =  V x ( ~ ) + # ( t - ~ ) .  (8) 
f =  - o o  

Further, the output of a DTI system ~ when the 
input is the impulse, henceforth defined as its im- 
pulse response 

g(t) ~- ~ [ # ( t ) ] ,  (9) 

uniquely characterizes a DTI system in the time 
domain and determines its causality and stability, 
as shown next. 

Theorem 1. A system ~ with g = ~ ( # )  is 
(a) DTI / f i ~ ( x )  = x ~ g .  
(b) Causal iff g(t) = - oo ¥t < O. 
(c) Anti-Causal/ f ig(t)  = - 00 Vt > 0. 
(d) Stable/ f i  sup {Ig(t)l: tESpt(g)} < 00. 

Proof. (a) If ~ is a morphological dilation by g as 
in (1), then it is a DTI system. The converse follows 
from (5) and (8). (b) and (c) follow from the defini- 
tions of causality since the output can be written as 
~(x)( t )  = V , x ( t  - z) + g(z). (d) Sufficiency: If 
x and g have finite bounds Bx and Bg within their 
supports, then their dilation y = x @g is also 
bounded because ly(t)l <~ Bx + Bg for all 
t eSpt(x)@Spt(g) .  Necessity: Assume now that 

is stable. Then Bg must be finite, because other- 
wise we can find a bounded input yielding an un- 
bounded output. For example, the input 
x(t)  = I~(t) yields as output y(t) = g(t). Obviously, 
x is bounded. Thus, if Bg= 00 we get an un- 
bounded output. [] 

Thus, any DTI system is equivalent to a mor- 
phological dilation by its impulse response. Fur- 
ther, it is causal if and only if (in short, iff) its 
impulse response is right-sided, and stable iff the 
max absolute value of its impulse response (over its 
support) is finite. 

3. Slope transforms 

The lines, i.e., affine signals x ( t ) =  at + b are 
eigenfunctions of any DTI system ~ because the 
corresponding outputs are 

~ [ ~ t  + b] = at + b + G(a), (10) 

where the corresponding eigenvalue is 

G(a) = V g ( t ) -  at. (11) 
1 

We call G(~) the slope response of the DTI system. 
It measures the amount of shift in the intercept of 
the input lines with slope a. It is also conceptually 
similar to the frequency response of LTI systems 
which is their multiplicative eigenvalue for input 
exponentials, whereas G is the additive eigenvalue 
of DTI systems for input lines. In addition, viewing 
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G(0t) as a transform for the signal g(t) with variable 
the slope ~t leads us to the development of slope 
transforms for arbitrary signals. 

3.1. Continuous-time signals 

To acquire a geometrical intuition behind the 
slope transforms we precede their definitions with 
a brief summary of concepts from the closely-re- 
lated Legendre transform and some definitions of 
concave and convex signals for which the analysis 
of slope transforms is simple. 

Given a real-valued function f whose domain is 
a subset of R, f is concave iff 

pf( t  - q) + q f ( t  + p) 
f ( t )  >1 

P + q  

Yp, q > 0 and Vt. (12) 

For  equivalent definitions, see [191. If its domain is 
smaller than R, the function f can be viewed as 
concave over all ~ by allowing it to have - o o  
values at all points where it was originally unde- 
fined [191. A function f is convex if - f  is concave, 
i.e., if the t> in (12) is replaced by ~<. 

Let a signal x( t )  be concave and have an invert- 
ible derivative x '  = dx/dt. At each point (t, x( t ) )  on 
the signal's graph the tangent line has slope 

= x ' ( t )  and intercept equal to 

X = x(t)  -ot t .  (13) 

Eliminating t from (13) yields 

X(ct) = x ( ( x ' ) - ' ( c t ) ) -  a [ ( x ' ) - l ( a ) ] ,  (14) 

where f - 1 denotes the inverse of a function f. The 
tangent's intercept X, as a function of the slope, is 
the Legendre transform [2] of the signal x. 

The relation x = x( t )  can also be recovered from 
X = X(a)  as an inverse Legendre transform. This is 
based on viewing the graph of x as the lower 
envelope of all its tangent lines. Thus, by (13) we 
have X ' (a )  = - t; using this to eliminate a from 
(13) yields 

x( t )  = X ( ( X ' ) - I ( - - t ) )  + t [ ( X ' ) - x ( - - t ) ] .  (15) 

The fight-hand side is the inverse Legendre trans- 
form of X. 

If the signal x is convex, then similar ideas apply 
where the signal is viewed as the upper envelope of 
its tangent lines. 

If the signal derivative is not invertible, or the 
signal is not everywhere differentiable, or if the 
signal is neither convex nor concave, there are more 
general transforms discussed next. 

3.1.1. Slope transforms based on supremum and 
infimum 

Viewing the slope response (11) as a signal trans- 
form with variable the slope ~, Maragos [8] was 
motivated to define for any signal x : R --* ~ its upper 
slope transform as the function Xv : R --+ ~ with 

Xv(Ct) ~- V x ( t ) -  at, cteR. (16) 
teR 

The mapping between the signal and its transform 
is denoted by ~t~ :x( t )  ~ X~ (ct). 

As discussed later, the signals 0it + b are also eigen- 
functions of erosion translation-invariant systems. 
The corresponding eigenvalue is given by another 
slope transform based on infimum. Specifically, for 
any signal x: R --. ~ its lower slope transform is de- 
fined in [8] as the function X^ : • ~ R with 

X^(ct) ~- A x ( t ) -  ctt, a~R.  (17) 
teR 

Obviously, 

X^ (0t) ~< Xv (ct) Va. (18) 

Denoting the mapping between the signal and its 
lower slope transform 1 by ~¢^ :x( t )  ~ X^(~t), we 
easily find a relationship between the two slope 
transforms: 

~ '^ [x ( t ) ] (~)  = -- .~v [ - x ( t ) ] ( - ~ )  

= - ~¢v  [ - x ( - t ) ] ( a ) .  (19)  

The above definition of slope transforms was 
entirely motivated by the form of the eigenfunc- 
tions and eigenvalues of DTI and ETI systems. 

1In convex analysis [191, given a convex function f there corres- 
ponds another convex function f*(=) ~- Vtctt - f ( t )  called the 
conjugate of f. The correspondence between f and f* is one- 
to-one because f(t) = V,  at -f*(a).  The lower slope transform 
of f and its conjugate function are closely related since 
f*(a) = -- F^(0t). 
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x( t ) -  at 

t t* 

x(a) 

Fig. i. Concave signal x, its tangent with slope ct, and a line 
parallel to the tangent. 

cave intercept function x ( t ) -  ~t can be found 
exactly from its value at its unique stationary point 
t* where x'(t*) = ~. Thus, if the signal x is concave 
and has an invertible derivative, then the upper 
slope transform is equal to its Legendre transform, 
with a possible exception due to boundary effects 
[9]. For  such an example (see also Fig. 2) consider 
the concave cosine pulse 

y(t) = cos(toot), Itl ~< T/4, (20) 

where T = 21t/to o. Then y'(t) = - O9o sin(toot) 
and the maximum intercept occurs at t * =  
- arcsin(~/too)/too, where I~l ~< too, and 
larcsin( )r ~< n/2. Thus, 

Yv(~) = 1 - to~ + arcsin - -  . 
to o 

(21) 

However, there is also a close relationship with the 
Legendre transform. To see this, assume that the 
signal x(t)  is concave and has an invertible derivat- 
ive. The intercept of a line that passes from the 
point (t, x(t)) on the signal's graph and has slope 
~t is equal to x(t)  - ~t; see Fig. 1. For  a fixed ~, as 
t varies there is a time instant t* for which the 
intercept attains its maximum value. This occurs 
when the line becomes tangent to the graph; then 
we have x ' ( t* )=  ~. As ~ varies, this maximum 
intercept becomes a function of the slope ~ and is 
equal to the upper slope transform (by the latter's 
definition). Further, the maximization of the con- 

Similarly, if a signal is convex and has an invertible 
derivative, its lower slope transform is equal to its 
Legendre transform. 

Now if the signal is concave or convex but either 
(i) it does not have an invertible derivative, e.g., 
when its graph contains some line segments or (ii) it 
is not differentiable everywhere on its support, i.e., 
when it has some corner points, then its Legendre 
transform cannot be found analytically via station- 
ary points but the slope transforms still give a 
answer. An important example of case (i) is a 
signal f ( t )  = ~ot. Then f '  is not invertible, but the 
maximization of the intercept becomes simple 

0.~ 

0.9 

0.7 

~lO.e 

uJ 0.5 
z 
~ 0.4 
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1.2 

1.1 

,0.25 0 0.25 
TIME ( / COSINE PERIOD ) 

LEGENDRE TRANSFORM 

i 
-0.5 0 0.5 1 

SLOPE (/COSINE FREQUENCY ) 

Fig. 2. Concave cosine pulse and its upper slope transform (equal to the Legendre transform). 
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if we express it via the supremum in (16). 
Thus, F ~ ( a ) =  V~(ao-  a)t. Similarly, F ^ ( ~ ) =  
At(ao - a)t. Thus, 

a o t ,  , - / ~ ( a - ~ o ) ,  (22) 

aot ,~'^,/~(a - ao). (23) 

Thus, the slope transforms of a morphological sys- 
tem's eigenfunction ao t are impulses at slope %. 

If the signal is neither concave nor convex, then 
its Legendre transform is not a single-valued func- 
tion. In this case the upper (respectively lower) 
slope transform still provides a single-valued func- 
tion, which is the slope transform of the smallest 
upper concave (respectively greatest lower convex) 
envelope of the signal, as shown next. In general, 

X ^  (ct) + at <~ x( t )  ~< X~ (~) + at, V~, Vt. (24) 

Thus, x( t )  is covered from above by all the lines 
X~ (ct) + ~tt whose infimum creates the upper signal 
envelope 

~(t) =~ A Xv (~) + at. (25) 
acR 

Likewise, x( t )  is covered from below by all the lines 
X^ (~) + at whose supremum creates the lower en- 
velope 

Yc(t) ~ V x ^ ( a )  + at. (26) 
a~R 

Thus, if we view the mapping M~- 1 : X ~  ~ ~ as an 
'inverse' upper slope transform and the mapping 
d ~  -~ :X^ ~ ~ as an 'inverse' lower slope trans- 
form, the following theorem states several impor- 
tant properties of the slope transforms and their 
inverses. Its proof is in [9]. 

T h e o r e m  2 (Maragos [9]). For any si#nal 
X: ~---~ ~, 
(a) Xv (a) and ~(t)  are convex, whereas X ^  (or) and 

~(t)  are concave. 
(b) For all t, ~c(t) <~ x( t )  ~ ~(t). 
(c) At  any time instant t 

,~(t)  = x ( t )  ~ .  

px( t  - q) + qx( t  + p) 
x( t )  >1 Vp, q > O. 

P + q  
(27) 

(d) 

(e) 

At  any t, x ( t )  = ~(t) iff the >~ sign in (27) is 
replaced by <~ . 
~( t )  = x ( t )  for all t if x is concave, and ~¢ = x if 
x is convex. 
~c is the smallest concave upper envelope of  x, and 
Yc is the #reatest convex lower envelope of  x. 

Thus, there is one-to-one correspondence be- 
tween X~ (~) and the signal envelope ~(t). How- 
ever, all signals between x( t )  and ~(t) will have the 
same upper slope transform: 

x( t )  <<. y( t )  ~< Mt) Vt ~ Xv (~) = Yv (~). (28) 

If a signal x is concave and has an invertible 
derivative, then its inverse Legendre transform and 
the inverse upper slope transform become equal. 
Namely, since x is the lower envelope of its tangent 
lines, for each t x ( t )  is the minimum value of 
X(a) + at, which leads us to the inverse upper 
slope transform. Alternatively, the minimization 
over a of the convex function X(~) + at can be done 
by finding its value at the stationary point 
a * =  ( X ' ) - l ( - t ) ,  which leads to the inverse Leg- 
endre transform. However, if X is not differentiable, 
then we can directly use only the inverse upper slope 
transform. Such a case is the slope transform (22) of 
a line, where the inverse upper slope transform yields 
the answer in a simple w a y : / ~ t  - #(~ - ao) = ~ot. 

Table 1 lists several properties of the upper slope 
transform. Next we prove Property 8 which is the 
most important. The proofs of the rest can be found 
in [9]. 

= V x(~) + r ( ~ )  - ~ 

= x ( ~ )  + y(a) .  (29) 

Thus, dilation in the time domain corresponds to 
addition in the slope domain. Note the analogy 
with LTI systems where convolving two signals in 
time corresponds to multiplying their Fourier 
transforms. If two signals are concave, then their 

~ [x(t)  ~ y(t)] (~) 
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Table 1 

Properties of upper slope transform 

No. Signal: x(t)  Transform: 

X(a) = V,x(t) - at 

1. k/ici + xi(t) 

2. x( t  - to) 

3. x( t)  + aot 

4. x(rt) 

5. x ( - t )  

6. x(t)  = x(-t) 
7. rx(t), r > 0 

8. x(t)  ~) y(t) 

9. V,x(z)  + y(t  + z) 

10. x(t)  <<. y(t) Vt 

11. x(t)<~X(O) Yt 

12. x ( t )Ay ( t )  

13. x(t)  + y(t) 

~ x(t), Itl <~ T 
14. y ( t ) =  (. _ o o ,  [tl > T  

15. x(t)  + y(t), convex y 

Vici + Xi(~) 
X(a) - ato 
X(a - a0) 
X(alr)  

X ( - a )  

X(a)  = x ( - a )  

rX(a/r) 

X(a)  + Y(a) 

X ( - o t )  + Y(a) 

X(a)  <~ Y(a) Ya 

X(a)/> x(O) Va 
~< X(a)A Y(a) 
<~ A b X ( b )  + Y(oe -- b) 

Y(a) = X(a) e ( -  Tlal)  

X i ( a )  ~ Y,, (a) 

Table 2 
Examples of upper slope transforms 

No. Signal: x(t)  Transform: 
x(a) = V,x(t) - at 

1. aot + s(t) - s(~ - ao) 
2. aot + s ( - t )  - S(ao - a) 
3. #(t - to) - ato 
4. s(t - to) -- ato ~- s(a) 

x(t)  = ~0, Itl ~< T g(a) = Tlal 5. 
t - o o ,  Itl > T 

6. x ( t ) = - a o l t l ,  ao>O X(a) = f 0 ,  la l~ ao 
t ~ ,  lal > a o  

7. ~ /1  - t ~, I t l  ~ 1 l v / ~ -  ~ 2 
8. -- t l /2  a2/2 
9. -- ItlP/p, p > 1 I~tl~/q, 1/p + 1/q = 1 

10. exp(t) a l l  - log(~t)] 

( l + x / 1 - a ' / i  11. tanh(t), t ~> 0 ~/1 - ~ -  ~log [ - ~  

12. - t log( /  ) -  (1 -- t) log[1 + exp(a)] - a 
xlog(1-t),O~<t~< 1 

dilation can be done by first transforming the sig- 
nals to the slope domain, adding their upper slope 
transforms, and then applying an inverse upper 
slope transform to return to the time domain. This 
opens new ways of implementing dilations, since 
addition is a much simpler operation. 

Whatever we discussed for upper slope trans- 
forms also applies to the lower slope transform, the 
only differences being the interchange of suprema 
with infima, concave with convex, and dilation with 
erosion. 

Table 2 contains several examples of slope trans- 
forms. (For proofs see [9].) We know that the upper 
slope transform of a line ~o t is a negated impulse at 
slope 0to. Adding to it the morphological z e r o  s t e p  

s ( t ) - {  0'-oo, t<0t~>0' (30) 

makes it a fight-sided signal ~o t + s ( t )  (also called 
'causal', in analogy to the impulse response of 
causal DTI systems), whose upper slope transform 
is a negated step at slope ~0. Likewise, the left-sided 
semi-infinite line ~ o t + S ( - t )  transforms into 
a step in the slope domain. There is a duality 
between the time and slope domain, similar to the 
duality between time and frequency domains of 
Fourier transform pairs. Thus Examples 3 and 
4 state that the slope transform of a time impulse or 
step is an infinite or semi-infinite line, respectively. 
Further (see Examples 5 and 6), a rectangular time 
pulse becomes a cone in the slope domain, whereas 
a time cone transforms into a slope pulse which 
(viewed as a system's slope response) only passes 
a finite zone of slopes. 

Consider the rectangular time pulse w ( t ) ,  equal 
to 0 for t ~< I T I and - oo else, added to a signal 
x(t). This acts as a time-limiter (or rectangular time 
windowing) for x. By Property 14 in Table 1, the 
upper slope transform of the time-limited signal 
x ( t )  + w ( t )  is the erosion of the original signal's 
slope transform X(~) by the negative of the win- 
dow's slope transform W(~) = T[ ~l. The result [9] 
of this conical erosion will be to replace high-slope 
parts of the original transform X with lines of slope 
+ T. This is a kind of nonlinear blurring. Consider 

the analogy with the blurring that occurs when we 
multiply a signal x by a time window in which case 
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the original Fourier transform of x is convolved 
with the window's Fourier transform. 

Examples 7-12 deal with functions x with in- 
vertible derivatives. Hence we can find their 
slope transforms using stationary point values 
x ( t * ) -  at*, where x ' ( t*)= a. Thus, a concave 
time parabola becomes a convex parabola in the 
slope domain [6]. As observed in [4], the parabola 
plays the same role in slope transforms as the 
Gaussian function does for Fourier transforms: the 
transform belongs to the same class of functions as 
the signal. This parabola transform pair is actually 
a special case of a general class (Example 9) of 
convex-conjugate function pairs [19]. 

3.1.2. Duality between the upper and 
lower slope transform 

Consider the complete lattice Aa of all signals 
f :  E ~ R equipped with the V, A operations. Then 
the upper slope transform mapping ~¢~ :Le ~ L~ 
and its inverse ~¢~- ~ are signal operators on ~ that 
are a lattice dilation and erosion, respectively, since 
they distribute over supremum and infimum. Fur- 
ther,^for any signal feLP,  Theorem 2 states that 
f ~< f, or equivalently 

f~< .~ ~- 1 (..~f,, (f)). (31) 

The inverse upper slope transform mapping is 
closely related to the forward lower slope transform 
mapping z~¢^ since ~¢^ = ~A~ -1 = ~¢~-1~, where 
~ : f ( t )  F - . f ( - t )  is the reflection operator. Like- 

v 

wise, ~¢ ~- 1 = ~¢~ ~.  Hence, f = ~¢ ~- 1 ~ ^  ( f )  = 
~¢v ~¢ ~- ~ ( f )  since ~¢2 is the identity operator. Thus, 
for any signal f, 

~¢~ (~¢~- l ( f ) )  ~<f. (32) 

The two above results imply that (~1~- 1, ~1~ ) form 
an adjunction 2 [5], also called a morphological 
duality pair [17]. Consequently, the mapping 
.d~-~d~ :f~-~,f is a lattice closing, i.e., increasing 
(f~< g => f~< ~), extensive ( f< . f )  and idempotent 

( f = f ) .  

2The idea that the upper and lower slope transforms might be 
related via an adjunction was suggested to me by Heijmans in 
a discussion in May 1993. 

Likewise, (~¢^, ~¢ ~-1) is also an adjunction, and 
the mapping ~¢~- 1 ~1^ : f ~ - . f  is a lattice opening, 
i.e., increasing, anti-extensive (f<~f) and idem- 
potent. 

3.1.3. Slope transform based on stationary points 
For differentiable signals x, a more general ex- 

pression for their Legendre transform (14) used in 
[4] is 

Xstat(a)= ~ s t a t , { x ( t ) -  at} 

= {x(t) - at: x'(t) = a}, (33) 

where stat ,{f( t)}-~ {f(t): f ' ( t ) =  0}. Thus, for 
each a, Xstat(a) is a set of numbers since the equa- 
tion x'(t) = a might have more than one solutions. 
If x' is invertible, then Xstat is a single-valued func- 
tion identical to the Legendre transform. If x is 
neither convex nor concave, then Xstat is a multi- 
valued function, i.e., a set collection of single-valued 
transform functions. It is this multivalued Legendre 
transform that Dorst and Van den Boomgaard de- 
fined in [4] as a slope transform for differentiable 
signals. The inverse transform reconstructs the sig- 
nal from the set collection of transform functions: 

x(t) = stat~{Sst~t(a) + at}, (34) 

where for each a the operation Xstat(a)+ at is 
meant as adding to all the members of the set 
Xstat(a ) the number at. 

For example, consider the cosine over all time: 

x(t) = cos(toot), t e R ,  (35) 

which is an infinite sequence of convex and concave 
half-period cosine pulses. Then its multivalued Leg- 
endre transform consists of an infinite number of 
different functions, one for each convex or concave 
piece: 

Xst~t(a) = { Yv (a) + akT, - Yv (a) + aT(k - 0.5): 

k = 0, + 1, + 2 . . . .  }, (36) 

where Yv is the slope transform (21) of a single 
concave cosine pulse. Fig. 3 shows four of these 
transform functions. In general, the number of dif- 
ferent functions in the multivalued Legendre trans- 
form is equal to the number of consecutive convex 
and concave pieces making up the signal. This 
could be finite or infinite. When we use the inverse 
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Fig. 3. (a) Two periods of a cosine and (b) the upper or 
lower slope transforms (equal to Legendre transforms) of 
the four concave or convex cosine pulses. (The line type of 
each time pulse is the same with the line type of its 
transform.) 

of the multivalued Legendre transform, then 
minimization of each individual function in 
Xstat(~) + ~t over ~ will reconstruct the original 
signal only over the time interval over which 
the corresponding convex or concave piece is 
defined. 

In [4] several properties of the multivalued Leg- 
endre transform were given which seem similar to 
the properties of the upper/lower slope transform, 
but there are some important differences. First, the 
multivalued Legendre transform is set-valued, and 
hence adding lines to, or shifting and scaling of this 
transform has to be understood as a simultaneous 
vector translation or homothetic scaling of a set. 
Second, and most important, the dilation-addition 
property (29) of the upper slope transform must 
undergo two significant changes in order to retain 
a similar form for the multivalued Legendre trans- 
form: the supremum in the morphological signal 
dilation (i) is replaced by values at stationary 
points (and hence it becomes set-valued), and the 
addition of transforms becomes a Minkowski set 
addition. 

In general, an arbitrary signal can be analyzed 
using slope transforms in at least two different ways 
corresponding to two different goals: signal recon- 
struction, or envelope reconstruction. If the goal is 
exact signal reconstruction, then we should first 
segment the signal into consecutive convex and 
concave pieces. If the signal x is twice differentiable, 
this can be done by finding the inflection points 
x" = 0, where we have transitions between convex- 
ity and concavity. Then we find the slope transform 
of each piece, either using stationary points if it is 
a known and differentiable mathematical function, 
or using the sup/inf-based slope transforms for gen- 
eral signals. The result will generally be a set collec- 
tion of slope transforms of the signal pieces, which 
can reconstruct the signal exactly. The disadvan- 
tage here is the multivaluedness of the transform. 
Alternatively, if the analysis goal is to extract in- 
formation about the long-time behavior of the sig- 
nal, as manifested by its upper and lower envelope, 
then we should compute its upper and lower slope 
transforms and take their inverses, which give us 
the two envelopes. For  example, if the signal is the 
impulse response of a recursive DTI system (dis- 
cussed later) or if it is an amplitude-modulated 
signal, then its short-time oscillations may not be 
important. In this case, the composition of forward 
and inverse upper or lower slope transform cap- 
tures only its important (for the specific applica- 
tion) long-time structure, i.e., its upper or lower 
envelope. 
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3.2. Slope transforms for discrete-time signals we have that 

Consider sampling a continuous-time signal 
x~(t) at time instants t = nT, where n e e  is the 
integer time index and T is the sampling period. 
For applying slope transforms, the sampling can be 
modeled as addition of the original signal with 
a periodic (morphological) impulse train 

p(t) = ~/ l~ ( t -  nT). (37) 
n :  - o o  

Thus the sampled continuous-time signal is 

x~(t) = x¢(t) + p(t) = V x [ n ]  + # ( t - -  nT), (38) 
n 

where x[n] = x~(nT) is the discrete-time signal. If 
X¢(~) denotes the upper slope transform of x¢(t), 
then the upper slope transform of x,(t) is 

X~(~) = V x[n]  - ~nT ~ X¢(ct). (39) 
n 

The inequality results because the supremum in X, 
is taken only over the discrete time instants. Now if 
we define the upper slope transform of the discrete- 
time signal x[n]  by 

Xv(ot) zA_ ~/ x[n]  - ~n, ~eR ,  (40) 
n =  -oo 

Xv (ct) = Xs(¢/T) <~ X~(ct/T). (41) 

Namely, the upper slope transform of the discrete- 
time signal is a slope-scaled version of the trans- 
form of the continuous-time sampled signal and 
smaller or equal to the slope-scaled version of the 
transform of the original continuous-time signal. 
Another effect of sampling, as shown in Fig. 4, is to 
replace parts of the slope transform of the continu- 
ous-time signal with supporting lines. 

Henceforth, whenever we deal with discrete-time 
signals we shall not be concerned with whether they 
originated from sampling a continuous-time signal 
or they are inherently discrete. Further, we also 
define the lower slope transform of any discrete- 
time signal x:72 ~ R as the function 

X^ (~) ~- f~ x[n]  - ~n, ~eR.  (42) 
n = - - o o  

The definitions of inverse upper and lower slope 
transforms are identical to the continuous-time 
case, except that the time variable is discrete. The- 
orem 2 and the properties of the upper and lower 
envelopes obtained via the inverse slope transforms 
also hold in discrete time. The definitions of 
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Fig. 4. (a) Signal circle (in dashed line) x¢(t) = x/1 - t 2, It1 ~< 1, and its sampled version (in solid lines x,(t) = xc(n T) with T = 0.5. (b) 
Upper slope transforms of original circle (in dashed line) and of its sampled version (in solid line). 
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convexity and concavity remain the same as (12), 
but all the time variables are integers. Likewise, the 
properties of the discrete-time slope transforms are 
identical to all their continuous-time counterparts 
in Table 1, except for Property 4 which does not 
hold in discrete time. 

Examples 1-6 of slope transform pairs in Table 2 
also hold in discrete time in identical form, except 
that the time variables and constants must be dis- 
crete. For  example, the discrete-time pulse defined 
as x [ n ]  = 0 for Inl ~< N and - ~ else, has slope 
transform Xv(~) = NJ~I and x = ~. Further, as an 
example illustrative of (28), let y[n]  = 0  for 
n = + N and - ~ else. Then Yv (ct) = X~ (~) and 
p[n]  = y [n]  for Inl >~ N, but p[n]  > y[n]  for 
I n l < N .  

Examples 7-12 in Table 2, whose slope trans- 
form was found via stationary points, may not have 
the same form in discrete time because the derivat- 
ive-based methods to find maxima/minima of 
functions do not apply. For  instance, consider the 
discrete-time parabola 

x [ n ]  = - n2/2. (43) 

Then, for each ~, the maximum value o f x [ n ]  - 0m 
occurs at one of the two integers closest to -ct.  
This yields 

x^(~) = - ((0.5L-~J ~ + ~L-~J) 

+ ~F-~q))- (44) A (0.sp B ~ ~ 2 

Fortunately, in discrete-time the computation of 
the upper slope transform for a finite-length signal 
x[n] ,  n = 0, 1 . . . . .  N - 1, is very simple. It is equal 
to X ~ ( c t ) = m a x { x [ n ] - a n :  0 ~ < n ~ < N -  1}. 
Thus, for each slope value ~t, it requires N additions 
and multiplications and N - 1 comparisons; hence 
it has linear complexity. In contrast, the slope 
transform based on stationary points (i.e., the 
single- or multi-valued Legendre transform) cannot 
generally be computed in discrete time unless some 
approximation is done for derivatives. 

As a numerical example of discrete slope trans- 
forms consider two finite-length signals and their 
dilation: 

SLOPE TRANSFORMS 
16 . . . . . . .  

1 4 ~  Y 

~ 8  " -  \ 

6 ", \ 

4 ' " " " -  G " ~  

SLOPE 

Fig. 5. Discrete-time upper slope transforms X(=), G(=) and 
Y(c<) = X(~x) + G(c<) of the signals x[n] = 0, 2, 1 for n = 0, 1, 2, 
gin]  = 0 fo r  n = --  1, 0, 1, a n d  y[n] = x ~ gin]. 

n =  - 2  - 1 0  1 2 3 4 

x [ n ] =  - - 0 2 1 - - 

g [ n ]  = - 0 0 0 

x [ n ] @ g [ n ] = y [ n ] =  - 0 2 2 2 1 - ,  

where - denotes - ~ .  The corresponding upper 
slope transforms (shown in Fig. 5) are 

X(~) = max[0, 2 - 0t, 1 - 2~t], 

G(~) = I~ I, 

X(~t) + G(~) = Y(~) = max[~, 2, 2 - 2~, 1 - 3ct]. 

4. M a x  difference equations 

A very large class of discrete LTI systems 
[14, 13] can be described via the following linear 
difference equations: 

N M 

y [ n ] =  ~, a k y [ n - - k ] +  ~, b m x [ n - - m ] ,  (45) 
k = !  m = l  

where x is the input and y is the output signal. 
Replacing sum with maximum and multiplication 
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with addition gives us the following nonlinear max 
difference equation: 

capable of describing all discrete-time morphologi- 
cal dilations with structuring elements of finite or 
infinite length. All signals in this section are defined 
on 7/. The signal values and all coefficients ak, b,, 
are from R w { - oo }. If some ak = -- 00, the term 
with y[n  - k] is not used in the equation. N is the 
order of the equation, assuming aN > -- o0. 

Viewing (46) as a nonlinear system ~ : x  ~-* y = 
~(x) ,  we need the following concepts for its ana- 
lysis. To solve (46) in forward time n/> no we need 
N initial conditions IC[no] ,  where 

IC[n]  z~ {y[n- I], y[n- 2], ... ,y[n- N]}.  

If all the values in IC [ no] are - oo, the initial state 
of the system does not affect its output. We define 
the impulse response g of ~ as its output when the 
input is the impulse and IC [01 = - oo. Finally, to 
analyze (46) we also need two basic signals: the 
discrete-time zero impulse /~[n] and step sin] ,  
which are defined identically to their continuous- 
time counterparts. 

Consider the first-order max difference equation, 
with a, b e R, 

y[n] = max(y[n  - 11 + a, x[n]  + b). (47) 

By induction on n t> 0 we can find its solution: 

y[0] = (b + x[0] )  v (a + y [ - 1 ] ) ,  (48) 

y [ l ]  = (b + (x[1] v (x[0] + a))) v (2a + y [ -  1]), 

(49) 

y[n I = 

( b + ~ v / x [ k ] + ( n - k ) a )  V ( a ( n + l ) + y [ - 1 ] ) ' k = o  

k J 
Y 

= x [ . ]  ~ g [ . ]  (50) 

where g[n] is the impulse response equal to 

g[n l = a n + b + s C n ] = { a n _ o o ,  +b '  nn<o. >~0' (51) 

Thus the general solution y [ n ]  of (47) is the max- 
imum of the ( -  oo )-state response (i.e., the dilation 
x @g)  and the ( -oo ) - inpu t  response due only to 
the initial condition y [ - 1 ] .  The system is stable 
only if a = 0. Similar results are also true for the 
general Nth-order max difference equation. 

Initial conditions ~ -  oo could be useful in 
some applications; e.g., if y [ - 1 ]  > -  oo, the 
solution of (47) is constrained to be 
>>. a(n + 1) + y [ -  11. However, in the rest of the 

paper we shall assume - oo initial conditions. 

Theorem 3. The max difference equation (46) cor- 
responds to a causal DTI system if (i) whenever 
x[n  I = - oo for all n < no then y[n] = - o o  for 
all n < no, where no is an arbitrary but otherwise 
fixed time instant, and (ii) the required initial condi- 
tions IC[no]  are - ~ .  

Proof. It is similar to the proof in [141 that the 
linear difference equation (45) is equivalent to 
a causal LTI system if whenever x[n]  = 0 for all 
n < no then y [ n ]  = 0 for all n < no, and all the 
required initial conditions IC[no]  are zero. [] 

Henceforth we shall make the two assumptions 
of Theorem 3 for systems described by (46). There 
are two major subclasses of such DTI systems: 
Finite impulse response (FIR)  DTI systems, when 
a~ = - oo for all k. Then (46) has no recursive part, 
and the impulse response 

~'b, if n = 0 , 1 , . . . , M ,  
g[n] (52) 

- o o  if n < O , n > M  

has finite support. All these systems are stable. This 
class is identical with the class of all morphological 
dilations with finite-support structuring elements. 
Infinite impulse response ( II  R ) DTI systems, when 
ak V~ --O0 for at least one k. The example of the 
first-order system (47) demonstrates that such sys- 
tems have an impulse response of infinite support. 
The stability of the IIR systems is governed by 
Theorem l(d). 
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4.1. Recursive DTI  systems 

In the rest of this section we shall deal with 
a standard autoregressive form of (46), 

y[n] = m a x { y ( [ n -  1]) + al . . . . .  

y(n - N) + aN, x[n]},  (53) 

which is obtained by pre-dilating the input signal 
x with the finite-support signal b defined as 
bin]  = b, for n = 0 . . . . .  M and - ~ else. We also 
assume that bo = 0, because a nonzero bo only adds 
a constant bo to the output y. Thus, in the standard 
autoregressive form we ignore the non-recursive 
part of the dilation (which is understood quite well 
from the existing theory and geometric intuition 
about dilations by finite-support structuring ele- 
ments) and focus only on the recursive part. 
First-order system: From the general solution of 
(47), if a system, is described by 

y[n] = max(y[n - 1] + a l ,  x[n]) ,  (54) 

its impulse response is #[n]  = aln + s[n]. The 
upper slope transform of 9, and hence the system's 
slope response is 

+oo,  ~ < a l ,  
G ( ~ )  = - -  S(~ - -  a l )  = 0,  ~ >/al ,  (55) 

It acts as a 'slope high-pass' filter since it passes 
from the input signal only those segments whose 
slopes are >1 al .  In general, the higher the value of 
G(~) is, the more deemphasized the input's compo- 
nents with slope ~ become in the output. For 
example, G(~)=  ~ means that the component 
with slope • is completely rejected, whereas a value 
G(~) = 0 passes this slope completely unchanged. 
Nth-order system: Finding a closed-formula expres- 
sion for the impulse response is generally difficult 3 
for N > 1. Thus, we shall first find the slope re- 
sponse G and then, via inverse slope transform, 

3The impulse response of a second-order (N = 2) causal system 
described by (53) is found by induction to be 

# I n ]  = aln + max(0, (a2 -- 2al)En/2]) + s[n]. 

For N/> 3 finding 9 by induction becomes too meshy. 

find the impulse response g or its envelope 9. Ap- 
plying d v  to (53) yields 

Y(~) = G(:¢) + X(~) 

= (k=,  ( /  X ( a ) +  G ( ~ ) - k o t + a k ) v  X(~). 

(56) 

Assuming that X(~) is finite yields 

G(~) = m a x { G ( a ) -  st + al ,  ... , 

G(~) - N~ + aN,0}. (57) 

Thus, G(~) ~> 0. A nontrivial (i.e., different than oo) 
solution G is obtained as follows: Let 

ak 
~o = ~ x  -£. 

If ~ >/~o, then ak - k~ ~< 0 for all k. Hence a solu- 
tion is G(a) = 0. Now if ~ < ~o, then ak -- k~ > 0 
for some k, and assume that a,, - mot >>. ak -- k~ for 
all such k. Then G(~) must satisfy the equality 
G(~) = G(~) - ma + am. This implies G(~) = oo. 
Thus the slope response is 

G ( ~ )  = - s ( ~  - ~o) .  ( 58 )  

Applying ~ ~- 1 to G yields the upper envelope 9 of 
the impulse response 

9In]  = ~on + s i n ]  >1 g [ n ] .  (59) 

Examples of g for three different sequences { a k } are 
given in Fig. 6, where for the cases (a), (b) and (c) we 
have ~o = 0, 0.2 and -0.2,  respectively, and the 
upper envelope 9 is the half-line aon + s[n]. Out- 
puts of recursive DTI systems using various {ak } 
are shown in Fig. 7. It is evident from Figs. 6 and 
7 that, although over short time periods g has the 
shape induced by the sequence { ak } and dominates 
the output of the recursive DTI system during 
time periods when the slope of the input signals is 
smaller than ~o, over long time scales it behaves 
like its upper envelope 9. It is also interesting to 
note that by appropriately choosing the coefficients 
{ak} we can give the local variations of g many 
different patterns. For instance, many choices of 
ak < 0 for all k < N and aN = 0 make g periodic; 
such examples include the triangle sequence 
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ak = Ik -- N/21 - N / 2  (for even N) in the case of 
Fig. 6(a) which creates a periodic negative triangle 
train for 8, the sine sequence ak =--sin(nk/N) 
which produces a (negative rectified) sine wave as 
impulse response g[n] = -Isin(rtn/N)l, and nu- 
merous others. 

In general, the analysis for first-order recursive 
systems is simple: their impulse response 9 is 
a causal line and it is simple to understand the 
system's behavior in the time domain as a dilation 
by a half-line. Their slope response (obtained 
from applying the slope transform on 8) tells 
us that the system behaves as a slope high-pass 
filter. Although the insight from the slope domain 
is intrinsically interesting, it is not necessary 
because we can understand the system's behavior 
entirely in the time domain. 

However, for Nth-order systems with N > 1 
the slope domain analysis is necessary to under- 
stand the long-time dynamics of these systems. 
Finding the impulse response in the time domain 
is generally complicated and unintuitive. By 
contrast, our result in (58) offers a simple 
formula for the slope response. This turned out 
identical to the slope response of the first-order 
system, i.e., an ideal-cutoff slope-selective filter. Ap- 
plying the inverse slope transform also informs us 
that the upper envelope 0 of the impulse response is 
a causal line with slope ~t0 = maxk { ak/k }. Together 
G and 0 can describe the large-time dynamics of the 
system since they predict a long-time behavior 
equivalent to a first-order system whose cutoff 
slope is So. By 'long' here we mean much longer 
than the length N of the coefficient sequence { ak }. 
In addition, if 9 is a line, then the above analysis is 
also exact for the short-time behavior. 

4.2. Slope filters and envelope estimation 

Consider the causal recursive DTI system 
yl[n] = m a x ( y x [ n -  1] + al ,x[n])  with al < 0, 
which is a morphological dilation of the input by 
the semi-infinite line g a I- n] = a x n + s [ n ]. The out- 
put Yl In] is constrained to be /> x[n] for all n and 
hence provides a type of upper envelope of x[n]. 
As Fig. 8(b) shows, when computing y~ in forward 

time, during periods where the envelope peaks keep 
decreasing Yx falls linearly with slope ax in between 
these consecutive peaks. When the envelope peaks 
start increasing, Yl continues to fall between peaks, 
whereas it should rise. This can also be understood 
in the slope domain where the slope response of this 
system is Gl(~t) -- - s(~ - al) and hence rejects all 
negative slopes < a~ but passes all other slopes. To 
be able to also reject some positive slopes we must 
pass the input through an anti-causal system 
y2[n] ---- max(y2[n + 1] + a2, x [n] )  with a2 > 0. 
Fig. 8(c) shows the output envelope Y2 when this 
system is run backwards in time. It corresponds to 
a morphological dilation of the input by the anti- 
causal line g 2 [ n ]  = aEn + s[--n]. Its slope re- 
sponse is G 2 ( ~  ) = - s ( a  2 - ~) and hence it rejects 
all positive slopes > a 2. To symmetrize this pro- 
cess we can take the maximum y -- Yt v Y2 of the 
two envelopes as the final estimated upper envelope 
of the input, which is shown in Fig. 8(d). The map- 
ping x ~ y, i.e., the maximum of two DTI systems, 
is another DTI system with overall impulse re- 
sponse g = gl v 82 and overall slope response 
G = G1 v G 2. Thus, 

g [ n ] = {  aln'a2n, n<~on>/O ~lv 

G(~) = ~0' ax ~< ct ~< a2 (60) 
( -k o(3, else. 

To design a symmetric ideal-cutoff slope filter we 
select a2 = - al = ~o > 0 which passes slopes with 
magnitude ~< % unchanged and rejects all other 
slopes. This is the case in Fig. 8(d). However, if we 
let a~, a2 be arbitrary real numbers with the only 
constraint that a~ < a2, then the filter in (60) be- 
comes the most general ideal slope bandpass filter. 
It passes unchanged all input slopes within the 
interval [aa, a2] and rejects the rest. As we saw 
above, it corresponds to a morphological dilation 
of the input by an infinite conical structuring ele- 
ment. In discrete time, it can be easily realized as 
the maximum of a causal and anti-causal recursive 
first-order dilation. 

Consider now the problem of envelope detection 
in amplitude-modulated (AM) signals 

XAM(t ) = [1 + 2COS(tOat)]COS(Ogct), COa<<tO¢. 
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Fig. 8(a) shows one period of a sampled AM signal 
x[n] = XAM(nT), where T is sampling period, with 
to~T= ~/50, carrier cooT= ~/5, and modulation 
index 1 = 0.5. As illustrated in Fig. 8(b)-(d), we have 
applied the previous ideas on recursive DTI systems 
to estimating the upper envelope of an AM signal 
as the maximum of the outputs from a causal 
and anti-causal system, each described by 
y[n]  = max(y[n __ 1] + 0Co, x[n]).  To maximize 
the smoothness of the resulting envelope we selected 
the slope parameter 0c o to match the average slope of 

the true envelope f ( t )  = [1 + 2cos(to.t)] within 
time intervals equal to the carrier period 2~/toc. To 
avoid dependency on the location of such time inter- 
vals we also averaged over one-half the period off( t ) ,  
where df /dt <. O. This yielded 

2Acoc Tsin [2~(toJtoc)] 
/ o =  ~2 , 

which has the value ~o = 0.0374 for the example of 
Fig. 8. For envelope signals more general than a co- 
sine, the same formula may be applicable if w~ is the 
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bandwidth of the envelope. It remains to be seen 
whether the above choice of Cto is optimal according 
to some criterion. An alternative approach would be 
to adapt ~o based on previous input and output 
slopes, e.g., as some function of x [ n ] -  x [ n -  1] 
and/or y[n  - 1] - y[n  - 2]. 

The efficiency of first-order recursive DTI or ETI 
systems to estimate signal envelopes and their ex- 
tremely small complexity (two additions and three 
comparisons per output sample) makes them promis- 
ing for AM detection and other applications of envel- 
ope detection. 

Since first-order recursive DTI systems are 
capable of envelope estimation and systems of a lar- 
ger order N > 1 behave effectively as first-order sys- 
tems, the following question arises: Do we ever need 
recursive DTI systems with order N > 1? One ease 
with a 'yes' answer is when we apply them to estima- 
ting envelopes of noisy signals, because then their 
outputs would follow the envelope peaks of both the 
signal and the noise. A solution for this 
case is to replace the maximum operation in a general 
DTI system described by (46) with a more general 
rank operation. This yields systems described by the 
nonlinear equation 

y[n]  = rthrank{ { y [ n - -  k] + at: k = 1 . . . . .  N}  

w { x [ n - m ] + b , , : m = O , . . . , M } } ,  (61) 

where r = 1, . . . ,  N + M + 1. These recursive rank 
systems are a generalization of the recursive rank- 
order filters (4) studied in [12] which correspond 
to a special ease with at = 0, b,, = 0 and M = N. 
If we rank the weighted samples in descending order, 
then r = 1 corresponds to the max equation (46), 
and r = N + M + 1 corresponds to a dual rain equa- 
tion studied later. For ranks r around the middle 
value ( N +  M +  1)/2 the recursive system per- 
forms some nonlinear smoothing of the median type, 
and this could reduce the noise in the envelope 
estimation. 4 Now, as shown in [10], any rank 
operation can be obtained as the minimum of the 
maxima of several subsets of the original 

4in [12] a figure example is shown on detecting the envelope of 
a noisy AM signal by a nonrecursive rank filter of the type 
y[n] = 2nd rank{x[n - k]: Ikl ~< 4}. 

window of input/output samples. Thus, the above 
recursive rank systems can be realized as the 
minimum of several recursive DTI systems whose 
order is ~ < N + M + I .  

5. Max differential equation 

First-order discrete DTI systems described by the 
max difference equation (54) behave as slope-selective 
filters with ideal-cutoff slope response 
G(~) = - s ( a t -  al). Can we find continuous-time 
systems with the same slope response? Next we pres- 
ent a nonlinear differential equation which describes 
the time dynamics of a system with the above slope 
response. 

In the time domain such a system would corres- 
pond to a morphological dilation by a causal line 
# ( t ) = - ~ t o t + S ( t ) .  Let ~o>0 .  From Fig. 8(b) 
we can imagine that dilating a signal x( t )  by the 
half-line #(t) produces a type of upper envelope 
where, scanning toward the positive time direction, 
all the parts of the signal with slope larger than 
-Cto remain unchanged, whereas parts with slope 

smaller than - Cto are covered by line of slope - ~o 
which extends until a point of the signal graph with 
slope larger than - ct o, after which time the same 
pattern repeats. The dynamics of this dilation 
are described by the following nonlinear differential 
equation: 

y(0) = x(O), 

y'( t  +) = ~ max(x'(t +), ~o) 

1. - -  N o  

if y(t)  = x(t), 

if y(t)  > x(t), 

(62) 

where x ' ( t  +)  = limp, o[X(t + p) - x(t)]/p. The rea- 
son for using right-sided derivatives is twofold: (i) they 
are sufficient to create the forward dynamics, and (ii) 
the input and mostly the output signal might not 
possess a two-sided derivative at all points. Note that, 
when y ( t ) > x ( t )  then the output derivative 
y'(t) = y '( t  + ) =  - ~ o  exists. Obviously, the solu- 
tion of (62) is y(t) = x(t)  ~ O(t). 

It is interesting to note that replacing derivatives in 
(62) with simple one-sample differences transforms 
the max differential equation into the first-order max 
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difference equation. Specifically, if we replace continu- 
ous time t with discrete nT and 

x(t) ~ x [ n ] ,  

x'(t  +) ~-* (x[n + 1] - x[n])/T, 

y'(t +) ~ (y[n + 1] -- y[n])/T, 

then (62) becomes as follows: If y( t )=  x(t), then 
y[n] = x[n] and 

y[n + 1] - y[n] = rnax(x[n + 1] - x[n], - o~oT ~ 

which implies 

y[n + 1] = max(y[n]  - aoT, x[n  + 1]). 

If y ( t ) > x ( t ) ,  then y[n] > x [ n ]  and y [ n ] -  
y[n - 1] = - aoT; hence 

y[n] = max(y[n] ,  x [n ] )  

= max(y[n  - 1] - soT, x[n])).  (63) 

Thus, (62) is the continuous-time counterpart of 
(63). 

use the signal - /~(t)  as the zero impulse, then the 
impulse response of an ETI system 8 is defined as 
the signal f = 8 ( -  #). By working as in Theorem 1, 
the following can be shown. 

Theorem 4. A system g with f =  8 ( - la )  is 
(i) ETI iff 

8 I x ( t ) ]  = x(t)  e ( - - f ( - - t ) )  

= A x(¢) + f ( t -  z). (65) 

(ii) Causal iff f ( t )  = oo Vt < O. 
(ii) Anti-causal iff f ( t )  = oo Vt > O. 
(iii) Stable iff sup{If(t)l :  t eSp t ( f )}  < ~ .  

Thus, ETI systems are completely determined by 
their impulse response f since they correspond 
to a morphological erosion by the negated reflec- 
tion of f 

6. Erosion translation-invariant (ETI) systems 

A signal operator g : x  w-~ y is called an erosion 
translation-invariant (ETI) (system) if it is a lattice 
erosion, i.e., distributes over any infimum of inputs, 
and is translation invariant. Equivalently, it is ETI 
if it obeys a morphological infimum superposition 

c, + , ,64 ,  

and is time-invariant. It turns out that the proto- 
type ETI system is based on a morphological ero- 
sion, which is the dual of the dilation with respect 
to signal negation. Thus, ETI systems are duals of 
DTI systems, and their properties can be easily 
deduced from our previous discussion. Next we 
briefly outline the main ideas for their analysis in 
the time and slope domain. 

6.1. Time domain 

The support of signals x : E --* R analyzed via ETI 
systems is defined as Spt(x) = {t: x(t)  < oo}. If we 

6.2. Slope domain 

The attine signals x ( t ) =  st + b are eigenfunc- 
tions of any ETI system 8 because the correspond- 
ing outputs are 

g [ a t  + b] = at + b + F(s)  (66) 

where the corresponding eigenvalue 

F(s) = A T ( t ) -  at (67) 
t 

is the lower slope transform of the impulse 
response f =  8 ( - # ) .  We call F(~t) the slope 
response of the ETI system because it is added to 
the intercept of any input line with slope s. It 
plays an important role in the analysis of ETI 
systems in the slope domain since the lower slope 
transform of any output signal is the sum of the 
input slope transform and the system's slope re- 
sponse: 

y(t) = x ( t ) O ( - f ( - t ) )  ~t^} 

Y  ̂(s) = X^ (s) + F(s). (68) 
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6.3. Min difference equations 6.4. Envelope estimation 

We focus now on signals x, y: 7/--. R u { oo } ana- 
lyzed via discrete systems described by the follow- 
ing min difference equation: 

(" ) y[n] = A ak + y[n--  k] 
k = l  

A ( m = ~ o b m + X [ n - - m ] )  (69) 

for which we henceforth assume that (i) whenever 
x [n]=oo  for a l l n < n o  t h e n y [ n ] = o o  for all 
n < no, where no is an arbitrary but otherwise fixed 
time instant, and (ii) the required initial conditions 
IC(no) are ~ .  This guarantees that (69) describes 
a causal ETI system. 

Let us return to (69) describing an ETI 
system and assume that bo = 0 and b,, = ~ for 
m > 0 .  
First-order system: If N = 1, then the impulse and 
slope response are 

f [ n ] = a a n - - s [ n ]  ,~^,  F ( s ) = s ( a l - s ) .  

(70) 

Thus this system acts as an ideal slope low-pass 
filter since it eliminates all linear trends in the input 
whose slope is > at and passes all other slopes 
unchanged. 
For an Nth-order system with N > 1, applying 
~¢v to (69) and solving for F yields 

F(s)  = min[F(s )  - s + al ,  ... , 

F(s) - Ns + as, 0]. (71) 

Thus 

Ok 
V ( s )  = S (So  - s ) ,  s o  = -£ (72) 

and the convex lower envelope of f is 
v 

f [n]  = ~ o n -  s[n]. Thus a recursive Nth-order 
ETI system behaves, over time scales longer than 
N, effectively as a first-order system. Examples of 
the impulse response f of ETI systems described by 
a tenth-order min difference equation are shown in 
Fig. 6. 

Whatever we discussed for recursive DTI 
systems and their ability to estimate envelopes of 
the input signals also extends to ETI systems with 
only a few minor changes. A continuous-time ETI 
system with a symmetric slope response 

F(s)  = { 0'- oo, ]sllS' ~< So,> So (73) 

acts as an ideal-cutoff slope bandpass filter with 
impulse response 

f ( t ) =  ~oltl, So >0 .  (74) 

This ETI system yields as output a lower envelope 
of the input signal where all slopes absolutely high- 
er than So are rejected and the rest pass unchanged. 
The corresponding DTI system with impulse 
response g(t) = - so ltl generates an upper envel- 
ope of the input signal. As for the DTI system, the 
above ETI system can be realized by taking the 
minimum of the outputs of two ETI systems, 
one with causal impulse response Sot + s(t) and 
the other with anti-causal impulse response 

- Sot + s(- t) .  Each such system can be realized 
in the time domain either via eroding the input by 
a half-line or by running a dynamical system based 
on a min differential equation resulting from (62) by 
replacing the max, > and - So with min, < and 
~to. In discrete time, this differential equation 
becomes a first-order recursive min equation. 
Examples are shown in Fig. 8 where the lower 
envelopes are generated by recursive systems 
y[n] = min(y[n -T- 1] ___ So, x [n] )  run in forward 
and backward time. 

Finally, note that the DTI (respectively ETI) 
systems described by the first-order max (respec- 
tively min) differential/difference equation or equiv- 
alently via a morphological dilation (respectively 
erosion) by a line is actually a closing (respectively 
opening) in the lattice-theoretic sense because it 
is idempotent, extensive (respectively anti-exten- 
sive) and increasing. The same is true for both 
their causal and anti-causal systems, as well as 
for their max (respectively min) superpositions 
in the case of DTI (respectively ETI) systems. 
We call them envelope closing and envelope 
openino, and they are actually morphological 
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dilations and erosions by infinite line or conical 
structuring elements. 
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