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ABSTRACT

This paper presents an overview of selected topics from an
emerging new image analysis methodology that starts from
continuous models provided by partial differential equations
(PDEs) and proceeds with discrete processing of the image
data via the numerical implementation of these PDEs on
some discrete grid. We briefly discuss basic ideas, examples,
algorithms, and applications for PDEs modeling nonlinear
multiscale analysis, geometric evolution of curves and sig-
nals, nonlinear image/signal restoration via shock filtering,
and the eikonal PDE of optics. Wherever possible, we com-
pare the PDE approach with the corresponding all-discrete
method. The PDE approach is very promising for solving (or
improving previous all-discrete solutions of) many problems
in image processing and computer vision because it provides
new and more intuitive mathematical models, has connec-
tions with physics, gives better approximations to the Eu-
clidean geometry of the problem, and is supported by effi-
cient discrete numerical algorithms based on difference ap-
proximations.

1 Introduction

Digital image processing has been based traditionally on the
basic principles of digital processing of signals, which dictate
sampling the signal and then doing both the modeling and
processing in the discrete domain. Examples include the 2D
ARMA models via linear difference equations, the 2D nonlin-
ear difference equations of the max/min/rank type involved
in morphological/rank filtering, the 2D Markov models, and
the 2D discrete transforms (e.g., DFT or DCT). In one ex-
ception [20] continuous models, i.e., linear partial differential
equations (PDEs) were used to better represent discrete ran-
dom images and model their covariances.

In contrast to the all-discrete approaches which dominated
image processing, in computer vision there have been pro-
posed continuous models for several vision tasks based on
PDEs. The discrete part of such approaches comes only
in the corresponding difference equations that approximate
the solution of these PDEs. Motivations for using PDEs
include better and more intuitive mathematical modeling,
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connections with physics, and better approximation to the
Euclidean geometry of the problem. While many such con-
tinuous approaches have been linear, the majority and the
most useful ones are nonlinear, which is partly due to a gen-
eral understanding in image processing about the limitations
or inability of linear systems to successfully model several
important problems and hence about the need to develop
nonlinear approaches.

One major effort [18] was the use of PDEs in problems of
shape from shading and optical flow computation. However,
the most well known vision problem modeled via PDEs is
that of multiscale analysis, which is a useful and often re-
quired framework for many tasks such as feature/object de-
tection, motion detection, stereo, and multi-band frequency
analysis. Consider a multiscale operator T t mapping an in-
put image f to an output image T t(f) which results from
the (linear or nonlinear) interaction of f with some kernel
function dependent on a continuous scale parameter t ≥ 0:

u(x, y, 0) = f(x, y) −→ T t −→ T t(f)(x, y) = u(x, y, t)

The scale-space function u(x, y, t) holds all the history of
transforming f through all scales. From the operator view-
point, u can be viewed as the output of T t at any fixed scale
t. From an alternative viewpoint, evolution PDEs of the
type1

ut = function(uxx, uxy, uyy, ux, uy, u, x, y, t)

have been developed to model the evolution of u in scale-
space as a continuous dynamical system and view u as the
solution to the initial-value problem of the above PDE with
u(x, y, 0) = f(x, y). The PDE approach is more general
and useful; sometimes it is also the only possibility because
only in special cases the multiscale operator T t has a closed-
formula expression as some operation on f . The earliest and
most well-known PDE example is the linear heat-diffusion
PDE [24] for modeling the Gaussian scale-space [32, 55].
Dissatisfaction with the edge blurring and shifting of this
linear scale-space motivated the development of anisotropic
nonlinear diffusion PDEs for multiscale directional image
smoothing and edge detection [41, 11, 2]. Edge sharpening
and contrast enhacenment has also been modeled in [39, 3]
by nonlinear wave PDEs that can generate shocks [25]. In-
dependently from the Gaussian scale-space ideas and their

1Notation: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y,
∇u = (ux, uy), div((v, w)) = ∇ · (v, w) = vx + wy .

petro
Text Box
 Proceedings IX European Signal Processing Conference (EUSIPCO), Rhodes, Greece, Sep. 1998.



anisotropic/nonlinear improvements, there pre-existed non-
linear filters of the morphological type that can smooth while
preserving important image features and can create a non-
linear scale-space [33, 49, 28]. In [1, 8, 51, 9, 52] nonlinear
PDEs were developed to model multiscale morphological di-
lations/erosions. These morphological PDEs are related to
broader classes of nonlinear PDEs that can model nonlin-
ear dynamics in image processing. For references see [4]
and the papers in [19]. For example, representing multi-
scale morphology via distance transforms and interpreting
distance propagation as wave propagation leads to an im-
portant nonlinear PDE, the eikonal equation [7, 48] of op-
tics. This ubiquitous PDE has been applied to solving var-
ious problems in image analysis and computer vision such
as gridless halftoning, image segmentation, and shape-from-
shading [18, 53, 44, 48, 42, 23, 36, 38, 29, 30].

In parallel to the development of the above ideas, there
have been some advances in differential geometry for evolving
curves or surfaces using level set methods. Specifically, non-
linear PDEs of the Hamilton-Jacobi type were developed in
[40, 50] to model the propagation of curves embedded as level
sets of functions evolving in scale-space, using curvature-
dependent speeds normal to the curve. These PDEs of curve
evolution contain the PDE of multiscale morphological di-
lation by disks as a basic ingredient [46]. Curve evolution
has been applied to model and solve a large variety of prob-
lems in image analysis and computer vision [50, 21]. Its
success is largely due to the development [40, 50] of stable
and schock-capturing discretization schemes to numerically
solve the resulting PDEs.

In this paper we briefly discuss the above ideas as well
as the numerical implementation and applications of some
selected nonlinear PDEs. Wherever possible, we also com-
pare the PDE approach with the corresponding all-discrete
method.

2 Gaussian Scale-Space, Heat-Diffusion PDE

Following the biologically-motivated in [32] formulation of
many information extraction tasks in vision as a multi-
scale image analysis problem using linear Gaussian convo-
lutions, two other important developments were the contin-
uous Gaussian scale-space [55] and the observation in [24]
that this can be modeled via the heat diffusion equation.
Specifically, if

u(x, y, t) = f∗G(t) , G(t)(x, y) ≡ exp[−(x2+y2)/4t)]/4πt,

is the linear convolution ∗ of an image f by a 2D Gaussian
G(t) at scale t ≥ 0 (here ‘scale’ is proportional to the variance
(2t) of G(t)), then u can be generated from the linear heat
conduction (or diffusion) PDE as solution to the initial value
problem

ut = ∇2u = uxx + uyy , u(x, y, 0) = f(x, y) (1)

This diffusion law holds for an isotropic and homogeneous
medium. The popularity of this approach is due to its lin-
earity and relations to the heat PDE about which much is
known from physics and mathematics. Its big disadvantage
is that the (linear low-pass) Gaussian smoothing blurs image
edges, which makes their detection and localization difficult.
See Fig. 1 to contrast multiscale Gaussian filtering with edge-
preserving (nonlinear) morphological filters.

3 Multiscale Morphology and Dilation PDEs

The main tools of morphological image processing are a
broad class of nonlinear signal operators formed as parallel
and/or serial interconnections of the two most elementary
morphological signals operators, the dilation f⊕g and the
erosion f�g of an input signal f by a structuring function
g. Compositions of erosions and dilations yield two useful
smoothing filters: the opening f �→ (f�g)⊕g and closing
f �→ (f⊕g)�g. The above morphological signal operations
and their combinations have found a broad range of applica-
tions in image processing and computer vision; see [49, 31]
for surveys and references. Multiscale morphological opera-
tions are particularly useful for nonlinear multiscale smooth-
ing, size distributions, geometrical feature extraction, shape
analysis, and segmentation [33, 49, 28, 31, 45]. They are ob-
tained by replacing in the dilations/erosions the unit-scale
kernel g with a multiscale function g(t)(x, y) ≡ tg(x/t, y/t),
t > 0. Thus, the multiscale dilation of f by g(t) is the space-
scale function

u(x, y, t) ≡ (f⊕g(t))(x, y) = sup
(a,b)

{f(x−a, y−b)+tg(a/t, b/t)}

where u(x, y, 0) = f(x, y). In practice, a useful class of func-
tions g are defined as the supports of convex planar sets
B ≡ {(x, y) ∈ IR2 : ||(x, y)||p ≤ 1} that are the unit balls of
the metrics induced by the Lp norms || · ||p for p = 1, 2, ...,∞.
The corresponding flat structuring functions are g(x, y) = 0
if (x, y) ∈ B and −∞ else. The PDEs generating the mul-
tiscale dilations of f(x, y) by the above flat structuring ele-
ments B are [9, 4]

ut = sup
||(a,b)||p≤1

aux + buy = ||∇u||q ,
1
p

+
1
q

= 1 (2)

For example, if p = q = 2, B is the unit disk, || · ||2 = || · || is
the Euclidean norm and

ut = ||∇u|| =
√

(ux)2 + (uy)2 (3)

These simple but nonlinear PDEs are satisfied at points
where the data are smooth, i.e., the partial derivatives exist.
However, even if the initial image/signal f is smooth, at
finite scales t > 0 the above multiscale dilation evolution may
create discontinuities in the derivatives of u, called shocks,
which then continue propagating in scale-space. Thus, the
multiscale dilations are weak solutions of the corresponding
PDEs. Ways to deal with these shocks include replacing
standard derivatives with morphological sup/inf derivatives
[9, 29] or replacing the PDEs with differential inclusions [34].

The above PDEs for dilations of graylevel images by flat
structuring elements directly apply to binary images, be-
cause flat dilations commute with thresholding and hence,
when the graylevel image is dilated, each one of its thresh-
olded versions representing a binary image is simultaneously
dilated by the same element and at the same scale. How-
ever, this is not the case with graylevel structuring func-
tions. We provide two examples of PDEs generating multi-
scale dilations by graylevel structuring functions: If g is the
compact-support spherical function g(x, y) =

√
1 + x2 + y2

if x2+y2 ≤ 1 and −∞ else, the dilation PDE becomes [9, 52]

ut =
√

1 + (ux)2 + (uy)2 (4)
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Figure 1: Multiscale smoothings of the Cameraman image at scales t = 4 for Figs. (a,c,e) and t = 8 for Figs. (b,d,f). The
smoothers are: (a,b) Linear convolutions with Gaussians of standard deviation

√
2t; (c,d) Morphological clos-opening by a square of

(t+ 1) × (t+ 1) pixels; (e,f) Clos-opening by reconstruction by a square of (t+ 1) × (t+ 1) pixels.

For the infinite-support parabolic structuring function
g(x, y) = −0.5(x2 + y2) the dilation PDE becomes [52]

ut = (ux)2 + (uy)2 (5)

All the above dilation PDEs can be unified by a general
formula derived in [17] and stating that, the rate of change
of u in the scale (t) direction is equal to the upper slope
transform of the structuring function evaluated at the spatial
gradient of u; i.e.,

ut = sup
a,b

{g(x, y) − ax− bx}|a=ux,b=uy (6)

The erosion is a dual operation of dilation and is defined as
(f�g)(x, y) = infa,b{f(x+a, y+b)−g(a, b)}. The multiscale
erosion, i.e., erosion of f by g(t) can be generated from PDEs
that are exactly the same as the dilation PDEs above but
with a ‘−’ sign in front of the right-hand side.

4 Distance Transforms

For binary images, the distance transform is a compact
way to represent their multiscale dilations and erosions by
compact convex structuring elements whose shape depends
upon the norm used to measure distances. Specifically, a
binary image f(x, y) can be divided into the foreground
set S = {(x, y) : f(x, y) = 1} and the background set
Sc = {(x, y) : f(x, y) = 0}. If S⊆ IR2 is used as the domain
to measure distances from the background Sc, its distance
transform (also known as its distance function) is defined as

dS(x, y) ≡ inf
(v,w)∈Sc

{||(x− v, y − w)||} (7)

The Euclidean norm || · || can also be replaced by other
norms, e.g., by any Lp norm || · ||p. Let B⊆ IR2 be the
unit ball induced by the norm || · ||p. Then, threshold-
ing the corresponding distance transform at level r > 0
yields the morphological erosion � of S by B of radius
(scale) r: i.e., S�rB = {(x, y) : dS(x, y) ≥ r} where
rB = {(rx, ry) : (x, y) ∈ B}. Multiscale dilations of S
can be obtained from the distance transform of Sc.

Using Huygen’s construction [7], the boundaries of mul-
tiscale dilations/erosions by disks can also be viewed as
the wavefronts of a wave initiating from the original im-
age boundary and propagating with constant normal speed,
i.e., in a homogeneous medium. Thus, the distance func-
tion has a minimum time-of-arrival interpretation [5] and its
isolevel contours coincide with those of the wave phase func-
tion. Points where these wavefronts intersect and extinguish
themselves (according to the grassfire propagation principle

[5]) are the points of the skeleton (medial) axis of S [5]. Over-
all, the Euclidean distance function dS is the weak solution
of the following nonlinear PDE

||∇dS || = 1 (8)

in the interior of S. This is a special case of the eikonal PDE
||∇φ|| = η which corresponds to wave propagation in hetero-
geneous media and whose solution φ is a gray-weighted dis-
tance function, where the weights η(x, y) are inversely pro-
portional to the varying propagation speed [26, 53, 44].

In addition to being a compact representation for multi-
scale erosions and dilations, the distance transform has found
many applications in image analysis and computer vision.
Examples include skeletonization, size distributions, shape
description, object detection and recognition, segmentation.
Thus, many algorithms have been developed for its com-
putation on discrete images. To obtain isotropic distance
propagation, the Euclidean distance transform, i.e., using
the Euclidean norm || · || in (7), is desirable because it gives
multiscale morphology with the disk as the structuring ele-
ment. However, it has a significant computational complex-
ity. Discrete approaches use various techniques to obtain
integer approximations to the Euclidean distance transform
at a lower complexity. Notable such examples are the cham-
fer metrics [43, 6], computed by running recursive min-sum
difference equations over the image and thus propagating
local distances within a neighborhood mask. Their associ-
ated unit ball is a polygon whose approximation of the disk
improves by increasing the size of the mask and optimiz-
ing the local distances. In this paper, for optimal chamfer
transforms we shall use the local distances found in [10] by
minimizing the max absolute approximation error.

The continuous approach to both multiscale morphol-
ogy and Euclidean distance transforms uses the dilation PDE
(3) numerically implemented by curve evolution algorithms
(explained next). This gives a much better approximation
of Euclidean geometry.

5 Curve Evolution

Consider at time t = 0 an initial simple, smooth, closed
planar curve γ(0) which is propagated for t > 0 along its
normal vector field with speed c. Let this evolving curve
(front) γ(t) be represented by its position vector �X(p, t) =
(x(p, t), y(p, t)) and be parameterized by p so that it has its
interior on the left in the direction of increasing p. The
metric || �Xp|| =

√
x2

p + y2
p is the speed while traveling the

curve. If the curve is re-parameterized via its (Euclidean) arc



length parameter �(p, t) =
∫ p

0
|| �Xp(ξ, t)||dξ, then || �X�|| = 1.

The (Euclidean) curvature is

κ ≡ ∂ arctan(yp/xp)
∂�

=
yppxp − ypxpp

(x2
p + y2

p)3/2 (9)

A general front propagation law (flow) is

∂ �X(p, t)
∂t

= c �N(p, t) , �X(p, 0) = γ(0), (10)

where �N(p, t) is the instantaneous unit outward normal vec-
tor at points on the evolving curve, and c ≡ �Xt · �N is the
normal speed function which generally depends on local ge-
ometrical information such as the curvature, global image
properties, or other factors independent of the curve. If c = 1
or c = −1, then γ(t) is the dilation or erosion of the initial
curve γ(0) by a disk of radius t.

5.1 Eulerian Formulation & Level Set Method
To overcome the topological problem of splitting and merg-
ing and numerical problems with the Lagrangian formulation
(10), an Eulerian formulation was proposed in [40] where the
original curve γ(0) is first embedded in the surface of an ar-
bitrary 2D Lipschitz continuous function ψ0(x, y) as its zero
level set. (For example, we select ψ0(x, y) to be equal to
the distance function ±d(x, y) from the boundary of γ(0)
where + is for points inside and − is for points outside the
curve.) Then, the evolving planar curve is embedded as the
zero level set of an evolving space-time function ψ(x, y, t);
this embedding can be expressed in two equivalent ways:

γ(t) = {(x, y) : ψ(x, y, t) = 0} ⇐⇒ ψ(�P (t), t) = 0 (11)

where �P (t) = �X(p0, t) is the path of a point on the front. At
any point on the front the curvature and outward normal of
the level sets can be found from ψ; i.e.,

�N = − ∇ψ
||∇ψ|| , κ = −div(

∇ψ
||∇ψ|| ) = ∇ · �N (12)

Further, differentiating (11) yields ψt +∇ψ · �Pt = 0 which in
turn gives the PDE governing the evolution of the embedding
function:

ψt = c||∇ψ|| , ψ(x, y, 0) = ψ0(x, y) (13)

This function evolution PDE makes all level sets {(x, y) :
ψ(x, y, t) = const.} of ψ (not only the zero level) expand
with normal speed c. If c = 1, it is identical to the flat
circular dilation PDE (3) by equating scale with time. Thus,
we can view this specific dilation PDE as a special case of
the general function evolution PDE (13) where all level sets
expand in a homogeneous medium with c = 1. Propagation
in a heterogeneous medium with c = c(x, y) > 0 will lead
later to the eikonal PDE.

5.2 Curvature-dependent Flow
Consider a curve evolving by (10) with c = 1 − εκ, ε ≥ 0.
This velocity model has been studied extensively in [40, 50]
for general evolution of interfaces and in [21, 22] for shape
analysis in computer vision. When c = 1, the curvature κ
evolves according to [50]

κt = εκ�� + εκ3 − κ2 (14)

When ε > 0, the front remains smooth. However, if ε = 0,
then (14) becomes κt = −κ2 whose solution is κ(p, t) =
κ(p, 0)/[1 + tκ(p, 0)]. Thus, when c = 1, the front’s cur-
vature will develop singularities and the front will develop
corners (i.e, the curve derivatives will develop shocks – dis-
continuities) at finite time if the initial curvature is anywhere
negative. Two ways to continue the front beyond the cor-
ners are: i) If the front is viewed as a geometric curve, then
each point is advanced along the normal by a distance t, and
hence a ‘swallowtail’ is formed beyond the corners by allow-
ing the front to pass through itself. ii) If the front is viewed
as the boundary separating two regions, an entropy con-
dition [50] is imposed to disallow the front to pass through
itself. Namely, if the front is a propagating flame, then ‘once
a particle is burnt it stays burnt’ [50]. The same idea was
also used in [5] to model grassfire propagation leading to the
medial axis of a shape. It is equivalent to using Huyghen’s
principle to construct the front as the set of points at dis-
tance t from the initial front. This can also be obtained from
multiscale dilations of the initial front by disks of radii t > 0.
Both the swallowtail and the entropy solutions are weak so-
lutions [25]. See Fig. 2 for an example. As Fig. 2 shows,
when ε > 0, motion with curvature-dependent speed has a
smoothing effect. Further, the limit of the solution for the
c = 1 − εκ case as ε ↓ 0 is the entropy solution for the c = 1
case [50].

Another important case of curve evolution is when c = −κ;
then,

�Xt = −κ �N = �X�� (15)
where � is arc length. This propagation model is known
as Euclidean geometric heat (or shortening) flow. Smooth
simple curves evolving by (15) remain smooth and simple and
undergo interesting phenomena: Their perimeter shrinks as
fast as possible [14]. Any convex curve remains convex and
shrinks to a round point [14, 15]. Further, any non-convex
curve converges first to a convex curve and from there it
converges to a round point [16]. See Fig. 3 for an example.
Contrast the geometric heat flow (15) with the linear heat
flow

�Xt = �Xpp ⇐⇒ xt = xpp

yt = ypp
(16)

where the coordinate functions x(p, t) and y(p, t) satisfy the
heat PDE (1) and hence are the multiscale linear convolu-
tions of x(p, 0) and y(p, 0) with a Gaussian of variance 2t.

If the function ψ(x, y, t) embeds a curve evolving by (15)
as its zero level set, then it satisfies the evolution PDE

ψt = div(∇ψ/||∇ψ||)||∇ψ|| (17)

This smooths all level sets by propagation under their mean
curvature. It has many interesting properties and has been
studied extensively [40, 12, 4, 50].

Solutions of the Euclidean geometric heat flow (15) are
invariant with respect to the group of Euclidean transforma-
tions (rotations and translations). Extending this invariance
to affine transformations creates the affine geometric heat
flow introduced in [47]

�Xt = −κ1/3 �N = �Xαα (18)

where α is the affine arc length, i.e., a re-parameterization of
the curve such that |det( �Xα, �Xαα)| = 1. Any smooth simple
non-convex curve evolving by the affine flow (18) converges
to a convex one and from there to an elliptical point [47].
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Figure 2: Evolution of the curve (signal graph) (−p, cos(6πp)/10), p ∈ [0, 1]. Evolved curves are plotted from t = 0 to t = 0.14 at
increments of 0.02. The numerical simulation for (b,c,d) is based on the Osher & Sethian algorithm with ∆x = 0.005 and ∆t chosen
small enough for stability. (a) c = 1, ‘swallowtail’ weak solution. (b) c = 1, entropy weak solution with ∆t = 0.002. (c) c = 1−0.05κ
with ∆t = 0.0002. (d) c = 1 − 0.1κ with ∆t = 0.0001.

(a) (b) (c) (d) (e)

Figure 3: A nonconvex shape collapsing to a round point under curvature flow (c = −0.1κ). (a) Original. (b) 500 iterations.
(c) 2000 iterations. (d) 9000 iterations. (e) 14000 iterations.

5.3 Numerical Algorithm

The level set method for curve evolution with speeds c =
C−εκ, where C depends only on x, y, leads to the Hamilton-
Jacobi PDE

ψt = C||∇ψ|| − εκ||∇ψ|| (19)

If ε = 0, such flows develop shocks even if the initial data
are smooth. After the shock formation, the solutions must
be extended in a way that respects the original motion equa-
tion in conservation form and satisfies the entropy condition.
Further, it is desirable from any good discretization scheme
to be highly accurate over smooth regions, reduce oscilla-
tions, and resolve shocks by confining them to a few grid
points in a nonoscillatory way. By adapting the technology
of conservative monotone discretization schemes for shock-
producing PDEs of hyperbolic conservation laws [25], stable
and shock-capturing numerical algorithms were developed in
[40] for solving the above Hamilton-Jacobi PDEs. The main
steps of such a first-order algorithm [40] to find an approxi-
mate solution to ψt = C||∇ψ||, C = C(x, y) > 0, are:

Let Ψn
i,j be an estimate of ψ(i∆x, j∆y, n∆t) on a grid.

D+
x = (Ψn

i+1,j − Ψn
i,j)/∆x , , D−

x = (Ψn
i,j − Ψn

i−1,j)/∆x
D+

y = (Ψn
i,j+1 − Ψn

i,j)/∆y , , D−
y = (Ψn

i,j − Ψn
i,j−1)/∆y

F 2 = min2(0, D−
x ) + max2(0, D+

x ) + min2(0, D−
y )

+ max2(0, D+
y )

Ψn+1
i,j = Ψn

i,j + Cij |F |∆t , n = 1, 2, ..., (Tmax/∆t)

where Tmax is the maximum time (or scale) of interest,
∆x,∆y are the spatial grid spacings, ∆t is the time (scale)
step, and Ci,j = C(i∆x, j∆y). For stability [40], the
space/time steps must satisfy (∆t/∆x+ ∆t/∆y)Cij ≤ 0.5.

The dilation/erosion PDEs can be numerically solved via
the above algorithm. Thus, by choosing fine grids (and pos-
sibly higher order terms) an arbitrarily low error (between
signal values on the continuous plane and the discrete grid)

can be achieved in implementing morphological operations
involving disks as structuring elements. This is a signifi-
cant advantage of the PDE approach, as observed in [46].
Thus, curve evolution provides a geometrically better imple-
mentation of multiscale morphological operations with the
disk-shaped structuring element. See Fig. 4 for an example.

If ε �= 0, a discretization scheme for the curvature term
εκ||∇ψ|| in (19) must use central difference approximations
to the derivatives involved.

6 Nonlinear Diffusion & Directional Smoothing

To avoid the edge blurring of Gaussian scale-space, a non-
linear diffusion PDE was proposed in [41]

ut = div(k∇u) = k∇2u+ ∇k · ∇u (20)

where k is a varying diffusion coefficient (dependent possi-
bly on any of x, y, t, u,∇u) whose purpose is to favor in-
traregion over interregion smoothing, i.e., to inhibit or re-
duce smoothing at strong edges. This can be accomplished
if k = E(||∇u||), and E is a smooth nonincreasing function
with E(0) = 1, E(r) ≥ 0, and limr→∞ E(r) = 0. With such
a choice for k, the diffusion will be small (large) when the
edges are strong (weak), where the edge strength is measured
by ||∇u||. Typical choices of E include E(r) = exp(−ar) and
E(r) = a/(a+ r2), a > 0.

Two problems with the diffusion scheme (20) are the am-
plification of noise by the gradient and sensitivity to initial
conditions for certain choices of g. These problems were
solved in [11] by replacing the estimated edge strength ||∇u||
with ||∇G(s)∗u||, i.e., by smoothing with a Gaussian at some
fixed scale s before taking the gradient. This solution did not
have a clear geometric interpretation and the stability of the
model was not guaranteed as s → 0. A further improved
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Figure 4: Distance transforms (modulo a constant) of a binary image, obtained via: (a) (1,1) chamfer metric; (b) optimal 3 × 3
chamfer metric; (c) optimal 5 × 5 chamfer metric; (d) curve evolution.

solution was given in [2] and its simplest form is

ut = E(||∇G(s) ∗ u||)div(∇u/||∇u||)||∇u|| (21)

The term div(∇u/||∇u||)||∇u|| performs a pure anisotropic
diffusion by diffusing u only in the direction orthogonal to
∇u and not all in the direction of ∇u. The contrast term
E(||∇G(s) ∗ u||) controls the speed of diffusion and thus en-
hances the edges. From the level set method of curve evo-
lution, evolving u according to (21) propagates all its level
sets with a normal speed equal to their curvature (−κ) times
E(||∇G(s) ∗ u||).

7 Signal Restoration using Shock Filters

A class of nonlinear hyperbolic PDEs of the wave type was
proposed in [39] to deblur images and/or enhance their con-
trast by edge sharpening. For 1D images such a PDE is

ut = −|ux|F (uxx) (22)

where F is a Lipschitz continuous function satisfying F (0) =
0 and F (r)r ≥ 0. Starting at t = 0, with the blurred image
u(x, 0) = f(x) as the initial data, and running the PDE
until some time t yields a filtered image u(x, t). Its goal is
to restore blurred discontinuities (edges) sharply, accurately
and in a nonoscillatory way. Steady state is reached as t →
∞. This PDE model develops shocks at zero crossings of uxx.
Consider now a special case of (22) with F (r) = sign(r):

ut = −|ux|sign(uxx) (23)

At points x where uxx > 0, this PDE shifts parts of the
graph of u(x, t) with positive (negative) slope to the right
(left) but does not move the extrema or inflection points.
If uxx < 0 the direction of propagation reverses. Thus,
over convex regions (uxx > 0) it acts as a 1D erosion PDE
ut = −|ux| which models multiscale flat erosion of f(x) by
the horizontal line segment [−t, t], whereas over concave re-
gions (uxx < 0) it acts as a 1D dilation PDE ut = |ux| which
models multiscale flat dilation of f(x) by the same segment.
For certain piecewise-constant signals blurred via linear con-
volution with finite-window smooth tapered symmetric ker-
nels, the shock filtering u(x, 0) �→ u(x,∞) can recover the
original signal and thus achieve an exact deconvolution [39].

To produce a shock-capturing numerical method for solv-
ing (22), the following discretization sheme was proposed in
[39] (Un

i is an approximation of u(x, t) on a grid (i∆x, n∆t)):

Un+1
i = Un

i − ∆t(Fn
i )+

√
((D−

i )+)2 + ((D+
i )−)2

− ∆t(Fn
i )−√

((D−
i )−)2 + ((D+

i )+)2
(24)

where Fn
i = F (Un

i ), D±
i = ±(Un

i±1 − Un
i )/∆x,

r+ = max(0, r), and r− = min(0, r). For stability,
supi(∆t/∆x)F

n
i ≤ 0.5. When n → ∞ the above scheme

converges to a fixed point. An example of its action is shown
in Fig. 5.
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Figure 5: (a) Original periodic signal (dashed line) and its
blurring u(x, 0) (solid line) via convolution with a finite posi-
tive symmetric tapered impulse response. (b) Evolutions u(x, t)
from t = 0 until convergence (reached at 371 iterations), plot-
ted at time increments of 0.02. ∆x = 0.001, ∆t = 0.0005.

The edge sharpening produced by (24) is almost identi-
cal to that of iterating the following discrete morphological
operator

Un+1
i =

{
d = max(Un

i−1, U
n
i , U

n
i+1), Un

i ≥ (d+ e)/2
e = min(Un

i−1, U
n
i , U

n
i+1), Un

i < (d+ e)/2
(25)

At each i, the output value for the next iteration toggles
between a discrete flat dilation d (3-point moving local max)
and a flat erosion e (3-point moving local min) of the previous
iteration according to which is closer to the central initial
value Un

i . Now, both schemes (24) and (25) converge to
the same fixed point. Further, we have found that, if ∆t =
∆x, then (24) and (25) produce identical outputs at each
iteration step.

Extensions of the PDE (22) for 2D image deblurring has
also been developed in [39] by replacing |ux| with ||∇u|| and
uxx with ∇2u.

The discretization scheme (24) preserves the variation,
size and location of extrema. However, this has undesir-
able consequences in the presence of noise. Thus, it cannot
remove ‘salt-pepper’ noise and in general it may enhance
others types of noise in the blurred image. To reduce this
noise sensitivity, an improved version was proposed in [3]:

ut = −F2(G(s) ∗ uxx, G
(s) ∗ ux)ux (26)

where F2 must satisfy F2(p, q)pq ≥ 0. For example,
F2(p, q) = sign(p)sign(q). The smoothing of the derivatives



by convolving with Gaussians adds some robustness to this
shock filtering.

8 Eikonal PDE

Many tasks for extracting information from visible images
have been related to optics and wave propagation via the
eikonal PDE [7]

||∇φ(x, y)|| = η(x, y) (27)

Its solution φ(x, y) can provide shape from shading, analog
contour-based halftoning, and topographic segmentation of
an image f(x, y) by choosing the refractive index field η(x, y)
to be an appropriate function of the image [48, 18, 53, 42,
23, 38, 29]. The eikonal PDE can be seen as a stationary
formulation of the embeding function evolution PDE (13)
with positive speed c(x, y) = c0/η(x, y) > 0. Namely [40, 13],
if T (x, y) is the time at which the zero level of ψ(x, y, t)
crosses (x, y), then ||∇T || = 1/c. Setting φ = c0T leads to
the eikonal.

The solution of the eikonal PDE can be viewed as a
weighted distance function [26, 53, 44, 23, 29] between a point
(x, y) and the sources along a path of minimal optical length.
The optical length of any path is obtained by integrating the
refractive index field η(x, y) along this path and is propor-
tional to the time required for light to travel this path. Thus,
we can view the solution φ(x, y) of the eikonal as a gray-
weighted distance transform (GWDT) whose values at
each pixel give the minimum distance from the light sources
weighted by the gray values of the refractive index field. Next
we outline two ways of solving the eikonal PDE.

8.1 GWDT based on Chamfer Metrics
Let a sampled positive image be viewed as a discrete re-
fractive index field η[x, y]. A discrete GWDT of this image
(which is an approximation [53] to the solution of the eikonal
PDE ||∇u|| = η) can be obtained via the following min-sum
recursive difference equation

Un[x, y] = min{Un[x− 1, y] + aη[x, y],
Un[x, y − 1] + aη[x, y], Un[x− 1, y − 1] + bη[x, y],
Un[x+ 1, y − 1] + bη[x, y], Un−1[x, y]}

where U0[x, y] is set equal to 0 if [x, y] belongs to a wave
source point or +∞ otherwise. The constants a and b are
the local distance steps by which the chamfer distances are
propagated within a 3 × 3 neighborhood. The above recur-
sive equation is run over the whole image in forward and
backward order, iteratively (n = 1, 2, 3, ...) until stability.
At convergence, U∞ is the GWDT of f . The above is a se-
quential implementation of the GWDT. There are also other
faster implementations using queues [53, 35, 36].

The propagation of the local distances (a, b) starts at the
wave sources and moves with speed c(x, y) = c0/η[x, y]. To
improve the GWDT approximation to the eikonal’s solution,
one can optimize (a, b). Using a neighborhood larger than
5 × 5 can further reduce the approximation error but at
the cost of an even slower implementation. However, larger
neighborhood masks cannot be used with GWDTs because
they give erroneous results since the large masks can bridge
over a thin line that separates two segmentation regions.
Overall, this chamfer metric approach to GWDT is fast and
easy to implement, but due to the required small neighbor-
hoods is not isotropic and cannot achieve high accuracy.

8.2 GWDT based on Curve Evolution
In this approach, at time t = 0 the boundary of each source is
modeled as a curve γ(0) which is then propagated with nor-
mal speed c(x, y) = c0/η(x, y). The propagating curve γ(t) is
embedded as the zero level set of a function ψ(x, y, t), where
ψ(x, y, 0) = ψ0(x, y) is the signed (positive in the curve inte-
rior) distance from γ(0). The function ψ evolves according
to the PDE

ψt = c(x, y)||∇ψ|| (28)

which corresponds to curve evolution in a heterogeneous
medium with position-dependent speed c > 0, or equiva-
lently to a successive front dilation by disks with position-
varying radii c(x, y)dt. This is a time-dependent formulation
of the eikonal PDE [40, 13]. It is solved via the numerical
algorithm of [40]. The value of the resulting GWDT at any
pixel (x, y) of the image is the time it takes for the evolv-
ing curve to reach this pixel, i.e. the smallest t such that
ψ(x, y, t) ≥ 0. This continuous approach to GWDT can
achieve sub-pixel accuracy, as investigated in [23]. To reduce
the computational complexity of the above curve evolution
algorithm, in our joint work [30] we have developed a queue-
based implementation of the fast marching level set methods
of [50, 27] adapted to computing GWDTs in case of multiple
sources where triple points develop at the collision of several
wavefronts.

8.3 Ray Tracing
Ray tracing in optical media is also modeled via the eikonal.
In Fig. 6, a plane (2D optical medium) is divided into two
regions of different refractive indexes, and the path of mini-
mum optical length (least propagation time) is to be found
between two points in these regions. There we see that, the
GWDT based on curve evolution gives a better approxima-
tion of the true path of light than the GWDTs based on the
discrete (chamfer) distance transforms.

8.4 Gridless Halftoning via Eikonal PDE
Inspired by the use in [48] of the eikonal function’s contour
lines for visually perceiving an intensity image I(x, y), the
work in [53] and especially in [42] attempts to solve the PDE
||∇φ(x, y)|| = const − I(x, y) and create a binary gridless
halftone version of I(x, y) as the union of the isolevel curves
of the eikonal function φ(x, y). The larger the intensity value
I(x, y), the smaller the local density of these contour lines in
the vicinity of (x, y). This eikonal PDE approach to gridless
halftoning is indeed very promising and can simulate various
artistic effects, as shown in Fig. 7. There we also see that
the curve evolution GWDT gives a smoother halftoning of
the image than the GWDTs based on chamfer metrics.

8.5 Watershed Segmentation via Eikonal
A powerful morphological approach to image segmentation
is the watershed [37, 54] which transforms an image f(x, y)
to the crest lines separating adjacent catchment basins that
surround regional minima or other ‘marker’ sets of feature
points. In [35, 36, 38] it has been established that (in the
continuous domain and assuming that the image is smooth
and has isolated critical points) the continuous watershed
is equivalent to finding a skeleton by influence zones with
respect to a weighted distance function that uses the (one-
point) regional minima of the image as sources and ||∇f ||
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Figure 6: (a) Image of an optical medium consisting of two areas of different refractive index and the correct path of the light ray
(from Snell’s law) between two points. The paths in (b,c,d) are found by using GWDT based on: (b) optimal chamfer metric with
3 × 3 neighborhood; (c) optimal chamfer metric with 5 × 5 neighborhood; (d) curve evolution. In (b),(c),(d) the thin light contours
show the wavefronts propagating from the two source points according to the various metrics.

(a) (b) (c) (d)

Figure 7: Gridless halftoning of the Cameraman image from 100 contour lines of GWDTs obtained via: (a) (1,1) chamfer metric;
(b) optimal 3 × 3 chamfer metric; (c) optimal 5 × 5 chamfer metric; (d) curve evolution. In (a,b,c,d) the light source was at the top
left corner.

as the field of indices. (If other markers different than the
minima are to be used as sources, then the homotopy of the
function must be modified via morphological reconstruction
to impose these markers as the only minima.) Hence, it
has been proposed in [36, 38] to use existing efficient digital
watershed algorithms for finding the solution to the eikonal.

In our joint work [30] we solve the above eikonal PDE
model of watershed segmentation of an image-related func-
tion f by finding a GWDT via curve evolution (28) where
the speed is c ∝ 1/||∇f ||. Further we compare the results of
this new segmentation to the digital watershed algorithm via
flooding [54] and to the eikonal approach solved via a dis-
crete GWDT based on chamfer metrics [53, 36]. In all three
approaches, robust features are extracted first as markers of
the regions, and the original image I is transformed to an-
other function f by smoothing via alternating open/closing
at multiple scales, taking the gradient magnitude of the fil-
tered image, and changing (via morphological reconstruc-
tion) the homotopy of the gradient image so that its only
minima occur at the markers. The segmentation is done on
the final outcome f of the above processing.

In the standard digital watershed algorithm [54, 37], the
flooding at each level is achieved by a planar distance propa-
gation that uses the chess-board metric. This kind of dis-
tance propagation is non-isotropic and could give wrong
results, particularly for images with large plateaus, as we
found experimentally. Eikonal segmentation using GWDTs
based on chamfer metrics improves this situation a lit-
tle but not entirely. In contrast, for images with large
plateaus/regions, segmentation via the eikonal PDE and

curve evolution GWDT gives results close to ideal. As Fig. 8
shows, compared on a test image that is difficult (because
expanding wavefronts meet watershed lines at many angles
ranging from being perpendicular to almost parallel), our
continuous segmentation approach based on the eikonal PDE
and curve evolution outperforms the discrete segmentation
results (using either the digital watershed flooding algorithm
or chamfer metric GWDTs). However, some real images,
as in Fig. 9, may not contain many plateaus or only large
regions, in which cases the digital watershed flooding algo-
rithm may give comparable results (or slightly better for thin
elongated regions) than the eikonal PDE approach. In our
on-going work, we are currently continuing the detailed com-
parison of these two approaches.
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