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Min-Max Control with Application to Discrete
Event Dynamic Systems 1

Petros Maragos and Spyros G. Tzafestas

1 Introduction

Large classes of dynamic phenomena such as material flow in manufactur-
ing systems, traffic flow in transportation or communication networks, and
related scheduling problems can be viewed as discrete event dynamical sys-
tems (DEDS); see the papers in [7] for surveys. An efficient approach [3,9] to
model large classes of DEDS has been based on the minimax algebra [4] and
describes the time dynamics of such DEDS by using nonlinear state space
equations which algebraically resemble the linear (sum-product) equations of
linear control but in which the addition and multiplication have been replaced
by maximum and addition, respectively.

In our work we propose the following general algebraic model for such
nonlinear state-space equations of which special cases are the examples of
DEDS and related applications studied in [3,9,5]:

x(k + 1) = (A + x(k)) ∨ (B + u(k))
y(k) = (C + x(k)) ∨ (D + u(k))

(1)

where ∨ denotes pointwise maximum (or supremum), + is a max-sum ma-
trix ‘product’ defined later, x = [x1, x2, ..., xn]

T with (·)T denoting transpose
is a n-dim state vector, u is a r-dim input or control vector, and y is a m-dim
output vector. We shall refer to (1) as max-sum control systems. In applica-
tions to DEDS, the ith component xi(k) of the state vector may represent
the earliest start-up or completion time of the kth cycle of machine i, the in-
put u represents earliest availability times of parts, the output y represents

1 The authors are with Nat. Tech. University of Athens. P. Maragos’ research was
partially supported by the US NSF Grant MIP-9421677. This chapter was written
while P.M. was with the Greek Institute for Language & Speech Processing. A
summary of this work was presented at EURISCON-98, Athens, June 1998.
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earliest exit times, and the elements of the matrices A,B,C,D represent
service/delay times or activity durations. The components of the vector x,

of the vectors (or scalars) u,y and of the matrices A ∈ Rn×n
, B ∈ Rn×r

,

C ∈ Rm×n
and D ∈ Rm×r

are from the set R = R ∪ {−∞,∞} of extended
real numbers. In general, the max-sum matrix ‘product’ + of an arbitrary
m×n matrix A = [aij ] with an arbitrary n× p matrix B = [bij ] is the m× p
matrix M = [mij ] defined as

M = A + B , mij =
n∨

k=1

aik + bkj (2)

with a+ (−∞) = −∞ for any a ∈ R.
Replacing (in applications to DEDS) the meaning of the state, input, or

output vectors as the latest possible values of the corresponding timing events
leads to a dual algebraic model for control, which is obtained by replacing in
(1) maximum (∨) with minimum (∧) and the max-sum ( + ) with a min-sum
matrix product ( + ′):

x(k + 1) =
(
A + ′x(k)

)
∧
(
B + ′u(k)

)
y(k) =

(
C + ′x(k)

)
∧
(
D + ′u(k)

) (3)

where the min-sum matrix ‘product’ + ′ of an arbitrary m× n matrix A =
[aij ] with a n× p matrix B = [bij ] is the m× p matrix M = [mij ] defined as

M = A + ′B , mij =

n∧
k=1

aik +′ bkj (4)

with +′ being regular addition extended by the rule a +′ (∞) = ∞ for any

a ∈ R. We shall refer to (3) as min-sum control systems.
In our work we view the nonlinear state-space equations (1) and (3) as de-

scribing a large class of nonlinear dynamical systems whose system-theoretic
and control aspects we call max-min control. This work deals with the theory
of max-min control. We begin with some observations from its applications to
DEDS and nonlinear filtering (of the morphological type). Then, our contri-
butions include the following: 1) Representation of the matrix-based vector
transformations and the signal transformations induced by the system in
terms of nonlinear operators acting on vector or signal lattices. 2) Derivation
of the complete solution of (1) in the discrete time domain and decomposition
of this solution into two parts due, respectively, to the initial state and to the
input. 3) Description of the latter part of the system’s response in terms of
nonlinear convolutions (of the morphological type) of the input signal with
an appropriately defined impulse response of the system. 4) Study of stabil-
ity, both via the system’s impulse response and via its eigenvalues as defined
in minimax algebra. 5) Study of controllability and observability by devel-
oping solutions based on minimax algebra and lattice operators. 6) Study of
feedback.
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2 Applications

2.1 Modeling DEDS

Max-min control systems have been used in [9,5] to model the dynamics of the
start-up and completion times of machines connected in serial and/or parallel
production lines. Figure 1 shows a serial production line of two machines and
one buffer. Assume that the service/process times of the two machines are

u(k)
−→

Machine M1

proc.time=m1

f1(k)
−→

Buffer
capacity=b

x1(k)
−→

Machine M2

proc.time=m2

x2(k) = y(k)
−→

Fig. 1. A serial (assembly) production line.

constants m1,m2, the capacity of the buffer is an integer b ≥ 1, and the
transition times to transport machined parts from machine to buffer or from
buffer to machine are zero. Let us define by u(k) the arrival time of the
materials needed for the kth performance cycle of machine M1, by y(k) the
exit (output) time of the kth product from machineM2, by si(k) the start-up
time of the ith machine, by fi(k) the completion time of the ith machine, and
by xi(k) the output time from the ith machine for its kth performance cycle.
Note that fi(k) = si(k) + mi, i = 1, 2. The first cycle starts at k = 0 and
assume that u(k) = y(k) = si(k) = fi(k) = xi(k) = −∞ for all k < 0 and the
buffer was initially empty. If the buffer has infinite capacity (b = ∞), then
there is no blocking and x1(k) = f1(k) ∀k. But if b < ∞, there is blocking
and x1(k) ̸= f1(k); i.e.,

b <∞ =⇒ x1(k) = max[f1(k), x2(k − b)] (5)

Thus, M1 cannot output its machined part at cycle k before M2 has finished
its task at cycle k−b. But the output time ofM2 is identical with its comple-
tion time. Combining all the above leads to the following state equations for
the output times of the two machines in Fig. 1 (valid for two extreme values
of b: b = 1 or b = ∞):[
x1(k + 1)
x2(k + 1)

]
=

[
m1 θ

m1 +m2 m2

]
+

[
x1(k)
x2(k)

]
∨
([

m1

m1 +m2

]
+ u(k + 1)

)
y(k) = [−∞, 0] +

[
x1(k)
x2(k)

]
(6)

where θ = 0 if b = 1 and θ = −∞ if b = ∞.

2.2 State-Space Models of Nonlinear Filters

A very large class of discrete linear time-invariant systems used in control
and signal processing [2,8,13] can be described via the following class of linear
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difference equations

y(k) =

n∑
i=1

aiy(k − i) +

p∑
j=0

bju(k − j) (7)

Replacing sum with maximum and multiplication with addition gives us the
following nonlinear max-sum difference equation [12]

y(k) =

(
n∨

i=1

ai + y(k − i)

)
∨

 p∨
j=0

bj + u(k − j)

 (8)

capable of modeling a large class of morphological systems used in nonlinear
signal processing and image analysis [10,11,15].

The nonlinear state equations of (1) (or of (3)) can also model the dynam-
ics of nonlinear discrete-time filters of the morphological type described by
the above max-sum (or min-sum) difference equation. Specifically, if p = 0,
setting x1(k) = y(k − n), x2(k) = y(k − n + 1), ..., xn(k) = y(k − 1) and
choosing matrices

A =


−∞ 0 −∞ . . . −∞
−∞ −∞ 0 . . . −∞
...

...
...

−∞ −∞ −∞ . . . 0
an an−1 an−2 . . . a1

 , B =


−∞
−∞
. . .
−∞
b0

 , C = [an . . . a1]
T , D = b0

models (8) as a special case of (1).

3 Representation of Matrix and Signal Operations by
Lattice Dilations and Erosions

Our set of scalars will be R. The triple (R,∨,∧) is a complete distributive
lattice with partial order the standard relation ≤ among extended real num-
bers.

3.1 Vector Lattice

Consider now the vector space L = Rn
, equipped with the following ‘supre-

mum’ and ‘infimum’ operation. Given two vectors x,y ∈ L, their supre-
mum is defined as the vector z = x ∨ y with2 zi = xi ∨ yi, i = 1, ..., n.
Similarly we define the ‘infimum’ of vectors by replacing ∨ with ∧. Then,
(L,∨,∧) is also a complete distributive lattice with an induced partial order

2 Notation: IfM = [mij ] is a matrix, its (i, j)th element is also denoted as {M}ij =
mij . Similarly, if x is a vector, its ith element is denoted as {x}i or simply xi.
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defined componentwise; i.e., x ≤ y means xi ≤ yi ∀i. Of interest are oper-
ators ψ on L (i.e., vector transformations) that are increasing, i.e., x ≤ y
implies ψ(x) ≤ ψ(y). Elementary increasing operators are the translations
τv(x) = v + x, which add a scalar v to a vector x componentwise. Actually,
the set T = {τv : v ∈ R} of translations forms a commutative group under
composition τ vτ r(x) = τ v(τ r(x)) = τ v+r(x). If we define the elementary
vectors

ei ≡ [−∞, ...,−∞, 0,−∞, ...,−∞]T

with a zero at the ith position and −∞ elsewhere, then each vector x =
[x1, ..., xn]

T can be represented as a max of translated elementary vectors:

x =
n∨

i=1

xi + ei =
n∨

i=1

τxi(ei) (9)

Two very important types of increasing operators are the dilations δ and the
erosions ε which are defined [16,6] as operators that distribute over sup and
inf, respectively:

δ(
∨
i

xi) =
∨
i

δ(xi), ε(
∧
i

xi) =
∧
i

ε(xi) (10)

Two special examples of dilation (δM ) and erosion (εM ) are, respectively,
the max-sum and min-sum ‘product’ of a matrix M with an input vector:

δM (x) ≡ M + x, εM (x) ≡ M + ′x (11)

An operator ψ on L is called translation-invariant or simply a T-operator iff
it commutes with any translation, i.e., iff τψ = ψτ ∀τ ∈ T. The following
theorem establishes a two-way correspondence between the max-sum and
min-sum matrix-based vector transformations and the T-dilations and T-
erosions.

Theorem 1. (a) Any translation-invariant dilation δ on L = Rn
can be

represented as a matrix-based dilation δM where M = [mij ] with mij =
{δ(ej)}i, and vice-versa.
(b) Any translation-invariant erosion ε on L can be represented as a matrix-
based erosion εM where M = [mij ] with mij = {ε(ej)}i, and vice-versa.

Proof: (a) Let δ be a T-dilation on L. For any x = [x1, ..., xn]
T ∈ L we have

x =
∨n

j=1 τxj (ej). Hence,

δ(x) = δ

 n∨
j=1

τxj (ej)

 =
n∨

j=1

δ(τxj (ej)) =
n∨

j=1

τxj (δ(ej)) =
n∨

j=1

δ(ej) + xj

Hence, by defining the matrix M = [mij ] = [δ(e1), ..., δ(en)] with mij =
{δ(ej)}i, we obtain

{δ(x)}i =
n∨

j=1

mij + xj
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which implies that δ(x) = M + x. Conversely: Consider an operator δ on L
defined by δ(x) = M + x. Then, if xk = [xk1, ..., xkn]

T is an indexed set of
vectors, for each i = 1, ..., n we have

{δ(
∨
k

xk)}i =
n∨

j=1

mij + (
∨
k

xki) =
∨
k

n∨
j=1

mij + xki = {
∨
k

δ(xk)}i

Thus, δ(
∨

k xk) =
∨

k δ(xk) and hence δ is a dilation. Further, for each
translation τ v we have for each i = 1, ..., n:

{τ v(δ(x))}i =

 n∨
j=1

mij + xj

+ v =
n∨

j=1

mij + xj + v = {δ(τ v(x))}i

Thus, τ v(δ(x)) = δ(τ v(x)) and hence δ is also translation-invariant.
(b) The proof is identical to that of (a) by replacing dilation with erosion
and ∨ with ∧. Q.E.D.

3.2 Signal Lattice

Consider the set Fun(Z,R) of all discrete-time signals f : Z → R with

values form R. Equipped with pointwise sup ∨ and inf ∧, this becomes a
complete distributive lattice L with partial order the pointwise signal relation
≤. The signal translations are the operators τ i,v(f)(k) = v+ f(k− i), where
(i, v) ∈ Z×R and f(k) is an arbitrary input signal. An operator on L is called
translation-invariant iff it commutes with any such translation. Consider now
two elementary signals, called upper impulse (q∨) and lower impulse (q∧):

q∨(k) ≡
{
0, k = 0
−∞, k ̸= 0

, q∧(k) ≡
{
0, k = 0
+∞, k ̸= 0

then every signal f can be represented [12] as a sup of translated upper
impulses or as inf of translated lower impulses:

f(k) =
∨
i

f(i) + q∨(k − i) =
∧
i

f(i) +′ q∧(k − i)

Consider now operators on L that are dilations (resp. erosions), i.e., systems
that distribute over any sup (resp. inf) of input signals. Special cases of
dilation and erosion systems are, respectively, the supremal convolution ⊕
and the infimal convolution ⊕′ of two signals f and g defined by

(f⊕g)(k) ≡
∨
i

f(i) + g(k − i), (f⊕′g)(k) ≡
∧
i

f(i) +′ g(k − i)

These two nonlinear convolutions are known in optimization [1], convex anal-
ysis [14], and especially in morphological signal processing where they (under
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the names of signal dilation and erosion) have found numerous applications
in nonlinear filtering and computer vision [15,10,11]. The following theorem
from [12] characterizes all translation-invariant dilation or erosion systems as
nonlinear convolutions of the morphological type between the input signal
and the system’s impulse response.

Theorem 2. [12] (a) An operator ∆ on the signal lattice Fun(Z,R) is a
translation-invariant dilation system iff it can be represented as the supremal
convolution of the input signal with the system’s upper impulse response h∨ =
∆(q∨).

(b) An operator E on the signal lattice Fun(Z,R) is a translation-invariant
erosion system iff it can be represented as the infimal convolution of the input
signal with the system’s lower impulse response h∧ = E(q∧).

4 State and Output Responses

Based on the above lattice representations of max-sum matrix operations, the
basic state-space model of a max-sum control system can now be represented
via matrix-based dilations:

x(k + 1) = δA[x(k)] ∨ δB [u(k)]
y(k) = δC [x(k)] ∨ δD[u(k)]

(12)

Solving the state-space equations by using induction on k yields the state
response:

x(k) = A(k) + x(0) ∨
(∨k−1

i=0
A(k−1−i) + B + u(i)

)
= δkA[x(0)] ∨

(∨k−1

i=0
δk−1−i
A δB [u(i)]

) (13)

where A(k) denotes the k-fold max-sum matrix product of A with itself for
k ≥ 1 and A(0) = In where In is the n× n identity matrix I in max algebra
consisting of zeros on its diagonal and −∞ elsewhere.

The above result yields in turn the output response:

y(k) = δCδ
k
A[x(0)]︸ ︷︷ ︸

‘zero’-input resp.

∨
(∨k−1

i=0
δCδ

k−1−i
A δB [u(i)]

)
∨ δD[u(k)]︸ ︷︷ ︸

yzs(k) ≡ ‘zero’-state resp.

(14)

Thus, the output response is found to consist of two parts: (i) the ‘zero’-input
response which is due only to the initial conditions x(0) and assumes an input
equal to −∞, and (ii) the ‘zero’-state response which is due only to the input
x(0) and assumes initial conditions equal to −∞.

For single-input single-output systems the mapping u(k) 7→ yzs(k) can
be viewed as translation-invariant dilation system ∆. Hence, the ‘zero’-state
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response can be found as the supremal convolution of the input with the
impulse response h = ∆(q∨) of ∆:

yzs(k) = ∆(u)(k) =
∨
i

u(i) + h(k − i) (15)

Assuming the system is initially at rest, its impulse response is found to be

h(k) =


−∞, k < 0
D, k = 0

C + A(k−1) + B, k > 0

(16)

The last two results can be easily extended to multi-input multi-output sys-
tems.

5 Elements from Max Algebra

In this section we summarize some results of minimax algebra, mainly from
[4], which are useful for our subsequent analysis.

Solving Max-Sum Equations: Let A ∈ Rm×n
and b ∈ Rm

. The set
of solutions of

A + x = b (17)

over R is either empty or forms a commutative semigroup under vector ∨. In
[4] necessary and sufficient conditions are given for the existence and unique-
ness of such solutions. One such result important for our analysis is given
next, by using the conjugate matrix A∗ where {A∗}ij = −{A}ji for all i, j.

Theorem 3. [4] Equation (17) has at least one solution iff x = A∗ + ′b is
a solution; and x = A∗ + ′b is then the greatest solution.

Vector Independence: Eq. (17) can also be written as

n∨
j=1

a(j) + xj = b (18)

where a(j) ∈ Rm
, j = 1, ..., n, are the n consecutive columns of A. If xj >

−∞ ∀j, we say that b is max-sum dependent on all the a(j), ..., a(n). By
negation of max-sum dependence, the vectors a(j), ..., a(n) are called max-
sum independent iff none of them is max-sum dependent on the others. A
more useful (for our analysis) type of independence is the following. The
vectors a(j), ..., a(n) are called strongly max-sum independent (SMI) iff there
exists a finite b ∈ Rm

that has a unique expression of the form (18) with all
xj finite and the max of each row and column of A is a finite real.

Theorem 4. [4] The vectors a(j), ..., a(n) are SMI iff there exists a finite
b ∈ Rm

such that (17) is uniquely soluble.
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Matrix Rank: If we can find r columns of A (1 ≤ r ≤ n), but no more,
that are SMI, then A is said to have column-rank equal to r.

Graph of a Matrix: Each square matrix A = [aij ] ∈ Rn×n
can be

represented by a directed weighted graph Gr(A) that has n nodes, is strongly
complete, i.e., for each pair of nodes there is a corresponding directed graph
branch (arc) joining them, and the weight of each arc joining a pair of nodes
(i, j) is equal to aij . Consider a path on the graph, i.e., a sequence of nodes
P = (i0, i1, ..., it); its length L(P ) and weight W (P ) are defined, respectively,
by:

L(P ) ≡ # arcs on P = t, W (P ) ≡ ai0i1 + ...+ ait−1it

A path is called a circuit if i0 = it; the circuit is elementary if the nodes
i0, ..., it−1 are pairwise distinct. For any circuit P we can define its average
weight by W (P )/L(P ). Let

λ(A) ≡
∨

all circuits P of A

W (P )

L(P )
(19)

be the maximum average circuit weight in Gr(A). Since Gr(A) has n nodes,
only elementary circuits (with lenth ≤ n) need be considered in (19). There
is also at least one circuit whose average weight coincides with the maximum
value (19); such a circuit is called critical.

Definite and Metric Matrices: A matrix A is called definite if every
circuit in its graph has weight ≤ 0 and at least one such circuit has weight
= 0. The metric matrix generated by a matrix A is defined by

Γ (A) ≡ A ∨A(2) ∨ ... ∨A(n) (20)

Eigenvalues, Eigenvectors: Given a square matrix A = [aij ] ∈ Rn×n
,

we say that x ∈ Rn
is an eigenvector of A and λ ∈ R a corresponding

eigenvalue of A if
A + x = λ+ x (21)

If we can find finite λ and x satisfying (21), then we say that the eigenproblem
is finitely soluble for A. If A is definite, its associated graph Gr(A) contains
at least one circuit with zero weight. An eigennode is any node on such a
circuit.

Theorem 5. [4] Let A be definite. Then:
(a) j is an eigennode of Gr(A) iff {Γ (A)}jj = 0.
(b) If j is an eigennode of Gr(A), then the jth column of Γ (A) is an eigen-
vector of A whose corresponding eigenvalue is zero.

Thus, columns of Γ (A) that correspond to eigennodes provide eigenvectors
for A, which are called fundamental eigenvectors. Two such eigenvectors are
called equivalent if their corresponding eigennodes belong to the same critical
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circuit. Max-sum combinations of non-equivalent fundamental eigenvectors
generate the eigenspace of A, whose elements are eigenvectors of A with
corresponding eigenvalue = 0.

Theorem 6. [4] (a) If the eigenproblem for A is finitely soluble, then every
finite eigenvector has the same unique finite eigenvalue, called the principal
eigenvalue, which is equal to the maximum average circuit weight of A de-
fined in (19). All finite eigenvectors of A lie in the eigenspace of the definite
matrix A − λ(A). The non-equivalent fundamental eigenvectors which gen-
erate this space are SMI.
(b) The eigenproblem for A is finitely soluble iff λ(A) is finite and Φ(A− λ(A))
has rows and columns whose maxima are finite, where Φ(A− λ(A)) is any
matrix whose columns form a maximal set of non-equivalent fundamental
eigenvectors for the definite matrix A− λ(A).
(c) If A is finite, then the eigenproblem for A is finitely soluble.

Periodicity: A definite matrix A has zero principal eigenvalue. Such a
matrix is called order-d-periodical if there is an integer k0 such that A(k+d) =
A(k) ∀k ≥ k0.

Theorem 7. [3] If A has zero principal eigenvalue and the corresponding
critical circuit is unique and has length d, then A is order-d-periodical.

6 Causality, Stability

A max control system initially at rest can be viewed as a translation-invariant
dilation system ∆ mapping the input u to the output y. (Assume for brievity
single-input single-output systems.) Let h = ∆(q∨) be the impulse response
of ∆. A useful bound for signals f(k) processed by such systems is their max
absolute value over their support:

Bf ≡ sup{|f(k)| : f(k) > −∞}

Such systems are called bounded-input bounded-output (BIBO) stable iff a
bounded input yields a bounded output, i.e., if Bu < +∞ =⇒ By < +∞.
The following theorem provides us with simple algebraic criteria for checking
the causality and stability of max control systems based on their impulse
response.

Theorem 8. [12] Consider a max-sum control system ∆ initially at rest and
let h = ∆(q∨) be its impulse response. (a) The system is causal iff h(k) = −∞
for all k < 0. (b) The system is BIBO stable iff Bh < +∞.

In standard linear control the stability of the linear system can also be ex-
pressed via the eigenvalues of the matrix A. We have derived a conceptually
similar result (stated next) that links the stability of a max-sum control sys-
tem with the principal eigenvalue of A. (For simplicity, the theorem assumes
a unique critical circuit, but it can extended to more general cases.)
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Theorem 9. Consider a max-sum control system whose matrices A,B,C,D
do not contain any +∞ elements. Assume that there is a unique critical cir-
cuit of length d corresponding to the finite principal eigenvalue λ(A) of A.
Then:
(a) If λ(A) = 0, the impulse response of the system is periodic with period
equal to d.
(b) The system is BIBO stable iff λ(A) = 0.

Proof: (a) The zero principal eigenvalue makes the matrixA order-d-periodical.
Hence, by (16), there exists k0 such that h(k+d) = h(k) for all k ≥ k0. (b) If

λ is the principal eigenvalue of A, then (a) implies that A(k+d) = dλ+A(k)

for all k ≥ k0. Hence,

h(k + d) = dλ+ h(k), ∀k ≥ k0 (22)

Further, the absence of +∞ values in the system’s matrices guarantees that
h(k) does not have any such values. Now, if λ = 0, then h(k + d) = h(k)
∀k ≥ k0 and hence Bh < +∞. In contrast, if λ ̸= 0, then (22) will drive
asymptotically (as k → ∞) the values of |h(k)| unbounded, and hence Bh =
+∞. Q.E.D.

Example 1 (DEDS): The DEDS with state-space equations (6) has
principal eigenvalue λ(A) = max(m1,m2) which is positive since m1,m2 >
0. Thus, this system is BIBO unstable. Of course, if the impulse response
of the system (as is the case with this example) becomes unbounded only
asympotically, then our definition of BIBO stability only affects the system
if we let it run for an infinite time. In contrast, if we run the system only for
a finite time, then its impulse response and output signal remain finite.

Example 2 (Recursive Nonlinear Filter): The max control system
corresponding to the recursive nonlinear filter described by (8) has a principal
eigenvalue equal to λ(A) =

∨n
k=1 ak/k. Hence, for this system to be stable,

all the coefficients ak must be nonpositive and at least one of them must be
zero.

7 Controllability, Observability

A max-sum control system is controllable if the following system of nonlinear
equations can be solved and provide the vector u = [u(0), u(1), ..., u(n− 1)]T

of input values required to drive the system from the initial state x(0) to any
desired state x(n) in n steps:

x(n) = A(n)x(0) ∨

[A(n−1) + B, · · · ,B]︸ ︷︷ ︸
C

+

 u(0)
...

u(n− 1)


 (23)
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Assuming that the input is dominating the initial conditions, i.e., the second
term is greater than the first term of the right hand side, we can rewrite the
above as

C + u = x (24)

where x = x(n) is the desired state. This is a system of max-sum equations
which may be solved using the methods of minimax algebra. A necessary
condition to find a unique solution of (24), i.e., a unique input vector to
drive the system to the state x in n steps is the rank of C to be equal
to n, i.e., the columns of C must be SMI. However, in certain applications
Eq. (24) may be too strong of a condition and it may be sufficient to solve
an approximate controllability problem that has some optimality aspects.
Specifically, consider the problem of finding an optimal input vector u as
solution to the following optimization problem:

Minimize ||x− C + u||
subject to C + u ≤ x

(25)

where the norm || · || is either the ℓ∞ or the ℓ1 norm. Namely, we wish to
minimize a norm of the earliness subject to zero lateness. It follows [4] that
the solution to the above optimization problem is

u = C∗ + ′x (26)

We note that the optimal controllability solution (26) is actually a lattice
erosion, and its optimality can be proven simply by using properties of lat-
tice dilations and erosions. Specifically, to the dilation δ(y) = C + y there
corresponds a unique erosion ε(y) = C∗ + ′y such that the operator pair
(ε, δ) forms a lattice adjunction [6]. One property of such adjunctions is that
the composition δε, known as the opening operator, is antiextensive. Thus,
δ(ε(x)) ≤ x and u = ε(x) is the largest solution with δ(u) ≤ x.

The above ideas on the controllability problem can also be applied to
the observability problem. A max-sum control system is observable if we can
estimate the initial state by observing a sequence of output values. This can
be done if the following system of nonlinear equations can be solved: y(0)

...
y(n− 1)

 =

 C
...

C + A(n−1)


︸ ︷︷ ︸

O

+ x(0) ∨ [h(n−1), · · · , h(0)] +

 u(0)
...

u(n− 1)


(27)

Assuming that the first term of the right hand side containing the initial
state dominates the second term that contains the input, we can rewrite the
above as

O + x(0) = y = [y(0), ..., y(n− 1)]T (28)
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This max-sum matrix equation can be solved either exactly or approximately
by using the same methods as for the controllability equation. The general
solution is then

x̂(0) = O∗ + ′y (29)

and has the property that it is the largest solution with O + x̂(0) ≤ y.

8 Feedback

Consider a max control system described by the state space equations (12)
and let its input signal u(k) be the max of a feedback of the state and a
reference signal w(k). The state feedback law considered is

u(k) = w(k) ∨ (F + x(k)) (30)

where F is the feedback matrix. Then the new state space equations will be

x(k + 1) = [A ∨ (B + F )] + x(k) ∨ B + w(k)
y(k) = [C ∨ (D + F )] + x(k) ∨ D + w(k)

(31)

Thus, the use of feedback can affect the principal eigenvalue of the system,
as well as its controllability and observability.

We illustrate a possible effect of feedback on the system’s eigenvalue via
the example of the DEDS of Fig. 1. Suppose as in [9] that, we want to design
this system to have cyclic behavior, i.e.,

x(k + 1) = λ+ x(k) (32)

where λ is a constant positive number (the cycle time). The original state-
space equations (6) are

x(k + 1) = [A + x(k)] ∨ [B + u(k + 1)] (33)

If we use a state feedback of the form

u(k + 1) = F + x(k) , F = [r1, r2] (34)

then from (33) and (34) we obtain

λ+ x(k) = [A ∨ (B + F )] + x(k) (35)

Thus the problem reduces to finding the principal eigenvalue of

Q = A∨(B + F ) =

[
m1 θ

m1 +m2 m2

]
∨
[

m1 + r1 m1 + r2
m1 +m2 + r1 m1 +m2 + r2

]
(36)

and the corresponding eigenvector x(0). Setting r1 = r2 = 0 yields the fol-
lowing matrix Q and its eigenvalue and eigenvector:

Q =

[
m1 m1

m1 +m2 m1 +m2

]
=⇒ λ(Q) = m1+m2, x(0) =

[
m1

m1 +m2

]
(37)

Since x1(0) = m1 + u(0) and x2(0) = m1 + m2 + u(0), it follows that the
choice of feedback F = [0, 0] and initial input u(0) = 0 achieves the above
cyclic behavior with cycle time λ = m1 +m2.
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